
αPOMDP: State-Based Decision
Making for Personalized Assistive Robots

Hend AlTair,∗ Gonçalo S. Martins,∗∗ Luı́s Santos,∗∗ Jorge Dias∗
∗Robotics Institute, Khalifa University of Science, Technology and Research (KUSTAR), Abu Dhabi, UAE
∗∗AP4ISR Team, Institute of Systems and Robotics, University of Coimbra, 3030-290 Coimbra, Portugal

Email:{hend.altair, jorge.dias}@kustar.ac.ae, {gmartins, luis}@isr.uc.pt

Introduction

Social and domestic robots are aimed at providing assis-
tance and companionship in the daily life of elderly users.
In this context, the robot’s ability to automatically adapt to
the user, user-adaptiveness, can be a deciding factor in the
system’s success. This work presents αPOMDP, a POMDP-
based decision-making mechanism able to learn and adapt to
a user, applied to a realistic scenario. Specifically, this work
introduces the following key innovative factors:

• A novel state-based reward formulation;

• A novel learning mechanism and execution loop.

Related Work

Partially Observable Markov Decision Processes (POMDPs)
are represented as a 6-tuple < S,A, T,R, γ,Ω, O > (Small-
wood and Sondik 1973) representing, respectively, the sys-
tem’s states, the agent’s actions, the transition and reward
functions, the discount factor, the possible observations and
the observation model. Not being able to observe its state,
the agent maintains a belief state b ∈ B, which defines the
probability of being in state s according to the agent’s his-
tory of actions and observations.

This formulation has been used in user-adaptive robots,
for instance for task allocation in cooperative scenarios
(Curran, Bowie, and Smart 2016) or cooperative surveil-
lance (Egorov, Kochenderfer, and Uudmae 2016). POMDPs
have been used in assistive robots (Taha, Miró, and Dis-
sanayake 2011), and in the adaptation of a domestic robot
to its user’s preferences (Karami, Sehaba, and Encelle
2016)(Martins et al. 2016).

Several software packages have been developed that im-
plement POMDP solvers, such as QMDP (Cassandra and
Kaelbling 2016) or SARSOP (Kurniawati, Hsu, and Lee
2008), of which the former is employed in our experiments.
QMDP1 is an approach to find Q functions for POMDPs by
making use of Q values of the underlying MDP:

Q(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V (s′), (1)

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/JuliaPOMDP/QMDP.jl

Figure 1: An overview of the execution loop of our system.
T and R are be re-calculated when new information is ob-
tained, resulting in a policy which is better suited to the user.

and linearizing across Q−values to obtain the value at a be-
lief:

V (b) = maxa∈A

∑

s∈S

b(s)Q(s, a). (2)

The Q function for action a, Qa(b) is the expected reward
for a policy that starts in belief state b, takes action a and
then behaves optimally.

αPOMDP

We have designed a system based on two basic premises.
The robot should:
• Be rewarded according to impact (state change) of its ac-

tions on the user (→ new reward formulation);
• Automatically learn and estimate this impact (→ new

learning mechanism).
The main operational loop of our proposed system is il-

lustrated in Fig. 1. We have extended the regular policy cal-
culation and execution loop of classical POMDPs by intro-
ducing a knowledge update and policy re-generation steps.
When coupled with our novel reward formulation, this exe-
cution loop allows the system to gradually adapt to its user,
re-calculating its policy as it gains information as long-term
interaction takes place.

Reward Function

Whenever the system produces an action on the user, that
action is expected to have an impact on the user, which is

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

122



a direct consequence of the robot’s actions. This impact on
the user is formulated as a state transition

s′ = Γ(s, a), (3)

with s′ being the user’s final state after action a, s the initial
state and Γ a hidden transition function that represents the
user’s reaction to a certain action in a certain state. The user
can attibute subjective value to their current state. As such,
whenever the robot produces an action, the user’s state may
change to a state that they consider to be more valuable or
less valuable than the previous state.

The user’s subjective state value is represented as a state
value function V (s) : s → R. This function allows us to
define the impact I on the user produced by a robot’s action
that causes the user to transition from s to s′:

I = V (s′)− V (s) = V (Γ(s, a))− V (s) (4)

In order to modulate each action’s reward according to
potential impact, we make of use of the T (s′, s, a) =
P (s′|s, a) function. This function, in the classical POMDP
formulation, encodes the system’s transitions as probability
distributions. Coupling it with the I term, we formulate the
State Value Reward (SVR) function:

R(a, s) =
∑

s′∈S

T (s, s′, a) ∗ I

=
∑

s′∈S

P (s′|s, a) ∗ (V (s′)− V (s))
(5)

Through the V (s) function, actions are valued only by the
their potential influence on the user, which when modulated
with the T function, allows the agent to make decisions
based on the potential impact of its actions. This formula-
tion differs from the traditional POMDP formulation, since
it attributes value to states instead of actions contextualized
by states.

Transition and Reward Learning

The T function is used in Eq. 5 as an approximation of the
user’s hidden Γ function. In order to progressively adapt to
the user, the system must refine its approximation of this
function at each observation of the user’s Γ function. Each
interaction with the user (Fig. 1) yields one such observa-
tion, which is stored in the form of a sample

L = {s′, s, a}, (6)

encoding the initial and final states, as well as the action em-
ployed by the robot. This information is used to iteratively
learn T by constructing a histogram, as usually seen in the
Naı̈ve Bayes Classifier formalism, which is updated at every
new sample, thus enriching the system’s knowledge of Γ:

P (S′|S,A) =
1

N
N(S′, S, A) (7)

where N is the number of available samples, and
N(S′, S, A) is the number of samples where S′ = s′, S =
s,A = a.

Input : User Profile user, number of iterations n
Output: Log files.
// Randomize initial state
state = random();
// Determine first policy
policy = solve();
for n iterations do

// Get action for this state
a = policy.get action(state);
// Get the reward for this action
reward = user.reward(a, state);
// Transition state
new state = user.transition(state,a);
// Update the transition function
update transition(new state, state, a);
// Re-calculate policy and wrap-up
policy = solve();
state = new state;

end

Algorithm 1: An illustration of the basic functionality
of our HRI simulator.

Experimental Scenario and Set-Up

We aimed to test our technique using a POMDP formulation
that approximated a realistic scenario. We have opted for a
scenario where the robot has to decide between providing
the user with instant gratification and long-term health. On
each interaction, the robot must decide which action to take
depending on the state of the user. Naturally, each of its ac-
tions will have an impact on the user: giving them sweets
will provide instant gratification, and performing exercise
will contribute to better health. The user and robot interact
periodically, with the robot progressively learning the im-
pact of its actions on the user through the learning technique
specified before. Thus, the relevant POMDP variables are
materialized as:
S: s ∈ {S1, S2} where Si ∈ {1, 2, 3, 4}:
S1: user satisfaction, S1 = 1 means the user is unsatisfied,

and S1 = 4 means they are fully satisfied;
S2: user’s health, similarly to S1.

A: a ∈ {1, ..., 3} with each action corresponding to:
1. Give the user sweets (instant gratification);
2. Encourage physical exercise (long-term benefits);
3. Do nothing.

The remaining parameters are defined as before. For the pur-
poses of this experimentation, the system was given obser-
vations such that they matched the real state.

We have developed a simulator that mimics the system of
Fig. 1, making use of policies to expose the simulated user to
the actions deemed correct by the policy, depending on the
current state, as illustrated in Algorithm 1. Each simulated
trial consisted of executing the loop described in Fig. 1 for
a set number of iterations (n). The system interacted with a
simulated user characterized by:

V (s) = 2s1 + s2, (8)

by using these coefficients, we are encoding into the V (S)
function the idea that s1 is more important than s2, for the

123



0 50 100 150 200

Iterations

−102

−101

−100
0

100

101

102
C

um
ul

at
iv

e
R

ew
ar

d

(a) Evolution of cumulative reward.

0 50 100 150 200

Iterations

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

T
E

nt
ro

py

(b) Evolution of T entropy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
State Ranks

0

5

10

15

20

25

30

Ite
ra

tio
ns

(c) Avg. iterations spent in each state rank.

Figure 2: Results obtained for 100 trials of 200 iterations,
re-calculating the policy every iteration. (a) represents the
cumulative reward, with the colored background represent-
ing ±2σ. Similarly for (b), representing the average entropy
in the T distributions. (c) represents the average number of
iterations spent in each state, from the most (left) to least
(right) valuable.

purpose of our tests. A fixed Γ function is used for each trial,
and is randomized between trials. As a technological basis
for our test-bench, we have used JuliaPOMDP (Egorov et
al. 2017), running on Julia 0.6, and the QMDP (Cassandra
and Kaelbling 2016) POMDP solver. We have performed tri-
als both solving the POMDP for all possible states every
time new information is gathered, and allowing some time
between policy re-calculation. We encourage the interested
reader to analyze our code and replicate these experiments2.

We have evaluated the technique’s performance through

2https://github.com/gondsm/apomdp

0 50 100 150 200

Iterations

−102

−101

−100
0

100

101

102

C
um

ul
at

iv
e

R
ew

ar
d

(a) Evolution of cumulative reward.

0 50 100 150 200

Iterations

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

T
E

nt
ro

py
(b) Evolution of T entropy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
State Ranks

0

5

10

15

20

25

30
Ite

ra
tio

ns

(c) Avg. iterations spent in each state rank.

Figure 3: Results obtained for 100 trials of 200 iterations, re-
calculating the policy every 20 iterations. (a) represents the
cumulative reward, with the colored background represent-
ing ±2σ. Similarly for (b), representing the average entropy
in the T distributions. (c) represents the average number of
iterations spent in each state, from the most (left) to least
(right) valuable.

the following metrics:
Rc: Cumulative Reward;

H̄(T ): Average entropy on the T (s′, s, a) function.
t̄n Average number of iterations the user spent in

each state of rank n, as defined by the V (S) func-
tion.

H̄(T ) is defined as:

H̄(T ) =
1

N

∑

s′∈S

∑

s∈S

∑

a∈A

H(T (s′, s, a)) (9)

where N is the number of combinations of s′, s and a.

124



The entropy function is defined as in Shannon’s original
formulation (Shannon 1948):

H(X) = −
n∑

i=1

P(xi) logb P(xi), (10)

Results and Discussion

Figures 2, 3 represent the evolution of the cumulative re-
ward, average entropy H̄(T ), as well as the count of itera-
tions spent in each state according to its rank. Fig. 2 corre-
sponds to the scenario where the policy was re-calculated for
every iteration while Fig. 3 to re-calculation every 20 itera-
tions. The top graph of each figure represents the evolution
of cumulative reward for the number of iterations used, with
the dark blue line representing the average, while the cyan
background represents the μ ± 2σ area. Similarly, the mid-
dle graph represents the evolution of the average T entropy,
H̄(T ). The bottom graph represents the average number of
iterations that the user spent on each state according to the
rank of the state, for all trials.

In Fig. 2, the evolution of the reward and T entropy
demonstrate that the system is able to progressively learn
the user’s profile (Γ) and successfully adapt to it, progres-
sively converging and maintaining the user stable in the most
valuable states, as seen in Fig. 2c. We can observe that the
system goes through a learning phase, from iterations 0 to it-
eration 30, where most of the user’s transition function Γ is
captured in the system’s user model. In this period, entropy
lowers quickly as the system learns, and cumulative reward
suffers the highest variations. After this period, the system is
able to keep the user transitioning among the most valuable
states, as illustrated in Fig 2c.

In Fig. 3 we can observe that the system still achieves
the main goals. However, performance is hindered by its re-
duced ability to incorporate new data: it takes around 100
iterations to reach the same entropy minimum as in the pre-
vious test, and the distribution of the user’s states in Fig. 3c
is leaning significantly more towards lower-value states. The
reduced performance observed in this test demonstrates that
the system must be allowed to incorporate data frequently, at
least in the beginning of the interaction, to ensure that appro-
priate learning takes place. However, given the advantages
of a workflow in which the policy is re-calculated fewer
times, namely the potential reductions in computational ef-
fort, it is important to consider these results in the design of
an adaptive re-calculation loop.

Unlike the classical POMDP formulation, αPOMDP is
able to learn the transition matrix T on-line as it interacts
with the user, dynamically adapting its rewarding scheme to
maximize positive user impact (Eq. 4), factoring in the se-
mantic value of user states in the decision-making process.

Conclusion

In this work we have presented αPOMDP, a User-Adaptive
Decision-Making framework based on the POMDP formula-
tion. We have performed simulation tests, demonstrating its
ability to learn the impact of its actions, and to maintain the
user in valuable states. Results show that the system is able

to correctly estimate the impact of its actions on the user,
generating policies according to the transitions that it learns
while executing, gaining satisfactory cumulative rewards.

Future Work: oPOMDP

As mentioned, we have opted to provide our system with
true observations, in order to better evaluate the performance
of SVR in optimal conditions. These experiments have al-
lowed us to conclude that SVR is a worthwhile formulation.

In the future, it would be interesting to expand our formu-
lation to remove this limitation, integrating the probability
of observation while maintaining the basic tenets of SVR, in
a formulation we call oPOMDP. In this formulation we try
to estimate the impact of actions in the world as in Eq. 11.
Benefits comes with observation estimation is that although
implicitly actions might lead to expected observations; ex-
plicitly this might not be the case.

Ro
a∈A = Pr(o|s′, a) ∗

∑

a∈A

Pr(s′|s, a) (11)

References

Cassandra, A. R., and Kaelbling, L. P. 2016. Learning
policies for partially observable environments: Scaling up.
In Machine Learning Proceedings 1995: Proceedings of
the Twelfth International Conference on Machine Learning,
Tahoe City, California, July 9-12 1995, 362. Morgan Kauf-
mann.
Curran, W.; Bowie, C.; and Smart, W. D. 2016. Pomdps for
risk-aware autonomy. In 2016 AAAI Fall Symposium Series.
Egorov, M.; Sunberg, Z. N.; Balaban, E.; Wheeler, T. A.;
Gupta, J. K.; and Kochenderfer, M. J. 2017. Pomdps. jl:
A framework for sequential decision making under uncer-
tainty. Journal of Machine Learning Research 18(26):1–5.
Egorov, M.; Kochenderfer, M. J.; and Uudmae, J. J.
2016. Target surveillance in adversarial environments using
pomdps. Target 15:20.
Karami, A. B.; Sehaba, K.; and Encelle, B. 2016. Adaptive
artificial companions learning from users feedback. Adap-
tive Behavior 24(2):69–86.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sarsop: Ef-
ficient point-based pomdp planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
systems, volume 2008. Zurich, Switzerland.
Martins, G. S.; Ferreira, P.; Santos, L.; and Dias, J. 2016.
A Context-Aware Adaptability Model for Service Robots.
In IJCAI-2016 Workshop on Autonomous Mobile Service
Robots.
Shannon, C. E. 1948. A Mathematical Theory of Commu-
nication. The Bell System Technical Journal 27(1):379–423.
Smallwood, R. D., and Sondik, E. J. 1973. The optimal
control of partially observable markov processes over a finite
horizon. Operations research 21(5):1071–1088.
Taha, T.; Miró, J. V.; and Dissanayake, G. 2011. A pomdp
framework for modelling human interaction with assistive
robots. In Robotics and Automation (ICRA), 2011 IEEE In-
ternational Conference on, 544–549. IEEE.

125


