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Abstract

The continuous double auction (CDA) is the predominant
mechanism in modern securities markets. Despite much prior
study of CDA strategies, fundamental questions about the
CDA remain open, such as: (1) to what extent can outcomes
in a CDA be accurately modeled by optimizing agent actions
over only a simple, non-adaptive policy class; and (2) when
and how can a policy that conditions its actions on market
state deviate beneficially from an optimally parameterized,
but simpler, policy like Zero Intelligence (ZI). To investi-
gate these questions, we present an experimental compari-
son of the strategic stability of policies found by reinforce-
ment learning (RL) over a massive space, or through empir-
ical Nash-equilibrium solving over a smaller space of non-
adaptive, ZI policies. Our findings indicate that in a plausible
market environment, an adaptive trading policy can deviate
beneficially from an equilibrium of ZI traders, by condition-
ing on signals of the likelihood a trade will execute or the fa-
vorability of the current bid and ask. Nevertheless, the surplus
earned by well-calibrated ZI policies is empirically observed
to be nearly as great as what a deviating reinforcement learner
could earn, using a much larger policy space. This finding
supports the idea that it is reasonable to use equilibrated ZI
traders in studies of CDA market outcomes.

Introduction

The continuous double auction (CDA) is the preeminent se-
curity trading mechanism, accounting for trillions of dollars
in transactions annually (NYSE 2017). In a CDA, buyers
and sellers submit orders to the market, and any order that
crosses the best-priced prior order of opposite type clears,
producing a trade. Bidding in a CDA is a dynamic game of
imperfect information, as trading agents do not know each
others’ valuations and generally do not observe all bids.

Despite the mechanism’s prevalence, attempts at game-
theoretic characterizations have generally been limited to
highly stylized scenarios (Wilson 1987), or numeric solu-
tion of abstract models (Goettler, Parlour, and Rajan 2009).
Many other research efforts aim to establish stylized facts
about CDA market outcomes, based on simulation or anal-
ysis of rule-based traders in action (Wah and Wellman
2013; Chakraborty, Das, and Peabody 2015; Jovanovic and
Menkveld 2016; Budish, Cramton, and Shim 2015). The
literature also includes a progression of works, each pre-
senting a novel policy for CDA trading agents and ex-

perimental evidence comparing it beneficially to less so-
phisticated policies from earlier papers (Cliff and Bruten
1997; Gjerstad and Dickhaut 1998; Tesauro and Das 2001;
Tesauro and Bredin 2002; Schvartzman and Wellman 2009;
Vytelingum, Cliff, and Jennings 2008).

Prior studies of heuristic strategies contribute to our un-
derstanding of the CDA mechanism, but results based on
heuristic strategy profiles may be subject to doubt due to the
possible strategic instability of these profiles. We can equi-
librate over a class of heuristic strategies, but the question
remains: how much gain is available by going beyond this
class? In particular, one way to refine a strategy is to con-
dition its actions on additional features, adapting its behav-
ior by taking account of more state information. We seek to
evaluate whether agents can benefit significantly by adopt-
ing more complex, adaptive policies, particularly as extend-
ing to such larger strategy spaces may be difficult or costly.

We present a systematic experimental study of the CDA,
in which we derive trading policies via RL and empiri-
cal game-theoretic analysis (EGTA). We use as our base-
line trading heuristic the Zero Intelligence (ZI) strategy,
which has minimal capacity to adapt to market state. The
version of ZI we employ has a few parameters, which we
tune via EGTA to find approximate Nash-equilibrium mix-
tures within the baseline set. Against these policies we train
more adaptive trading policies using Q-learning (Watkins
and Dayan 1992). We conduct a statistically rigorous analy-
sis of the benefit of conditioning a policy on market state,
relative to the non-adaptive baseline. Results suggest the
equilibrated non-adaptive CDA policies leave positive, but
surprisingly modest, room for gain through complex condi-
tioning on market state.

Prior Work: Heuristic CDA Strategies

A Zero Intelligence (ZI) trader sets its order price as a
random surplus offset from its valuation, based on a uni-
form distribution from a specified range. ZI was introduced
by Gode and Sunder (1993), to demonstrate how a CDA
market’s allocative efficiency approaches its optimum, even
if all traders use such a simple strategy. The ZI policy
model in various forms has been popular among experi-
mental and analytical researchers alike, for its simplicity
and ability to capture stylized facts of real markets or fit
real-world financial data (Farmer, Patelli, and Zovko 2005;
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Mike and Farmer 2008; Li and Das 2016). Several recent
works have employed ZI traders in models of financial mar-
kets or prediction markets (Li and Das 2016; Wah, Wright,
and Wellman 2017; Chakraborty, Das, and Peabody 2015;
Wah, Lahaie, and Pennock 2016).

It has always been clear that ZI is not an optimal trad-
ing strategy. Cliff and Bruten (1997) showed that ZI tends
to yield efficient allocations only if agents’ aggregate supply
and demand curves have equal slopes, and the authors pro-
posed one of many strategic improvements on ZI, known as
ZI Plus (ZIP). ZIP and other ZI successors such as GD and
GDX (Gjerstad and Dickhaut 1998; Tesauro and Das 2001;
Tesauro and Bredin 2002) and AA (Vytelingum, Cliff, and
Jennings 2008; De Luca and Cliff 2011) adjust the surplus
demanded by the agent during a run. Studies have shown
such policies to be beneficial deviations from a single, fixed
ZI policy (Tesauro and Das 2001; Walsh et al. 2002). Even
stronger policies have been derived by RL, to deviate bene-
ficially from a mixed strategy of GDX agents (Schvartzman
and Wellman 2009). These studies have the limitation that
they compare a new policy against a single, uncalibrated pa-
rameterization of ZI, which may be a straw man form of
the ZI agent. The more relevant comparison, we argue, is to
equilibrated ZI mixtures rather than to arbitrary ZI instances.

The prior work most similar to ours is a study by
Schvartzman and Wellman (2009), which used RL to derive
the strongest-yet trading strategy in a particular CDA set-
ting. In that work, authors used Q-learning to derive a policy
that deviates beneficially from other agents using a fixed ZI
strategy, and showed their learned policies also deviate suc-
cessfully from the strategies ZIP and GDX. Our work builds
on the methods of Schvartzman and Wellman (2009) to serve
a different goal. We employ RL in an attempt to characterize
when and how CDA traders can benefit from conditioning
their actions on market state. We compare equilibrated ZI
mixed strategies to (approximate) best responses learned via
RL, to measure the strategic effectiveness of calibrated ZI
relative to more complex policies. In addition, we analyze
the relative importance of features for learning proposed in
prior work, through regression over experimentally learned
policies.

Research Contributions

We investigate how and to what extent a trading policy in the
CDA can improve by conditioning on market state, relative
to a calibrated non-adaptive policy. We provide insight into
the tradeoffs of using a non-adaptive policy (ZI) to model
trading behavior in a CDA, and the relative importance of
features for an adaptive trading agent.

Our main contributions are as follows:

• We evaluate the strategic stability of calibrated ZI policies
against (approximate) best responses from Q-learning.
Results show some surplus is lost by playing a cali-
brated ZI policy instead of adaptive policies, although the
amount is small compared to the surplus lost by using
non-equilibrated ZI parameters.

• We analyze the nature of adaptive trading policies that
outperform ZI.

• Our findings suggest equilibrating over many ZIs yields
diminished loss of surplus relative to what could be
achieved by alternative ZI policies, but with small positive
loss of surplus remaining with respect to what an adap-
tive agent could earn. Moreover, that the common practice
of using equilibrated ZIs as an approximation of efficient
agent behavior is likely acceptable.

CDA Market Model
Our study is based on a CDA market model, similar to those
of prior studies by Wah and Wellman (2013; 2017). The
market has a single security and many trading agents. The
value of the security to an agent is defined as the sum of the
agent’s private value for the good (drawn from some random
distribution), and the fundamental value, which evolves by
a stochastic process. Agents can trade the security with one
another through the CDA mechanism, by submitting limit
orders to the market. Each agent can submit an order only in
those time steps when it arrives at the market, as determined
by a random (exponential) inter-arrival time process; upon
each arrival, an agent is independently randomly assigned to
buy or sell. Each agent’s payoff from the CDA game is de-
fined as the final fundamental value of its inventory, plus the
cumulative private value of its inventory, plus its final cash
holdings.

Our market model is populated by 17 trading agents, com-
prising 16 background traders and one market maker (MM).
The MM maintains a ladder of buy and sell orders separated
from the expected final fundamental value by a fixed spread,
updated each time it arrives. The background traders act ac-
cording to parameterized forms of the Zero Intelligence (ZI)
policy.

Zero Intelligence

ZI is a simple strategy for CDA trading that has been shown
to converge to efficient prices and allocations in many set-
tings (Gode and Sunder 1993). Our variant of ZI, intro-
duced by Wah et al. (2017), has three parameters: d, d, and
η ∈ (0, 1]. At each arrival, a ZI agent places a limit order
that demands a surplus equal to a random draw from U(d, d).
The exception is if the agent would earn at least η fraction of
its randomly drawn surplus goal at the current quote; in that
case, the agent opportunistically places an executable order
at the quote instead.

Market Model Description

All 17 agents arrive at the market with independent inter-
arrival times, drawn from an exponential distribution with
rate λBG for background traders, λMM for the market
maker. We let λBG = 0.012 and λMM = 0.05, with a game
duration of T = 2000 time steps. Hence, each background
trader arrives roughly every 83 time steps in expectation, the
market maker every 20 time steps.

The fundamental value evolves as a mean-reverting ran-
dom walk with zero-mean Gaussian noise and long-run
mean μ.1 At each time step, the fundamental value is up-
dated, rt ← κμ + (1 − κ) × rt−1 +N (0, σ2

s), where σ2
s is

1We take μ = 105. The specific level does not matter, if the
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the shock variance to public value, and κ is the mean rever-
sion parameter. Throughout this study, we use κ = 0.01 and
σ2
s = 20000. Given the observed fundamental at time t, the

expected terminal fundamental value is

r̂t =
(
1− (1− κ)T−t

)
μ+ (1− κ)T−trt.

ZI and MM agents use this estimate in determining their or-
der prices.

Each background trader is assigned a private value vector
at initialization, which lists the value of each additional se-
curity unit, given a current inventory. This vector has length
20, because the agent is restricted to hold (or owe) no more
than 10 units. The vector is derived by sampling 20 val-
ues from N (0, σ2

p), where σ2
p is the private value variance;

the samples are sorted in non-increasing order, so that each
agent’s demand decreases with inventory. This study uses
σ2
p = 2× 107.
When the market maker arrives, it cancels its existing or-

ders and places a new ladder of orders, with 100 rungs each
above and below the expected final fundamental. The ladder
has orders centered around r̂t, at sell prices of r̂t + 256 +
100×i and buy prices of r̂t−256−100i, for i ∈ {0, . . . , 99}.

When a background trader playing a ZI strategy arrives
at the market, it cancels its previous order and is assigned
with equal probability to place a buy or sell order. Suppose
the agent has ZI parameters d, d, η. The agent computes the
surplus it would obtain by trading immediately at the quote,
which for a buyer is r̂t+vi+1−A, or for a seller is B−(r̂t+
vi), where A is the ask, B is the bid, and vi is the agent’s
private value of unit i of inventory. The agent compares this
surplus to ηs, where s is a random draw from U(d, d). If the
agent can obtain enough surplus, it transacts immediately.
Otherwise, it places an order demanding the surplus goal s:
either a buy order at r̂t+vi+1−s or a sell order at r̂t+vi+s.

Each agent earns a payoff equal to the final fundamental
value of its stock inventory, plus the cumulative private value
of its stock inventory, plus its final cash holdings.

Definitions

Throughout this paper, we make use of many standard terms
from game theory, defined here for completeness. By a pol-
icy or pure strategy, we mean a mapping from an agent’s set
of observation states to the (possibly stochastic) action the
agent will take in each state. A mixed strategy is a probabil-
ity distribution over pure strategies. A profile is an assign-
ment of a strategy (pure or mixed) to each agent. A symmet-
ric profile assigns the same strategy to each agent. A Nash
equilibrium (NE) is a profile such that no agent can achieve
a higher expected payoff by unilaterally deviating from its
assigned strategy to any alternative strategy. The regret of a
profile is the maximum over agents, of the maximum gain in
expected payoff the agent can obtain, by deviating to any al-
ternative strategy. By definition, a Nash equilibrium has zero
regret.

In this paper, we call a profile an equilibrium over strategy
set S , if all pure strategies played with positive probability

evolving fundamental has negligible probability of hitting the zero
lower bound.

are in S , and no agent can achieve higher expected payoff
by deviating to a strategy in S . We say a profile has regret
x with respect to strategy set S ′, if x is the maximum any
agent gains in expectation by deviating to a strategy in S ′.

Reinforcement Learning Methods

To investigate how much adaptive policies can increase pay-
offs relative to a well-calibrated ZI policy, and to investigate
the nature of beneficially deviating policies, we need a way
to search for beneficial deviations in a large search space. We
tested several RL approaches, before settling on a variant of
Q-learning that empirically worked well in our setting. We
first fix the policies of all but one agent, which converts the
trading game into a decision problem for the one strategic
agent, then apply Q-learning.

Q-learning is a classical RL algorithm that provably con-
verges to an optimal policy in finite Markov decision prob-
lems (MDPs) with bounded rewards, assuming a suitable
learning rate sequence is used (Watkins and Dayan 1992).
It works as follows. The learning agent progresses through a
sequence of observing states s, getting rewards r, and taking
actions a. The agent maintains an estimate of the Q-value
of each state-action pair, Q(s, a), which represents the ex-
pected value of taking action a in state s and playing opti-
mally thereafter. On experiencing the sequence (s, a, r, s′),
the agent performs a Q-learning value update,

Q(s, a) ← (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
,

where α is the learning rate, and γ is the discount factor for
future values. We set γ = 0.9 for learning, as a regularizer,
but decay γ toward 1 as learning progresses. (The underlying
game has no discounting.) We set α(s, a) to the reciprocal
of the number of (s, a) observations to this point.

Learning Feature Set

Our learning agents use the following features in their state
observations.

• P , the profit that would be obtained by trading immedi-
ately at the current price quote.

• V , the private value of the next unit to be traded.

• O, the omega ratio, estimated at recent trade prices, of the
price X with respect to a threshold k defined at the next
unit’s valuation,

E(X − k | X > k) Pr(X > k)

E(k −X | X < k) Pr(X < k)
.

• A, whether the action assigned to the player is buy or sell.

• D, the duration in time steps since the most recent trade.

To discretize the observations as is needed for Q-learning,
we employ a tile coding system with a single tiling (Sherstov
and Stone 2005; Schvartzman and Wellman 2009). That is,
we set thresholds for the numerical features (P , O, V , and
D), dividing each into three buckets, using threshold val-
ues chosen empirically in pilot simulations to provide evenly
distributed observations over buckets.
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ZI Regret Study

We designed an experiment to measure the regret of equi-
librated static policies (ZI) with respect to either novel ZIs
or an approximate best response over adaptive policies, de-
rived via RL. As a sanity check, we wanted to show that
our automated RL process could consistently find policies
that outperformed the ZI baseline, as found in prior work
(Schvartzman and Wellman 2009).

With a consistently effective learning process in hand, we
sought to measure the strategic stability of equilibrated ZI
mixed strategies with respect to approximate best responses
derived via Q-learning. (By an equilibrated ZI mixed strat-
egy, we mean a probability distribution over ZI strategy pa-
rameters exhibiting negligible empirical regret, relative to a
fixed set of other ZI strategies.) We expected an arbitrarily
chosen ZI pure strategy would have high regret with respect
to a Q-learner or to other ZI strategies. More important, we
hypothesized that as the set of ZI strategies is increased in
size, the regret of the equilibrated mixed strategy with re-
spect to either other ZI policies or a Q-learner will tend to
diminish. The regret with respect to the other ZI policies
necessarily approaches zero in the limit, but we expected
there would remain a small positive regret with respect to
a reinforcement learner. This regret represents the value of
conditioning actions on market state in the CDA. If the mea-
sured regret is indeed small, this is evidence supporting the
use of equilibrated ZI traders as a reasonable agent model.

Experiment Design

To measure the strategic stability of calibrated ZI strategies,
we began with a set of 10 ZI parameterizations that were
chosen heuristically for a combination of high fitness in our
CDA environment and broad coverage of the space of viable
policies. We then generated random subsets of our base strat-
egy set, of several sizes, and used empirical game-theoretic
analysis (EGTA) to find one or more symmetric Nash equi-
libria over each subset.2 Next we challenged each distinct
equilibrium mixed strategy of ZI policies, by training a Q-
learning agent to deviate when all other agents play that
mixed strategy. We also challenged each distinct equilibrium
strategy with all 10 pure ZI strategies, to evaluate the regret
with respect to the base strategy set.

ZI Strategy Set The 10 ZI strategies (d, d, η) used in this
study are as follows:

(0, 450, 0.5), (0, 600, 0.5), (90, 110, 0.5), (140, 160, 0.5),

(190, 210, 0.5), (280, 320, 0.5), (380, 420, 0.5), (380, 420, 1),

(460, 540, 0.5), (950, 1050, 0.5).

Henceforth, we will write a pure strategy as, for example,
280 320 .5. A mixed strategy will be written as a series of
ordered pairs of pure strategies and their probabilities, such
as (280 320 .5 × 0.1, 380 420 .5 × 0.9).

2As our games are finite and symmetric, symmetric NE neces-
sarily exist. We numerically find approximate symmetric equilibria
with negligible regret.

From this base set of 10 strategies, we randomly selected
subsets of sizes two, five, or eight. Strategy subsets were
selected uniformly randomly, rejecting duplicates. We used
30 distinct subsets of each size, in addition to the 10 subsets
of one ZI strategy each, as well as the base set containing all
10 strategies. Overall, we conducted parallel experiments on
101 ZI strategy sets: 10 of size 1; 30 each of sizes 2, 5, and
8; and 1 of size 10.

EGTA Methods We used the methods of EGTA to find
NE over each subset of ZI strategies. The essential EGTA
process has been described at length in earlier studies (Wah,
Lahaie, and Pennock 2016; Wah, Wright, and Wellman
2017), so we present only an overview. EGTA uses simu-
lation to estimate the expected payoff for each agent in a
strategy profile, and explores a space of profiles to identify
approximate equilibria.

To test whether a mixed-strategy profile is an equilibrium,
EGTA obtains payoff samples of each pure-strategy profile
in the support of the mixed strategy (called the subgame of
the support), as well as each pure-strategy profile where a
single agent deviates to any other pure strategy. For exam-
ple, if the 16 players in our game play strategies A and B
with positive probability, it is necessary to sample payoffs
of i ∈ {0, . . . , 16} agents playing A and the rest playing
B; we then compute the expected payoff of the mixed strat-
egy. Next, we would compute the payoffs for corresponding
profiles where one agent deviates to any other pure strategy.

The number of samples required grows rapidly in the
number of agents and strategies in support. To make this pro-
cess tractable, we employ the deviation-preserving reduc-
tion (DPR) technique of (Wiedenbeck and Wellman 2012),
to approximate our game of 16 players with a related 4-
player game. We construct a reduced game’s payoff table by
running simulations of the full, 16-player game as follows.
To estimate the payoff for a particular player in a 4-player
reduced-game profile, we let that player control 1 agent in
the 16-player simulation, while each of the other 3 players
in the reduced game controls 5 agents in the full simulation.

We search for NE through a fully automated procedure
that begins by testing whether each pure strategy in self-play
is an equilibrium. The process then goes on to test equilibria
over pairs of strategies, based on beneficial deviations found
from the self-play profiles. Exploration continues, extending
support size as necessary based on deviations found outside
the current support. The process completes when an approx-
imate NE is found with empirical regret less than a numeri-
cal tolerance, and all equilibrium candidates up to a current
support size have been confirmed or refuted. For a given sub-
game, we use replicator dynamics (Taylor and Jonker 1978)
and other numerical techniques to search for a symmetric
NE over those strategies.

Pure-Strategy Regret Measurement We set out to accu-
rately measure the regret of each equilibrium we found over
a subset of ZI strategies, with respect to the base strategy set.
This value serves as an empirical signal of how strategically
stable a ZI mixed strategy is, with respect to the universe of
all ZI strategies, if we believe that our base strategy set is
sufficiently large and varied.
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To estimate the regret of a mixed strategy M with respect
to one of the 10 ZI strategies in the base strategy set, we run
simulations where all but one agent plays a strategy sampled
independently from M , but one agent deviates to that pure
strategy. We explored the 10 pure strategies as if they were
arms of a multi-armed bandit, seeking an upper bound on
the regret with respect to the best arm. Initially, we sampled
each strategy in turn, for 50,000 simulations each. There-
after, following each batch of 2500 simulations, we sampled
a bootstrap distribution from the set of all payoffs of the cur-
rent deviating strategy and selected the pure strategy with the
highest 95th percentile for the mean payoff as the deviation
to sample next. Thus, we obtained low-variance estimates
for the upper confidence bound on those pure strategies that
appeared to have a significant chance of being beneficial de-
viations. We terminated the process when either the great-
est upper confidence bound became lower than the expected
payoff of the equilibrium policy, or a total of 800,000 simu-
lations had been taken.

This pure-strategy regret measurement procedure allows
us to evaluate the strategic stability of supposed NE, in case
of approximation error caused by the player reduction of
DPR. It is possible for a mixed strategy to be an exact Nash
equilibrium in the reduced game of our DPR approximation,
but not to be an equilibrium in the original game without
player reduction, because the original game includes payoffs
where non-round numbers of agents play each strategy, and
with slightly different probability weights. Our regret mea-
surement procedure employs the original, 16-player game,
so it can sample payoffs where any number of background
traders from 0 to 16 adopts each strategy in the equilib-
rium support. In this way, we empirically test whether the
reduced-game NE are actual equilibria in the original game,
and if not, how large their regret may be.

Q-Learning Regret Measurement We also aimed to
measure the regret of each equilibrium over a subset of ZI
strategies, against the best adaptive policy derived in a large
policy space by Q-learning. This value gives a lower bound
on how much better an adaptive agent can perform in the
CDA than an agent that plays a fixed policy (ZI).

We conducted Q-learning against each equilibrium ZI
mixed strategy as described above. To summarize and re-
view the above, we performed a single run of Q-learning
against each equilibrium, of 106 playouts in duration. Our
exploration policy was ε-greedy, with ε = 0.1. We modified
conventional Q-learning based on empirical observations of
the most useful special techniques in our setting: We trun-
cated reward observations to ±3000, added an artificial dis-
count factor of 0.9 that decays to 1.0 with increasing itera-
tions, used hand-tuned thresholds in each feature for obser-
vation bucketing, and used early stopping.

To measure the expected payoff of a policy from RL, we
run our simulator with one agent playing the learned policy,
and all others playing the baseline mixed strategy. We con-
duct at least 2× 105 simulations per learned policy, and use
the bootstrap to derive a confidence interval for the mean
payoff. We then compare this payoff to the expected payoff
of the baseline policy.

Results
In our ZI regret study, our automated policy learning method
consistently found policies of greater expected value than
the equilibrated ZI baselines, against which Q-learning was
performed. However, the learned policies achieved only
slightly greater payoff than those ZI equilibria that were de-
rived from large sets of ZI pure strategies. The results sug-
gest that there is a small but consistent advantage to con-
ditioning actions on state in our CDA environment, relative
to playing a well-calibrated mixed strategy of ZI policies.
This benefit of an adaptive policy is small compared to the
difference in expected payoff between a well-calibrated ZI
strategy and a poorly chosen one.

Trend with respect to ZI Strategy Set Size

As the set of ZI strategies available to EGTA is augmented,
we observe that the regret of the equilibrium mixed strategy
over that set decreases, both with respect to our base set of
ZI strategies, and to the adaptive strategy response produced
by Q-learning. The regret with respect to other ZI strategies
empirically is almost always lower than the regret with re-
spect to adaptive strategies; or in other words, adaptive poli-
cies almost always achieve greater benefit in deviating from
the ZI baseline than an alternative ZI strategy does.

In Fig. 1, we present the mean regret of each ZI subset’s
Nash equilibria, with respect to Q-learning (left) and with
respect to the best-response ZI pure strategy (right). For ex-
ample, in row 5 we display a marker for each equilibrium
in each of the 30 ZI strategy subsets of size 5 that were ran-
domly selected. In any row, each equilibrium is plotted with
multiplicity equal to the number of strategy subsets of the
appropriate size in which it occurs. With a line, we plot the
mean regret of these equilibria for each strategy subset size.

Note in Fig. 1 how the regret of ZI equilibria grows
smaller on average as the number of strategies equilibrated
over increases from 1 to 10. This trend holds for regret with
respect to Q-learning and with respect to the best-response
ZI policy. The only exception to this trend is the small in-
crease, from 4.4 to 4.7, in the mean regret with respect to
Q-learning, from subset size 8 to size 10; this reversal may
be due to noise in payoff sampling or the like. To provide a
sense of scale in these payoff differences, we note that in the
two Nash equilibria found over the base strategy set, the ex-
pected payoffs per background trader were 461.8 and 462.6.

This trend of ZI equilibrium regret growing smaller with
increasing ZI strategy set size is supported by statistical hy-
pothesis testing via the unpaired t-test. In these tests, we
count each equilibrium’s regret with a multiplicity equal to
the number of strategy subsets in which it appears, similarly
to the plot in Fig. 1. In the case of regret with respect to
Q-learning, we find weak evidence (below statistical signif-
icance at 0.05 level) that the regret for size-one subsets is
greater than size-two (p = 0.14), and strong evidence that
regret for size-two is greater than size-five (p = 10−8), and
size-five is greater than size-eight (p = 0.02). In the case
of regret with respect to ZI deviations, we find very similar
hypothesis test results.

We also note in Fig. 1 that as the subset of ZI strategies
equilibrated over is augmented, the regret of the ZI equilib-
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Regret w.r.t. Q−Learning
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Regret w.r.t. Pure Strategies
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Figure 1: Regret of mixed-strategy Nash equilibria over ZI policy subsets. Each row corresponds to equilibria over ZI policy
subsets of a given size. At left, regret is shown with respect to the Q-learning response; at right, with respect to the best-response
ZI policy in the base policy set. Row means are plotted as lines.

rium with respect to the base strategy set approaches zero.
This regret must be zero when the full strategy set is in-
cluded, for a Nash equilibrium over the base strategy set
cannot have any beneficial deviations within that set. For
any subset of k strategies, drawn from a base set of N strate-
gies, the likelihood of a zero-regret subset being selected is
simply the likelihood of drawing a superset of the support of
any Nash equilibrium of the base set. (The support of a Nash
equilibrium is defined as the set of all pure strategies it uses
with positive probability.)

Finally, observe how in Fig. 1 the regret of ZI equilibria
with respect to Q-learning is always strictly positive, even as
the number of ZI strategies equilibrated over becomes large.
Indeed, the smallest regret of a ZI equilibrium with respect
to Q-learning we find is 3.0, and the smallest mean regret for
a subset size is 4.4, corresponding to strategy subsets of size
8. This suggests that there is a persistent benefit to adaptive
policies, such as those we derive by RL in this study, rela-
tive to mixtures of ZI policies, even as those mixtures are
calibrated over many parameterizations.

In Fig. 2, we present for each equilibrium the difference
in regret between the response derived by Q-learning and the
pure-strategy best response from the base strategy set. Each
row corresponds to equilibria over subsets of ZI strategies of
a certain size. Each equilibrium is plotted with a multiplicity
equal to the number of strategy subsets in which it occurs.

We note that in almost all cases, our automated Q-learning
procedure achieves more lift in payoff over the baseline than
the ZI best response. In a few cases, it does not, likely due to
insufficient iterations for Q-learning to converge, or the in-
stability of Q-learning in the surface MDP of a POMDP. The
increase in payoff improvement of Q-learning over ZI ranges

from 3.0 to 4.4, over the various subset sizes, as shown
by the solid line. These differences are statistically signifi-
cant, based on paired t-tests, for subset sizes 1, 2, 5, and 8
(p = 0.001, 10−8, 10−11, and 10−13, respectively). It is in-
teresting that the lift of adaptive policies from Q-learning,
relative to a non-adaptive ZI best response, appears roughly
constant, even as the number of ZI strategies used for equili-
bration increases. This suggests a lingering benefit from con-
ditioning actions on state, even against non-adaptive agents
with carefully tuned parameters, providing a payoff gain of
approximately 3.5.

Q-Learning Results

In the case of all 20 supposed equilibria, including the 10
pure strategies and 10 mixed strategies, Q-learning success-
fully discovered a beneficial deviation over the larger space
of adaptive policies. The most common number of training
iterations for the best policy was 106, which was the end of
the training cycle. In several cases, however, an intermediate
policy, corresponding to an earlier stopping time, produced
a higher expected payoff.

In order to confirm that a learned policy had a payoff sig-
nificantly greater than the equilibrium baseline, we played
back the apparent best policy from a training run for 106

total playouts. We then took a bootstrap 95% confidence in-
terval about the sample mean payoff, and in each case the
lower bound thus obtained was greater than the mean payoff
of the baseline profile.

Summary of Findings

In this series of experiments, our automated RL process
consistently yielded a beneficial deviation, even against ZI
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Figure 2: Paired difference in regret (w.r.t. Q-learning or ZI)
of each mixed-strategy Nash equilibrium over a subset of
ZI policies. We subtract the regret with respect to the best-
response ZI policy in the base policy set, from regret with
respect to the Q-learning response. Each row corresponds
to equilibria over ZI policy subsets of a certain size. Row
means are plotted as lines.

strategies that were equilibrated over the full base strategy
set. However, the regret of equilibrated ZI policies grew
lower, as the number of strategies used for equilibration was
increased. The lift of an adaptive policy from Q-learning,
relative to a ZI best response, appears to be almost constant
on average, even as the strategic stability of the baseline ZI
mixed strategy is increased. This benefit from policy adap-
tation is positive, but reasonably small, relative to the differ-
ences in payoffs between the deviating ZI policies we tested.

Summary of Learned Policies

We will take as a running example the pure ZI strategy equi-
librium over the base strategy set, where all agents play
380 420 .5. This example is chosen because it is an equi-
librium over all the base strategies, so a Q-learner deviating
successfully from it is making an improvement over any of
its component pure strategies. Thus, it is an example of the
benefit of policy adaptation over a fixed policy.

To study the range of successful adaptive deviations from
380 420 .5, we performed 10 runs of Q-learning, select-
ing the best policy from each run. We analyzed the 10 re-
sulting policies together, to find what they have in common
to explain how they improve on the base strategies they are
composed of. In Fig. 3, we present the distribution of mean
surplus demanded by the adaptive agent, over the 10 policies
derived by Q-learning against 380 420 .5. By mean sur-
plus demanded, we intend to say d+d

2 , based on the param-
eters d and d of a ZI action. The Q-learner tends to demand
slightly less surplus than the baseline ZI agents: Its mean
surplus demanded is 382, compared to 400 for the others,
and it demands strictly less mean surplus than the others in
56% of its arrivals. It demands strictly more mean surplus

Figure 3: Histogram of the mean surplus demanded by 10
Q-learning derived policies, deviating from 380 420 .5.
Each state-action pair is weighted by the state’s occurrence
frequency. The mean surplus demanded by the equilibrium
baseline policy is shown by the dotted red line.

than the others, perhaps opportunistically, in 26% of arrivals,
demanding the same only 18% of the time. (In all of these
figures, we weight each state-action pair of a learned policy
by the state’s occurrence frequency.)

Conclusion

We investigated the extent to which adaptive policies yield
greater payoffs than non-adaptive, ZI policies in the CDA.
Our work investigates whether a calibrated ZI strategy pro-
file is a reasonable model for strategic behavior in the CDA.
We provide insight into how a strategy that deviates from ZI
can condition on market state to achieve greater surplus.

Recent works have employed CDA models to study high-
frequency trading, prediction markets, frequent batch auc-
tions, and market making. Many such studies rely on simple
heuristic trading models, like ZI. It is thus vital to understand
the strategic stability of non-adaptive, ZI strategy profiles,
relative to adaptive policies for the CDA.

Our findings suggest traders can benefit from condition-
ing actions on state in the CDA, even against an equilibrated
ZI profile. The magnitude of the regret of an equilibrated
ZI profile, with respect to an adaptive deviating strategy, ap-
pears to be small, especially when ZI is equilibrated over
many parameterizations.
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