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Abstract

We introduce a novel mechanism for knowledge transfer via
concept formation to augment reinforcement learning agents
operating in complex, uncertain domains. Based on their ob-
servations, agents form concepts and associate them with
actions to generalize their decisions at higher levels of ab-
straction. Concepts serve as simple, portable, efficient pack-
ets of hierarchical information that can be learned in parallel.
The use of conceptual knowledge simultaneously provides an
interpretable, semantic explanation of an agent’s decisions,
making the techniques promising for human-interaction do-
mains such as games, where human observers wish to in-
spect an agent’s rationale. This technique extends previous
work on probabilistic learning with Markov decision pro-
cesses (MDPs) by introducing rich hierarchical feature struc-
tures that can be learned from experience, enabling more ef-
fective learning transfer to new, related tasks.

Introduction

Knowledge transfer in reinforcement learning aims to have
agents record and persist skills associated with features in
their environment to better solve new challenges. We de-
scribe our novel approach to transfer, concept-aware feature
extraction (CAFE). CAFE creates multi-layered abstractions
of a domain’s state-action space, re-representing it in terms
of derived features called concepts. An agent automatically
extracts concepts from observations as high-level descrip-
tors, constructs a hierarchy of these experiences, and records
learned behaviors over this structure. Specifically, CAFE
uses formal concept analysis to produce concept lattices that
cluster extracted features in a partial ordering of increasing
abstraction. Concept formation permits knowledge learned
from one task to be applied to a new problem by identifying
the appropriate level of generalization, transferring behav-
iors between related tasks in unseen environments. CAFE is
especially useful for generalizing across domains with re-
lated objects, enabling problem solving using a scalable, in-
cremental learning strategy, extensible with respect to totally
novel concepts, which often capture semantically meaning-
ful aspects of state space. We demonstrate preliminary re-
sults in two simulated environments, and sketch a plan for
its use in a more complex domain.
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Background

Reinforcement Learning (RL) is a paradigm for solving
decision-making problems where an agent makes an obser-
vation, interacts with the environment, and receives feed-
back in the form of a reward or punishment. The Markov
decision process (MDP) is a common formalization for
such problems defined as a set of states, actions, transition
probabilities, and rewards received upon making a transi-
tion from one state to another by some action. The object-
oriented Markov decision process (OO-MDP) is a factored
state space variant of the MDP where states are composed
of objects whose behavior is defined by the instantiated val-
ues of their attributes (Diuk, Cohen, and Littman 2008). In
any given OO-MDP state, each object has a specific assign-
ment of values to each of its attributes. The main benefit of
the OO-MDP formalization is that it allows more general,
expressive, and easily extensible definitions for decision-
making problems: it grants a natural way of describing en-
vironments as a collection of objects and their properties.
As objects or attributes can easily be added or removed,
OO-MDPs are ideal for state abstractions. OO-MDPs have
served as the basis for recent research in abstractions in RL,
including portable option discovery (Topin et al. 2015) and
planning over hierarchies of abstract Markov decision pro-
cesses (Gopalan et al. 2017).

A decision problem is typically solved by finding the op-
timal policy, a mapping from states to actions that specifies
the best action to take for each state, taking the action that
maximizes the expected discounted future rewards. RL al-
gorithms find a policy by computing either the value func-
tion or the action-value function, which represents a state’s
utility, based on the expected value of discounted future re-
wards that would be received by taking the actions spec-
ified by the policy from any given state. Q-learning and
SARSA(λ) are commonly used algorithms for computing
the optimal action-value function, which induces an optimal
policy. Since the value and action-value functions are spe-
cific to a given MDP, they are not directly transferable and
do not generalize to new tasks in most cases.

RL has been employed notably in learning to play the
games Backgammon (Tesauro 1995) and Go (Silver et al.
2016), and in achieving human-level performance on Atari
video games (Mnih et al. 2015). In each of those cases, the
technique of value function approximation (VFA) was key
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Figure 1: The concept lattice from an initial state of the TL
domain. Each node is a concept, used as features in VFA.

to addressing the issue of generalizing experience over a
large state space. When the number of states far exceeds
what can feasibly be stored in memory, it is common to
approximate the value or action-value function as a linear
combination: V̂θ(s) = θTφ(s) and Q̂θ(s, a) = θTφ(s, a),
for a vector of weight parameters θ and vector of basis
functions φ (Geist and Pietquin 2013). The basis functions
serve as the set of features representing a given state, so
that rather than computing and storing the exact value of
states, algorithms need only maintain and update the weight
vector. Common forms of featurization for linear VFA in-
clude tile-coding (also known as cerebellar model articulator
controller, CMAC) (Albus 1971), sparse distributed memo-
ries (Kanerva 1993), or Fourier basis functions (Konidaris,
Osentoski, and Thomas 2011). Neural networks are also
used for VFA in deep RL approaches (Mnih et al. 2015). In
terms of transfer in RL, we follow recent theory in analyz-
ing transfer across tasks, training on source and evaluating
in related (but more complex) target tasks (Taylor and Stone
2009; 2011).

For knowledge extraction, formal concept analysis (FCA)
is a technique based on order theory that has been growing
in popularity in recent years (Poelmans et al. 2013). FCA
provides a means of extracting knowledge structures from
data in the form of formal concepts (paired sets of objects
and attributes). Taken together, the concepts extracted from
a set of data yield a partial ordering called a concept lattice
that embodies a hierarchical relation of concepts from the
most abstract to the most specific. FCA defines a data set
as a formal context, which contains the set of objects, the
set of attributes, and an incidence relation that expresses if
an object possesses an attribute. Within a context, a formal
concept is a pair of object and attribute sets (A,B) such that
all objects in A have all attributes in B, and all attributes
in B are found in all objects of A. A way of viewing for-
mal concepts is as biclusters that are maximally inclusive on
both the object and attribute sets (Veroneze, Banerjee, and
Von Zuben 2017). Several algorithms exist for mining for-
mal concepts from a context, such as FASTCLOSEBYONE
and IN CLOSE2 (Andrews 2011).

All the concepts obtained from a context inherently yield
a partial ordering (the concept lattice). In particular, con-

cepts are ordered from the unit element (the top �, a paired
set of all objects and any attributes found in all objects) to
the zero element (the bottom ⊥, all attributes and any ob-
jects that possess all attributes). Hence, if concept (A,B) ≤
(C,D), then (A,B) is a more specific sub-concept of the
more general super-concept (C,D). A lattice can be visual-
ized graphically where each node is a formal concept and
the arcs express the natural sub- and super-concept rela-
tionships, such as the ones shown in Figures 1 and 2. At-
tribute labels (in gray) are attached to the highest concept
for which their respective attribute is a member, and object
labels (white) to the lowest. FCA is most commonly used for
mining static data sets such as text corpora for semantic re-
lations. This work introduces a novel approach that employs
FCA interactively in an agent-based decision-making con-
text. The motivation for conveying agent knowledge through
formal concepts is that they are descriptive yet small and hi-
erarchical, arising simply from a data set itself. Moreover,
a lattice provides a type of natural unsupervised clustering
of objects in an agent’s world, forming a kind of ontology,
where its concepts are informative groupings of perceptions
and components of the world that can be used to reason and
learn.

Approach

We introduce concept-aware feature extraction (CAFE) as
a technique that encompasses both abstraction and featur-
ization of state space. The first step in CAFE is the pro-
cess of mapping a symbolic representation of an agent’s cur-
rent state to a set of concepts. For an OO-MDP state, the
set of objects serves as a formal context. At each state we
can extract a concept lattice from its context using an al-
gorithm such as IN-CLOSE2 (Andrews 2011). CAFE thus
re-represents states in terms of the concepts that were ex-
tracted from them. In particular, it applies state abstraction
by projecting the ground state into concept space, spanned
by the basis functions corresponding to the concepts of the
extracted lattice. We define a unique abstraction function ψ
that produces concept states. For each concept ci formed at
time t, ψ(st, ci) → zi by removing all objects and attributes
from the ground state st that are not present in a concept
ci, yielding a concept state zi ∈ Zt. For example, suppose
a state contains one red chair, two blue chairs, and one red
backpack. If this state is abstracted by the concept “red,”
the resulting concept state would consist of two red objects
(subtracting all shapes, other colors, and objects not match-
ing any attribute in the concept). Similarly, if that same state
is abstracted by the concept “chair,” it would produce a con-
cept state of solely three chair objects. In some sense, zi
is a sub-state of the OO-MDP, describing how the ground
state appears when filtering through the lens of its partic-
ular concept ci. The featurization of a state using concept-
based abstraction would produce a feature vector φ(st,Zt)
such that each element follows: φi(st,Zt) = 1 if concept
state ψ(st, ci) ∈ Zt (0, otherwise), indicating the presence
or absence of the concept in the ground state. A concept-
aware agent can then use φ directly to learn the parameter
weight vector θ and approximate the value or action-value
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Figure 2: An example starting Cleanup state for the Cardinal Closets task (CC-1), with the concept lattice derived from it.

Figure 3: Evaluation on the TL-20 task with 12 cars, trans-
ferring from source task of TL-10 with 6 cars.

function (V̂θ(st) = θTφ(st) and Q̂θ(st, a) = θTφ(st, a)).
Thus, CAFE projects an observed state into a concept lat-
tice and uses the resulting abstract concept states for lin-
ear VFA, with φ(st) expressing the concept states present
in state st. This FCA-derived featurization is advantageous
because it gives an automated process of finding portable,
relevant groupings of objects and their attributes (concepts).
The nature of VFA inherently facilitates generalization: it
forces an agent to learn behaviors by features that may be
seen in new combinations in states for novel tasks or do-
mains. For VFA with CAFE specifically, using the extracted
concepts grants an added benefit: extensibility. That is, the
concept space can expand gracefully and indefinitely to ac-
commodate any new concepts that may be generated, while
still making full use of previously learned concepts as the re-
occur. It also permits clustering and measuring various types
of similarity, leading to greater interpretability of agents’ de-
cisions.

Preliminary Results

Preliminary results indicate that CAFE is effective at task-
based transfer learning. We evaluate concept-aware algo-
rithms in a simple domain, Traffic Light (TL), and the more
challenging Cleanup. In TL, an agent must go when a traf-
fic light turns green, and otherwise wait while the light is

red for it to change color, all while ignoring the surrounding
objects (cars of various random colors). TL is a simple de-
cision problem that can be solved by learning to associate
the actions “go” with the concept of a green traffic light
and “wait” with a red light, while ignoring confounding con-
cepts such as green or red objects generally, and cars of any
specific color. TL tasks are differentiated as TL-n, where n
is their horizon (the number of times the agent must cor-
rectly choose to go forward). The optimal policy is always
to wait once for the traffic light to turn green and then go
n times until the progress threshold is reached. The larger
Cleanup domain presents an agent with a simplified model
of a home or office that must be cleaned up by putting ob-
jects in their proper place. Cleanup in essence is an extended
“grid-world” where an agent may move in the cardinal direc-
tion or “pull” a block (swapping places with it), and it was
designed to emulate the game Sokoban (MacGlashan et al.
2015). In particular, we look at the Cardinal Closets (CC)
task, where the agent is in a central room with four branch-
ing closets and a block of a random color, with the goal of
maneuvering the block into the closet of the matching color.
CC is challenging because the optimal policy for agent nav-
igation changes completely based on the color of the goal
block (i.e., if the block is red then the agent must manip-
ulate the block towards the north, or south if the block is
yellow), in essence folding four tasks into one. We consider
transfer from one block domains (CC-1) to 2 blocks (CC-2).
The size of these domains is considerably different, as each
added block grows the state space combinatorially . There-
fore, knowledge transfer of concepts should be especially
beneficial in identifying features that are valuable from one
cleanup task to the next.

To assess the concept-aware algorithms, we follow a
training-testing pattern for evaluating transfer, with an agent
first learning to solve a source task on a set of training do-
mains (TL-10, CC-1). The agent is then evaluated on an-
other set of domains to solve a target task (TL-20, CC-
2), transferring over the set of known concept states and
their learned weights, θ. We evaluate Q-learning (QL) and
SARSA(λ) as baselines (no transfer from source to target),
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Figure 4: Training on CC-1 over 100 trials (top row) and evaluation on CC-2 for 50 trials (bottom row). CAQL and CASARSA
need more upfront training to tie concepts with actions, but they can reuse learned behaviors to solve the harder task.

with concept-aware Q-learning (CAQL) and concept-aware
SARSA(λ) (CASARSA). The latter two transfer experience
in the form of the concept feature weight parameters (θ). All
algorithms follow an ε-greedy policy with a decay schedule
from ε = 1.0 proportional to episode number (i.e., ε = 0.0
at episode 200), to enforce a degree of initial exploration.

The results of transfer are shown in Figure 3, with eval-
uation on TL-20 with 12 cars for 50 trials, after training on
TL-10 with 6 cars for 100 trials. Both CAQL and CASARSA
rapidly find the optimal policy in the target task. After just
a few episodes of training they discover concepts associated
with good and bad behaviors. The feature-action pair with
the largest weight is for the action “go” and the concept state
corresponding to [shape:light, color:green]. Symmetrically,
the pair with the smallest weight is [shape:light, color:red]
and “go” (as this is only observed when the task terminates
in a failure and receives negative reward).

Results of training on CC-1 and assessing transfer to CC-
2 are visualized in Figure 4. Initially in training on the CC-
1 domain, the concept-aware algorithms are worse in per-
formance, taking approximately twice as many steps and
episodes to reach a good policy. They require more explo-
ration before homing in on a solution, and they suffer from
larger variance in the number of steps for later episodes. Yet
they are able to persist and transfer the knowledge they ac-
quire through this extended training. In evaluation it is evi-
dent that CAQL and CASARSA more quickly adapt to the
greatly expanded state space of CC-2, reusing the transferred
concepts related to maneuvering the blocks to the doors im-
mediately adjacent to the goal closets. Specifically, the high-
est valued feature-action weights are for concepts associated
with a block being in the door adjacent to the block’s respec-
tive goal room, paired with the navigational action that tran-
sitions to a goal state (e.g., “north” if a red block is inside the
door to the red closet). Other highly valued weights include
those for concept-action pairings that align the block with

the door and goal room, or otherwise manipulate it out of a
corner. Each state in CC-2 has on average 40 concept states,
but in total, the concept-aware algorithms find 466 distinct
concept states, and thus 2330 feature-action pairs (with 5
actions, the final |θ| = 2330) across all states from all do-
mains. The space of concept-actions, therefore, is consider-
ably smaller than the state-action space of CC-2, explaining
why VFA with CAFE grants both the benefits of jump start
transfer and increased asymptotic performance.

Conclusion and Future Work

Concept-aware agents can transfer knowledge across tasks,
reusing policies and extrapolating new behaviors upon rec-
ognizing familiar concepts, while re-representing anoma-
lous objects in novel tasks using super- and sub-concepts
that are already known. CAFE with VFA achieves a con-
densed featurization of state space at multiple levels of ab-
straction, even when objects’ attributes can take any number
of categorical values (such as color and shape). Concepts
capture semantically meaningful clusters, interpretable by
the set of objects and attributes present in them. Preliminary
results indicate the promise of CAFE to achieve more expli-
cable knowledge extraction and transfer in RL, and we in-
tend to produce a more thorough investigation that assesses
additional measures of transfer in comparison with more so-
phisticated VFA techniques.

We plan to assess CAFE-based task transfer more exten-
sively in an immensely rich domain: NetHack. NetHack is
a single-player video game in which the player must collect
items and defeat enemies to escape from a multi-level dun-
geon. The vast variety of object types and possible actions
makes transferring knowledge and adapting to novelty nec-
essary. An agent often encounters new objects functionally
similar to learned classes of objects (but differing by some
specific attributes). Transferring concepts should facilitate
an agent’s ability to respond to unseen types of items, fur-
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niture, and enemies. We expect concept-aware agents will
more readily comprehend these anomalies, in terms of con-
cepts already observed, and transfer behavior accordingly.
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