

Chatti: A Conversational Chatbot Platform

Inchul Hwang, Heesik Jeon, Hyung Rai Oh, Donghyeon Lee, Munjo Kim, Jihie Kim
Artificial Intelligence Team, Samsung Electronics Co., Ltd., Seoul, Korea

{inc.hwang, heesik.jeon, hyungrai.oh, dh.semko.lee, munjo.kim, jihie.kim}@samsung.com

Abstract
We demonstrate the conversational Chatbot platform named
Chatti which supports developers with a tool to develop
their chatbot easily without full understanding technologies
inside a conversational chatbot. To develop a chatbot with
Chatti, a developer inputs customized domain data and
deploys his Chatbot with a tool. Then users can interact with
the Chatbot based on natural language conversation via
messengers and so on.
Chatti includes natural language understanding, dialog
management, action planning, natural language generation
and chitchat component which run on g models learned
from developers' input data as in common in conversational
assistants such as Bixby, Siri, Alexa and etc. With Chatti,
the developer could make his Chatbot support two types of
conversation simultaneously – basic chitchat and task-
oriented dialog. In contrast to prior chatbot building tools
are mainly focused on the Natural Language Understanding,
Chatti is more focused on full dialog system – dialog
management, action planning, natural language generation
and chitchat. We believe Chatti could accelerate a wide
possibility of conversational Chatbot for services as well as
IoT devices.

1. Introduction
In recent years, a Chatbot has been widely used as a
communication channel with users via messengers –
Facebook, skype, etc. To handle various requests from
users based on natural language, a Chatbot should
understand what an intention of a user is and what
parameters expressed in a user's utterance. Additionally, a
Chatbot should execute the right actions or the dialog
connections based on dialog context. And then, a Chatbot
should generate a natural response correctly based on the
system result and dialog context. All of these technologies
are very similar to a typical Dialog System – natural
language understanding, dialog management, natural
language generation as shown in Figure 1.

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1 Typical Dialogue System Architecture

Based on dialog system, many companies have been

investing in an intelligence personal assistant (Samsung
Bixby, Apple Siri, Amazon Echo and etc.) as an interface.
Because a conversational interface could be provided in
various services including voice-based assistants for IoT
devices, we developed the conversational Chatbot platform
named Chatti, which was developed based on technologies
in as personal assistant systems. With Chatti, developers
could develop their own Chatbot very easily – makes their
Chatbot understand what users want to do by doing the
natural dialog connections. Chatti provides a well-designed
integration of components of dialog systems and supports
customization by data. Therefore, we believe that Chatti
could accelerate a wide possibility of Chatbot for services
as well as IoT devices when it needs a conversational
interface. In this demonstration, we show how to use Chatti
for the development of Chatbot and the sample Chatbot
service.

In section 2 of this paper, we explain more details of
Chatti. In section 3, we describe how to do the
demonstration. We then summarize the paper and future
work in section 4.

2. Chatti Architecture
The proposed system architecture is composed of the
following components as shown in Figure 2. To handle
user's interaction based on text, we developed 5 modules
inside the Chatti as follows:

• Dialog Management (DM) to maintain dialog context

and Action Planning (AP) to plan the right sequence of
service actions. These modules could be a code in other

The Workshops of the Thirty-Second
AAAI Conference on Artificial Intelligence

145

platforms. In Chatti, these modules are supported as a
part of platform, so developers could easily utilize dialog
management and action planning functionalities – e.g.
dialog state tracking, dialog policy decision, planning
based on the task network based on the conversation
with a specific user.

• Natural Language Understanding (NLU) to extract
intents and entities from user’s utterance. There are
bunch of approaches to implement NLU functionality –
Pattern-based, Statistical Approach and Deep Neural
Network (LSTM, CNN, etc..). In Chatti, there are
various approaches (Dictionary, Pattern-based, an so on.)

• Natural Language Generation (NLG) to generate system
response based on text form. NLG could also be
implemented with various methods – simple sentence,
template-based and DNN-based. We also support
various ways which developers could utilize including
simple sentence, template-based and so on.

• Chitchat to make the automatic chitchat response.
Regarding chitchat if the dialog corpus is enough, we
could do the End-to-end learning based on dialog corpus.
Additionally, if corpus data is not enough, a method
based on Information retrieval could be better rather
than End-to-end learning approach.

• Knowledge Base (KB) to store and manage the data
which is used for each module such as a model and
corpus

Figure 2 Typical Dialogue System Architecture

Figure 3 Snapshot of Chatti Development Tool

To build a customized Chatbot, the developers can use
the tool in the Chatti in Figure 3.

Figure 4 Overall 4 steps of Development

There are 4 steps for developers to build the Chatbot as

shown in Figure 4 with Chatti tool(below example is
supposed to be made for 'Weather.bot' which serves a
weather service).

1. Defining intentions and entities including options for

dialog policies of a Chatbot. Intentions describe the
functionalities of a Chatbot and entities describe the
input/output parameters of the Chatbot. For example,
weather information search functionality could be
described as a intention – 'search.weather', entities could
be a location and a status of weather as an input/output
parameters. When a developer describes entities, a
developer could set some properties of entities such as if
it could be multiplicity or mandatory for the intention.
After defining all intentions and entities, defined tasks
should be connected to the IoT devices or back-end
services which describes with Open APIs. To make
Chatti connect to IoT devices or back-end services, a
developer should define Webhook which calls open
APIs based on the request from Chatti and returns the
results to Chatti. With defining Webhook URL into
Chatti, developers could do this work. Developers could
check the actual task network via tool after authoring an
intention with graph type as in Figure 5.

2. Base on the intentions and entities defined in 1, next step
is to input raw data such as utterance, dictionary and so
on. After inputting the raw data, developers should tag
them as a NLU corpus. For example, 'what's the weather
in Seattle (Intention: 'search.weather', Entity-location:
'Seattle')' could be an example. Because the corpus data
could be large, bulk import/export is supported.
Additionally, a developer could test their trained NLU
model on-the-fly based on input text or batch-style text
file – system will show the confidence level and slot
information on the tool.

3. Inputting system response based on dialog states, user's
utterance including user's intentions/slots as well as a
system result of execution. For example, if the searching
weather is successfully done, the response could be
'Weather is [status]fine in [location]Seattle' – [status] is
from the results of system execution and [location] is
from the user's utterance).

146

4. Inputting sample utterances and responses pair for
Chitchat. For example, if a user says 'what can you do?',
then a response could be 'I'm a weather bot'. Then this
pair 'what can you do?'-'I'm a weather bot' should be
input to the system. If a user's utterance is similar to the
input utterance data –'what can you do', the Chatbot will
give the response 'I'm a weather bot'.

Figure 5 Task Network based on Graph View

After inputting all raw data, if a developer trains each
module, the system will generate models for the module.
As a result, after a developer finishes all of these phase,
data in Knowledge base will be as follows:

• Task network which describes the functionalities

(intentions) as well as parameters (entities)
• NLU corpus (raw data) and NLU trained model
• NLG template
• Chitchat trained model

Figure 6 Testing Chatbot on Chatti Tool

Additionally, developers could test the whole Chatbot
based on the model and raw data with or without Webhook
on Chatti tools as shown in Figure 6. Like a messenger,
developers could input any utterance and see the actual
response from Chatbot.

The chatti system has been used in developing several
chatbots: Meeting planner, Q&A on bus schedule,
controlling washing machine, etc. It tasks several
days(2~3 days) to develop these chatbots with 7 developers.

3. Demonstration
Our demonstration system consists of two parts, the tool
for developers and sample Chatbot service as in Figure 7.

Figure 7 Environment for Chatti Demonstration

In the first, we demonstrate the authoring a Chatbot

based on Chatti tool. In this phase, we are going to use our
tool on a monitor or projector which displays tools and
explain each step for authoring a specific Chatbot. –
Defining the task, inputting NLU raw data, defining NLG
and inputting chitchat data and testing developed one. We
will give a simple example such as 'Weather.bot' as
described in this paper.

In the second part, we demonstrate the sample bot which
we developed as a sample - the laundry bot which handles
a user's request for a laundry via messenger named Kakao
talk which is the most popular in Korea. A smartphone will
be connected to a monitor and another monitor will be
shown the virtual laundry which is connected to the
laundry bot with a Webhook. So, if a user sends a message
regarding the laundry via Kakao talk, the Chatbot will give
answers or do the actions with virtual Laundry bot.

4. Conclusion
In this demonstration, we show Chatti which provide the
development environment with developers for efficient
development of a Chatbot. With Chatti, developers could
utilize Dialog System technologies without deep
knowledge by just inputting domain specific data to the
system with a tool. Additionally, testing including system
level as well as component level is supported by Chatti,
debugging and improving is also possible.

In the future, we are going to improve Chatti with
various ways – improvement of dialog system technology
such as End-to-end dialog modeling as well as
functionality such as log analytics for a Chatbot.

References
Samsung Bixby, http://www.samsung.com/sec/apps/bixby/
Apple Siri, http://www.apple.com/ios/siri/
Amazon Alexa, http://alexa.amazon.com/spa/index.html

147

Hauswald, J., Laurenzano, M.A., Zhang, Y., Li, C., Rovinski, A.,
Khurana, A., Dreslinski, R.G., Mudge, T., Petrucci, V., Tang, L.
and Mars, J., 2015, March. Sirius: An open end-to-end voice and
vision personal assistant and its implications for future warehouse
scale computers. In ACM SIGPLAN Notices (Vol. 50, No. 4, pp.
223-238). ACM.
Jeon, H., Oh, H.R., Hwang, I. and Kim, J., 2016, March. An
Intelligent Dialogue Agent for the IoT Home. In AAAI
Workshop: Artificial Intelligence Applied to Assistive
Technologies and Smart Environments.
ARIA, http://aria-agent.eu/
Chen, Y.N., Celikyilmaz, A. and Hakkani-Tür, D., 2017. Deep
Learning for Dialogue Systems. Proceedings of ACL 2017,
Tutorial Abstracts, pp.8-14.
Henderson, M., 2015. Machine learning for dialog state tracking:
A review. In Machine Learning in Spoken Language Processing
Workshop.
Liu, B. and Lane, I., 2016. Attention-based recurrent neural
network models for joint intent detection and slot filling. arXiv
preprint arXiv:1609.01454.
Wen, T.H., Gasic, M., Mrksic, N., Su, P.H., Vandyke, D. and
Young, S., 2015. Semantically conditioned lstm-based natural
language generation for spoken dialogue systems. arXiv preprint
arXiv:1508.01745.
Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J. and Jurafsky,
D., 2016. Deep reinforcement learning for dialogue generation.
arXiv preprint arXiv:1606.01541.

148

