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Abstract 
We demonstrate the conversational Chatbot platform named 
Chatti which supports developers with a tool to develop 
their chatbot easily without full understanding technologies 
inside a conversational chatbot. To develop a chatbot with 
Chatti, a developer inputs customized domain data and 
deploys his Chatbot with a tool. Then users can interact with 
the Chatbot based on natural language conversation via 
messengers and so on.  
Chatti includes natural language understanding, dialog 
management, action planning, natural language generation 
and chitchat component which run on g models learned 
from developers' input data as in common in conversational 
assistants such as Bixby, Siri, Alexa and etc. With Chatti, 
the developer could make his Chatbot support two types of 
conversation simultaneously – basic chitchat and task-
oriented dialog. In contrast to prior chatbot building tools 
are mainly focused on the Natural Language Understanding, 
Chatti is more focused on full dialog system – dialog 
management, action planning, natural language generation 
and chitchat. We believe Chatti could accelerate a wide 
possibility of conversational Chatbot for services as well as 
IoT devices. 
 

1. Introduction   
In recent years, a Chatbot has been widely used as a 
communication channel with users via messengers – 
Facebook, skype, etc. To handle various requests from 
users based on natural language, a Chatbot should 
understand what an intention of a user is and what 
parameters expressed in a user's utterance. Additionally, a 
Chatbot should execute the right actions or the dialog 
connections based on dialog context. And then, a Chatbot 
should generate a natural response correctly based on the 
system result and dialog context. All of these technologies 
are very similar to a typical Dialog System – natural 
language understanding, dialog management, natural 
language generation as shown in Figure 1.   
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Figure 1 Typical Dialogue System Architecture 

 
Based on dialog system, many companies have been 

investing in an intelligence personal assistant (Samsung 
Bixby, Apple Siri, Amazon Echo and etc.) as an interface. 
Because a conversational interface could be provided in 
various services including voice-based assistants for IoT 
devices, we developed the conversational Chatbot platform 
named Chatti, which was developed based on technologies 
in as personal assistant systems. With Chatti, developers 
could develop their own Chatbot very easily – makes their 
Chatbot understand what users want to do by doing the 
natural dialog connections. Chatti provides a well-designed 
integration of components of dialog systems and supports 
customization by data. Therefore, we believe that Chatti 
could accelerate a wide possibility of Chatbot for services 
as well as IoT devices when it needs a conversational 
interface. In this demonstration, we show how to use Chatti 
for the development of Chatbot and the sample Chatbot 
service. 

In section 2 of this paper, we explain more details of 
Chatti. In section 3, we describe how to do the 
demonstration. We then summarize the paper and future 
work in section 4. 

2. Chatti Architecture 
The proposed system architecture is composed of the 
following components as shown in Figure 2. To handle 
user's interaction based on text, we developed 5 modules 
inside the Chatti as follows:  
 
• Dialog Management (DM) to maintain dialog context 

and Action Planning (AP) to plan the right sequence of 
service actions. These modules could be a code in other 
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platforms. In Chatti, these modules are supported as a 
part of platform, so developers could easily utilize dialog 
management and action planning functionalities – e.g. 
dialog state tracking, dialog policy decision, planning 
based on the task network based on the conversation 
with a specific user. 

• Natural Language Understanding (NLU) to extract 
intents and entities from user’s utterance. There are 
bunch of approaches to implement NLU functionality –
Pattern-based, Statistical Approach and Deep Neural 
Network (LSTM, CNN, etc..). In Chatti, there are 
various approaches (Dictionary, Pattern-based, an so on.) 

• Natural Language Generation (NLG) to generate system 
response based on text form. NLG could also be 
implemented with various methods – simple sentence, 
template-based and DNN-based. We also support 
various ways which developers could utilize including 
simple sentence, template-based and so on. 

• Chitchat to make the automatic chitchat response. 
Regarding chitchat if the dialog corpus is enough, we 
could do the End-to-end learning based on dialog corpus. 
Additionally, if corpus data is not enough, a method 
based on Information retrieval could be better rather 
than End-to-end learning approach. 

• Knowledge Base (KB) to store and manage the data 
which is used for each module such as a model and 
corpus 

Figure 2 Typical Dialogue System Architecture 

 

Figure 3 Snapshot of Chatti Development Tool 

To build a customized Chatbot, the developers can use 
the tool in the Chatti in Figure 3.  

Figure 4 Overall 4 steps of Development 

 
There are 4 steps for developers to build the Chatbot as 

shown in Figure 4 with Chatti tool(below example is 
supposed to be made for 'Weather.bot' which serves a 
weather service). 
 
1. Defining intentions and entities including options for 

dialog policies of a Chatbot. Intentions describe the 
functionalities of a Chatbot and entities describe the 
input/output parameters of the Chatbot. For example, 
weather information search functionality could be 
described as a intention – 'search.weather', entities could 
be a location and a status of weather as an input/output 
parameters. When a developer describes entities, a 
developer could set some properties of entities such as if 
it could be multiplicity or mandatory for the intention. 
After defining all intentions and entities, defined tasks 
should be connected to the IoT devices or back-end 
services which describes with Open APIs. To make 
Chatti connect to IoT devices or back-end services, a 
developer should define Webhook which calls open 
APIs based on the request from Chatti and returns the 
results to Chatti. With defining Webhook URL into 
Chatti, developers could do this work. Developers could 
check the actual task network via tool after authoring an 
intention with graph type as in Figure 5. 

2. Base on the intentions and entities defined in 1, next step 
is to input raw data such as utterance, dictionary and so 
on. After inputting the raw data, developers should tag 
them as a NLU corpus. For example, 'what's the weather 
in Seattle (Intention: 'search.weather', Entity-location: 
'Seattle')' could be an example. Because the corpus data 
could be large, bulk import/export is supported. 
Additionally, a developer could test their trained NLU 
model on-the-fly based on input text or batch-style text 
file – system will show the confidence level and slot 
information on the tool. 

3. Inputting system response based on dialog states, user's 
utterance including user's intentions/slots as well as a 
system result of execution. For example, if the searching 
weather is successfully done, the response could be 
'Weather is [status]fine in [location]Seattle' – [status] is 
from the results of system execution and [location] is 
from the user's utterance). 
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4. Inputting sample utterances and responses pair for 
Chitchat. For example, if a user says 'what can you do?', 
then a response could be 'I'm a weather bot'. Then this 
pair 'what can you do?'-'I'm a weather bot' should be 
input to the system. If a user's utterance is similar to the 
input utterance data –'what can you do', the Chatbot will 
give the response 'I'm a weather bot'. 

 
Figure 5 Task Network based on Graph View 

After inputting all raw data, if a developer trains each 
module, the system will generate models for the module. 
As a result, after a developer finishes all of these phase, 
data in Knowledge base will be as follows: 
 
• Task network which describes the functionalities  

(intentions) as well as parameters (entities) 
• NLU corpus (raw data) and NLU trained model 
• NLG template  
• Chitchat trained model 

 

Figure 6 Testing Chatbot on Chatti Tool 

Additionally, developers could test the whole Chatbot 
based on the model and raw data with or without Webhook 
on Chatti tools as shown in Figure 6. Like a messenger, 
developers could input any utterance and see the actual 
response from Chatbot. 

The chatti system has been used in developing several 
chatbots: Meeting planner, Q&A on bus schedule, 
controlling washing machine, etc.  It tasks several 
days(2~3 days) to develop these chatbots with 7 developers. 

3. Demonstration
Our demonstration system consists of two parts, the tool 
for developers and sample Chatbot service as in Figure 7.  

 

Figure 7 Environment for Chatti Demonstration 

 
In the first, we demonstrate the authoring a Chatbot 

based on Chatti tool. In this phase, we are going to use our 
tool on a monitor or projector which displays tools and 
explain each step for authoring a specific Chatbot. – 
Defining the task, inputting NLU raw data, defining NLG 
and inputting chitchat data and testing developed one. We 
will give a simple example such as 'Weather.bot' as 
described in this paper. 

In the second part, we demonstrate the sample bot which 
we developed as a sample - the laundry bot which handles 
a user's request for a laundry via messenger named Kakao 
talk which is the most popular in Korea. A smartphone will 
be connected to a monitor and another monitor will be 
shown the virtual laundry which is connected to the 
laundry bot with a Webhook. So, if a user sends a message 
regarding the laundry via Kakao talk, the Chatbot will give 
answers or do the actions with virtual Laundry bot.  

4. Conclusion 
In this demonstration, we show Chatti which provide the 
development environment with developers for efficient 
development of a Chatbot. With Chatti, developers could 
utilize Dialog System technologies without deep 
knowledge by just inputting domain specific data to the 
system with a tool. Additionally, testing including system 
level as well as component level is supported by Chatti, 
debugging and improving is also possible.  

In the future, we are going to improve Chatti with 
various ways – improvement of dialog system technology 
such as End-to-end dialog modeling as well as 
functionality such as log analytics for a Chatbot.  
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