
Automated Refactoring of Object-Oriented
Code Using Clustering Ensembles

Timofey Bryksin
Saint Petersburg State University

JetBrains Research, Saint Petersburg, Russia
t.bryksin@spbu.ru

Alexey Shpilman
Saint Petersburg National Research Academic

University of the Russian Academy of Sciences
JetBrains Research, Saint Petersburg, Russia

alexey@shpilman.com

Daniel Kudenko
Department of Computer Science, University of York, United Kingdom

Saint Petersburg National Research Academic University of the Russian Academy of Sciences
JetBrains Research, Saint Petersburg, Russia

daniel.kudenko@york.ac.uk

Abstract

In this paper we are approaching the problem of au-
tomatic refactoring detection for object-oriented sys-
tems. An approach based on clustering ensembles is
proposed, several heuristics to existing algorithms and
to filtering and combining their results are discussed.
An experimental validation of the proposed approach on
an open source project is proposed. The obtained results
illustrate that the introduced approach could be success-
fully used to improve existing integrated development
environments, providing developers with one more tool
to reduce complexity of their projects.

Introduction

Refactoring is a well known tool helping to improve code
readability and reduce its internal complexity, which make
systems easier to extend and maintain. A number of refac-
toring techniques are already known, and modern integrated
development environments (IDEs) provide support to per-
form such technical tasks as moving a method or extracting
a class automatically.

In this research we are trying to make one more step in
helping software developers make their code less complex
and tangled by analyzing the code of a project opened in an
IDE and suggesting developers possible directions of refac-
toring. But there still is no commonly accepted criteria or a
formalism describing “good object-oriented code”. Dozens
of metrics were created measuring data encapsulation, ab-
straction, cohesion, coupling and other intrinsic key charac-
teristics of the code. Some of these metrics are very arguable
since they are built based on opinions on what a good archi-
tecture is ((Simons and White 2015) even shows that refac-
toring metrics are weakly correlated with human judgment),
but nevertheless a programmer can normally find some set
of metrics that represent his or her view on this matter.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The objective of this paper it to use clustering ensam-
bles for automatic identification of refactorings for object-
oriented projects. This allows to mitigate the problem of us-
ing just one single quality metric or approach implemented
in each of the different clustering methods and to combine
their strengths together. Based on this approach a plugin for
IntelliJ IDEA has been implemented that runs a number of
clustering algorithms, generates a list of possible refactor-
ings, ranks them according to an introduced metric of accu-
racy (which is unique to our system) and presents them to
a developer using IDEA’s tool windows interface. If the de-
veloper finds one or more of suggested refactorings suitable
for his or her needs, they can be selected and applied auto-
matically (if this refactoring is doable using IDEA’s internal
refactoring tools).

Related work

Detection of refactoring opportunities in software projects
is a well-researched domain. Several techniques to de-
tect design defects and appropriate refactorings have been
presented: bayesian belief networks (Khomh et al. 2009),
game theory (Bavota et al. 2010), multi-objective genetic
programming (Mansoor et al. 2017), clustering ((Rao and
Reddy 2012), (Marian 2014)) and a number of different
search methods (for example, (Moghadam and Ó Cinnéide
2011), (O’Keeffe and ı́ Cinnéide 2008) or (Harman and Tratt
2007)). Several papers present similar ideas to package-
level refactorings ((Pan, Jiang, and Xu 2013), (Alkhalid, Al-
shayeb, and Mahmoud 2011), (Mahdavi, Harman, and Hi-
erons 2003)).

Several tools exist that detect “code smells” and architec-
tural defects like PMD1, iPlasma 2 or JDeodorant 3. PMD is

1PMD static code analyzer: https://pmd.github.io/
2iPlasma code analyzer: http://loose.upt.ro/reengineering/

research/iplasma
3JDeodorant Eclipse plugin: https://marketplace.eclipse.org/

content/jdeodorant

The Workshops of the Thirty-Second
AAAI Conference on Artificial Intelligence

754

a highly customizable static analyzer, so it can detect prob-
lems, but does not provide any solutions. iPlasma is a stand-
alone application, hence is not easily integrated in develop-
ment process. JDeodorant is a plugin for Eclipse IDE, and it
is able to suggest Extract Method and Extract Class refac-
torings.

Like JDeodorant the proposed solution is a plugin for an
industrial IDE, which makes it easy to use for software de-
velopers, and using ensembles of different algorithms we
can generate more diverse set of results.

The approach

Selected algorithms

During the literature review we have selected three algo-
rithms that reported the highest percentage of justifiable
refactorings: ARI and HAC from (Marian 2014) and CCDA
from (Pan, Jiang, and Xu 2013).

The ARI (Automatic Refactoring Identification) algo-
rithm introduces a vector space model. Each method and
class in a system is represented by a vector, which ele-
ments are values of different metrics: Relevant Properties
(RP), Depth in Inheritance Tree (DIT), Number of Children
(NOC), Fan-In (FI) and Fan-Out (FO). RP for a method
consists of the method itself, the class where the method
is defined, all fields and methods accessed by this method,
and all methods that override this method. RP for a class
consists of the class itself, all fields and methods from this
class, all interfaces implemented and all classes extended
by this class. So if an entity si is represented by a vector
(si1, si2, si3, si4, si5), a semi-metric function shown in For-
mula 1 will measure dissimilarity between two entities from
the system.

d(si, sj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if i = j√
1
m

·
(
1− |si1∪sj1|

|si1∩sj1| +
m∑

k=2

(sik − sjk)2
)
,

if si1 ∩ sj1 �= ∅
∞, otherwise

(1)
The algorithm initially places each class into a separate

cluster and then tries to put each method to the closest clus-
ter according to Formula 1 or to put it into a new cluster if the
distance to all existing clusters is greater than 1. Finally the
algorithm searches for classes whose distance between each
other is less than 1 and merges them together. The result-
ing partition is compared with original code structure and
three types of refactoring are identified: Move Method, Ex-
tract Class and Inline Class.

The HAC (Hierarchical Agglomerative Clustering) algo-
rithm uses the same vector space model and distance func-
tion as ARI, but calculates the distance between two clusters
using complete link linkage method. Initially each program
entity (a method or a class) is placed into a separate clus-
ter. Then while changes can be done it calculates distances
between all pairs of clusters, takes the minimum distance
and merges these clusters together if it is less than 1. The
rest is similar to ARI: compare the resulting partition with

the original architecture and identify the same three types of
refactoring.

The CCDA (Constrained Community Detection Algo-
rithm) was originally used for refactoring identification at
package level. It employs the formalism of software net-
works to represent classes and dependencies between them:
each class is represented by a node in the network and
edges between nodes are created when there is a dependency
between the corresponding classes. Edges are weighted to
specify strength of the dependency. The algorithm tries to
detect communities within such a network: sets of nodes that
have higher density of edges within each set than between
them. Initially each class is placed into a separate commu-
nity and then the algorithm starts to move classes between
communities to optimize a quality index for the given parti-
tion. In CCDA, Q =

∑
i (weii − wa2i) is used as the quality

index, where weii is the fraction of the total weight of edges
that connect two nodes within community i, and wai is the
fraction of the total weight of edges that have at least one
endpoint within community i. In this research CCDA was
adopted to work at class level, redistributing methods be-
tween classes instead of redistributing classes between pack-
ages.

In addition to the three aforementioned algorithms this
paper introduces two more. One of them is MRI (Modified
ARI) which works like ARI, but it recalculates the Relevant
Properties metric for each entity after moving a method to
the closest cluster. That way MRI can calculate each new
method movement taking into account all previous steps,
while ARI uses only information on initial code structure
for all steps.

Another algorithm introduced in this paper is called AK-
Means (Advanced k-means). It combines ideas of hierarchi-
cal clustering and k-means: initially k methods are randomly
selected and marked as centers of separate clusters. Each re-
maining method is then moved into the closest cluster (the
complete link linkage method is used to calculate the dis-
tance). The initial number of classes is selected as the value
of k, so this algorithm does not detect Extract Class and In-
line Class refactorings. Due to the non-deterministic selec-
tion of initial methods this algorithm is being run multiple
times (25 iterations were empirically selected) and the most
popular partition is chosen as the result.

Implementation details

All described algorithms were modified to handle move-
ments of class fields along with methods, which made de-
tection of Move Field refactorings also possible. To archive
this in ARI, HAC and MRI the Relevant Properties metric
for a field consists of the field itself, the class where the field
is defined and all methods from the analysis scope, which
access this field. Fields in CCDA and AKMeans are handled
exactly as methods.

Several novel heuristics were introduced to ARI, HAC
and MRI based on experimental runs to achieve more rele-
vant results. First of all weights were added to different types
of components in the Relevant Properties metric:
• public static fields and methods are not added to other en-

tities’ Relevant Properties sets. Such dependencies are not

755

considered strong enough to move an entity somewhere
else;

• weight value 1 is assigned to getter methods;

• weight value 2 is assigned to private static methods;

• weight value 4 is assigned to public non-static methods;

• weight value 6 is assigned to non-public fields and meth-
ods (both static and not) and to the entity itself when it is
added to its own Relevant Properties.

Calculation of cardinality for Relevant Properties’ inter-
section and union was also redefined accordingly to repre-
sent not only the number of elements in the set, but also
their weights. If an entity belongs to an intersection of RPi

and RPj , it can have different weights in each of these sets.
For the intersection the minimum from these two weight val-
ues is selected and the overall intersection cardinality value
equals to the sum of its entities’ wights. The cardinality of
the union of two Relevant Properties sets equals to sum of
weights of nonoverlapping entities plus the cardinality of the
intersection of these sets.

This modification allows to assess strength of dependen-
cies between entities and filter out refactorings that were
clearly unjustifiable.

The second major heuristic introduced in this research
is the accuracy value of suggested refactorings — a met-
ric showing how relevant each suggested refactoring is. It is
calculated as follows:

• for ARI, MRI and HAC an auxiliary difference metric is
calculated as difference between distances to first and sec-
ond closest clusters. If an entity is decided to be moved
into a cluster, the accuracy value of this refactoring is set
to the minimum of 5 ∗ difference and 1.

• for CDDA and AKMeans a density value is calculated for
each cluster: the maximum number of entities from the
same class is divided by a number of overall entities in this
cluster. If an entity is decided to be moved into a cluster,
this cluster’s density value becomes the accuracy value of
this refactoring.

The third heuristic concerns representation
of results. Each algorithm produces a set of
(entity, target, accuracy) refactorings. All sets are
merged together and grouped by the entity value and
each accuracy value is squared. If a particular refactoring
(an entity and target pair) was suggested by more that
one algorithm, their accuracy values are summed up
into a totalAccuracy value. Then for each entity the
refactoring with higher totalAccuracy value is selected
as the most relevant one. Its final accuracy value will be√

totalAccuracy/n, where n is a number of algorithms
that suggested this refactoring. If this value is more than an
empirically selected threshold of 0.6 then the refactoring is
considered worthy.

ArchitectureReloaded IDEA plugin

All five algorithms were implemented as a plugin for In-
telliJ IDEA, the source code is available on GitHub 4. The
plugin allows to run the algorithms on the project code cur-
rently opened in the IDE, shows suggested refactorings in a
tool window, allows to navigate to corresponding parts of the
project and tries to apply selected refactorings automatically
using IDEA’s existing refactoring tools.

Experimental evaluation

The algorithms were tested on a number of projects to see
the relevance of suggested refactorings. One of them was
JHotDraw 5.1 – an open-source project that is a well-known
example for the use of design patterns and for good design
and that was used for evaluation by the authors of ARI algo-
rithm. In (Marian 2014) ARI is reported to find 20 refactor-
ings, 11 of which the authors considered justifiable. Unfor-
tunately no open implementation of this algorithm was pro-
vided, so we had to create our own. It suggested 32 refac-
torings, only 10 of which were mentioned in the original
paper. The implementation with aforementioned heuristics
suggested 10 refactorings, 8 of which were mentioned in the
original paper and considered justifiable. The remaining 2
are considered incorrect since they are trying to move meth-
ods containing access to private fields.

The whole ensemble for JHotDraw 5.1 suggests 7 refac-
torings with an accuracy value more than 0.6, 5 of which in
our opinion are justifiable:

• moving DiamondFigure.polygon() to RectangleFigure is
justifiable since it is basically moving a method to a parent
class, where it is also applicable.

• moving FigureAttributes.read() to StorableInput and Fig-
ureAttributes.write() to StorableOutput can not be done
automatically since these methods access FigureAt-
tributes’ private field, but still are worthy to think about.
For example, read() performs deserialization of the cur-
rent object using a StorableInput stream object, so it
makes sense to turn it into a factory method within
StorableInput creating, initializing and returning a Figure-
Attributes object.

• moving NumberTextFigure’s getValue() and setValue() to
TextFigure is also moving methods to a parent class which
can be performed automatically. All they do is call par-
ent’s methods, so within TextFigure these methods will
work exactly the same. But these refactorings are justifi-
able only to some extent since these methods implement
the feature specific to NumberTextFigure (handling the
numbers) and it does not belong to the parent class. But
despite such semantics being obvious to a human reader,
there is no way for a clustering algorithm to get it.

• the remaining 2 refactorings (moving FigureAttributes’
get() and set() methods to AttributeFigure) are clearly in-
correct since all they do is access FigureAttributes’ private
field.
4ArchitectureReloaded plugin: https://github.com/ml-in-

programming/ArchitectureReloaded

756

Discussion

Automatic refactoring identification is complicated by the
fact that there is no sure way to assess the result automati-
cally and only a human developer can really judge whether
this particular refactoring should be applied or not. Some of
the refactorings that were suggested during the evaluation
of the implemented algorithms could not have been applied
as they were (for instance, moved methods accessed private
fields or accessed other methods that were not possible to
move), but still might give developer a hint of how to im-
prove their code.

In a preliminary user evaluation of our refactoring plu-
gin with five professional software developers we received
positive feedback throughout concerning the results filter-
ing. As mentioned before, only refactorings that got total
accuracy value higher than 0.6 were initially shown (if there
were no such refactorings, the top 10 were shown regardless
of their accuracy values), but there was a slider that allowed
to set any threshold value. It gave developers an opportunity
to consider the most “popular” suggestions and review all
others later if they were interested. And needless to say that
if we want to create a tool that developers will use in ev-
eryday work, it should be integrated into their development
environments.

Conclusion and future work

Software refactoring can significantly improve quality of the
code. For the last decade there has been a lot of research try-
ing to suggest refactorings automatically, a lot of algorithms
were proposed employing different techniques, but still very
little of them found their way to industrial IDEs. In this paper
we have proposed a way to combine existing knowledge in
this field, creating ensembles of different algorithms. It has
both academical and practical value: the implemented tool
can be used to compare different refactoring identification
algorithms and to test them on real life projects.

Although our approach produced promising results, there
is room for further improvements. Future work will include:

• Further improvement of the algorithms: more experiments
with weights for Relevant Properties metric and CCDA
algorithm, selecting different k values for AKMeans al-
gorithm, trying to move several entities together (for ex-
ample, move a method and a private field that it accesses)
etc.

• Identify and exploit the strengths of the individual refac-
toring identification algorithms to build a better ensemble.

• Optimize implemented tools for very large projects. Cur-
rently, a project consisting of a thousand classes is being
processed for about 1-2 minutes, which could be consid-
ered too long for some users.

• Stronger IDE integration: for instance, efficiently per-
form background calculations and show the results using
IDEA’s code inspection annotations mechanism.

References

Alkhalid, A.; Alshayeb, M.; and Mahmoud, S. A. 2011.
Software refactoring at the package level using clustering
techniques. IET Software 5:274–286(12).
Bavota, G.; Oliveto, R.; De Lucia, A.; Antoniol, G.; and
Gueheneuc, Y.-G. 2010. Playing with refactoring: Identi-
fying extract class opportunities through game theory. In
Proceedings of the 2010 IEEE International Conference on
Software Maintenance, ICSM ’10, 1–5. Washington, DC,
USA: IEEE Computer Society.
Harman, M., and Tratt, L. 2007. Pareto optimal search based
refactoring at the design level. In Proceedings of the 9th An-
nual Conference on Genetic and Evolutionary Computation,
GECCO ’07, 1106–1113. New York, NY, USA: ACM.
Khomh, F.; Vaucher, S.; Guéhéneuc, Y.-G.; and Sahraoui,
H. 2009. A bayesian approach for the detection of code and
design smells. In Proceedings of the 2009 Ninth Interna-
tional Conference on Quality Software, QSIC ’09, 305–314.
Washington, DC, USA: IEEE Computer Society.
Mahdavi, K.; Harman, M.; and Hierons, R. M. 2003. A
multiple hill climbing approach to software module clus-
tering. In Proceedings of the International Conference on
Software Maintenance, ICSM ’03, 315–. Washington, DC,
USA: IEEE Computer Society.
Mansoor, U.; Kessentini, M.; Maxim, B. R.; and Deb, K.
2017. Multi-objective code-smells detection using good and
bad design examples. Software Quality Journal 25(2):529–
552.
Marian, Z.-E. 2014. Machine learning based software de-
velopment. Ph.D. Dissertation, Faculty of Mathematics and
Computer Science, Babes-Bolyai University.
Moghadam, I. H., and Ó Cinnéide, M. 2011. Code-imp: A
tool for automated search-based refactoring. In Proceedings
of the 4th Workshop on Refactoring Tools, WRT ’11, 41–44.
New York, NY, USA: ACM.
O’Keeffe, M., and ı́ Cinnéide, M. 2008. Search-based refac-
toring for software maintenance. J. Syst. Softw. 81(4):502–
516.
Pan, W.; Jiang, B.; and Xu, Y. 2013. Refactoring packages of
object-oriented software using genetic algorithm based com-
munity detection technique. Int. J. Comput. Appl. Technol.
48(3):185–194.
Rao, A. A., and Reddy, K. N. 2012. Identifying clusters
of concepts in a low cohesive class for extract class refac-
toring using metrics supplemented agglomerative clustering
technique. CoRR abs/1201.1611.
Simons, C., S. J., and White, D. 2015. Search-based refac-
toring: Metrics are not enough. In Barros M., Labiche
Y. (eds) Search-Based Software Engineering. SSBSE 2015.
Lecture Notes in Computer Science, volume 9275, 47–61.
Springer, Cham.

757

