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Abstract

In this paper, we present Iterative Learning using Physical Con-
straints (ILPC) method. ILPC is an iterative learning method
targeting at model inaccuracy caused by a distribution change
in training and test data. This change in distribution can be
due to the complexity of many real-world physical systems.
Although domain adaptation methods, which consider both
training and test data distribution when building models, also
target this distribution change, these methods can only handle
a limited difference between training and test data.
ILPC handles different distributions based on a key observa-
tion: gradual changes in physical condition often cause gradual
data distribution changes. Instead of treating test data as gen-
erated by an identical distribution, ILPC builds a model itera-
tively, guided by a system’s physical measurements. In each
iteration, the model is only extended with data that has similar
physical measurements to the last iteration. This approach
leads to higher accuracy. To evaluate ILPC, we apply it to two
real-world datasets and achieve up to a 2.7× improvement in
prediction accuracy compared to existing domain adaptation
methods.

Introduction

With the growth of the smart devices, cyber-physical sys-
tems (CPS), and Internet of Things systems (IoT) become
ubiquitous in everyday lives. Many examples of these IoT
devices exist (e.g., Samsung Smartthings, Notions (Samsung
Inc. 2017; Notion Inc. 2017)) and their number is expected to
reach 24 billion by the year 2020 (Gubbi et al. 2013). These
systems with their varying sensing abilities can extract in-
formation of both physical environments and humans in the
environments for various IoT applications, including smart
buildings. However, machine learning models are often in-
accurate when applied to these real world-deployed sensing
systems. A common cause of these inaccurate models is the
distribution change between the training and test data due
to the complexity of the physical world (Shi and Sha 2012;
Pan et al. 2011).
Previous approaches to build more generalizable mod-

els for changing distributions are transductive learning and
domain adaptation (Chapelle, Schöl kopf, and Zien 2010;
Joachims 1999b; Zhu et al. 2003; Shi and Sha 2012). These
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methods consider the distribution of unlabeled test data when
training a model. They train the model in one shot, and they
operate under the assumption that there is a great similar-
ity between training and test distributions, i.e., the difference
between training and test distributions is not significant. How-
ever, in real-world sensing systems, complex physical condi-
tions may cause training and test data to have very different
distributions. As a result, existing methods are not robust
to test data with a significantly different distribution than
training data. We make these key observations on the data
distribution changes in physical sensing systems: 1) When
certain measurable physical constraints change, the data dis-
tribution often also changes. 2) If these physical constraints
change gradually, the corresponding data distribution typi-
cally also changes gradually.
Based on these key observations, we present Iterative

Learning using Physical Constraints (ILPC), an iterative
method for learning guided by physical measurements. ILPC
initializes with labeled data of limited distribution range.
Then in each iteration, ILPC uses an existing domain adap-
tation on test data with similar distributions to the labeled
data, which is selected based on the measurable physical
constraints, to ensure high prediction accuracy. The iterative
results with high prediction confidence are then ‘labeled’,
so that the approximately labeled data distribution expands.
In the next iteration, ILPC can handle a larger difference in
data distribution than that of the current iteration. Compared
to traditional methods of transductive learning and domain
adaptation, our ILPC handles significant data distribution
changes by iteratively extending the model. It ensures the
iterative accuracy by taking corresponding physical measure-
ment into account when selecting data trained in an iteration.
The contributions of this paper are as follows.

• We study the physical constraints leading to gradual data
distribution changes in various IoT sensing applications.

• We present a novel iterative approach, Iterative Learning
using Physical Constraints (ILPC), to handle significant
distribution change problems caused by gradually chang-
ing physical constraints.

• We apply ILPC to two real-world datasets and achieve
more than 30% test accuracy improvements compared to
existing domain adaptation methods.
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Figure 1: Examples of changes in data distribution. The x-
axis is the measured physical constraint. The y-axis is the
data distribution as it gradually changes with the measured
physical constraint. The model represented by the dashed line
does not generalize while the model represented by the solid
line separates the data with a large difference in distribution,
which is the goal of this work.

Gradual Data Distribution Changes from

Physical Constraints

The data distribution changes in many real-world systems are
caused by physical condition changes, and these conditions
can be measured. We refer to these measurable physical con-
ditions as physical constraints. In this section, we study the
above cause-effect relationship in two example datasets and
explain why it is difficult for prior work to handle significant
data distribution changes.

Gradual Distribution Changes in Physical Systems

In real-world cyber-physical systems, the training and test
sensing data samples may be collected under different phys-
ical conditions. When that happens, the underlying distri-
butions generating the data samples are different. Figure 1
shows a concept example where the distributions are different
for data collected under different physical attribute values.
The blue triangles and circles are negative data samples, while
the red triangles and circles are positive data samples. The
x-axis shows the values of a measured physical constraint,
and the y-axis shows the data distribution under the physical
constraint values. Although there are distribution changes
between different data samples, these changes appear to be
gradual and are linked to the changes in the physical con-
straint values. Furthermore, in physical sensing systems, we
can identify and measure these physical constraint values.
This phenomenon can be found in real-world sensing data.
We introduce two applications that demonstrate different
physical constraints.

Applications and Their Physical Constraints

Pedestrian identification through floor vibration Occu-
pant identity is useful information for various smart building
applications, and one way to obtain this is through footstep-
induced floor vibration sensing. The frequency domain of the
vibration signal is extracted for identification using classifiers
such as SVM (Pan et al. 2015). However, the identification ac-
curacy drops when people walk at speeds different from that
in labeled dataset. This is because when their walking speeds
change, their gaits and therefore their footstep signal features

1 2 3 4 5 6 7

Walking Speed Levels

0

10

20

30

N
u
m

b
e
r 

o
f 
F

o
o
ts

te
p
s

Footstep Type 1

Footstep Type 2

Footstep Type 3

Figure 2: Footstep example. The figure shows footstep signals
collected from one person walking at seven different speeds
(1-7 indicates speeds from slow to fast). Each speed has 35
footstep samples. The footsteps are clustered based on their
time domain similarity into three types. Footstep Type 1,
2, and 3 appear more often in the fast, medium, and slow
walking speeds respectively. As the walking speed changes,
the frequency footstep type also gradually changes.

also change. Figure 2 shows an example of changes in one
person’s footstep signal distribution over several different
walking speeds. The x-axis represents 7 walking speeds from
slow to fast. All the footsteps are clustered based on their
time domain similarity into three types. The y-axis shows
the number of footsteps that fall into each type. When the
walking speed increases from 1 to 7, the number of Type
1 footsteps increases gradually, while the number of Type
3 steps decreases gradually. The Footstep Type 2 peaks at
walking speed 3 and decreases when the walking speed is
above 4. As the walking speed changes, the distribution of
the footstep data also gradually changes.

Building damage estimation via mid-earthquake struc-
tural vibrations Evaluating the structural damage level
of a building post-earthquake is essential in helping to save
people and reduce economic loss. To diagnose building dam-
age, people has been studied the building structural vibration
during the earthquake (Xu, Zhang, and Noh 2017). Features
in the frequency domain of the vibration signals can be ex-
tracted and used to train classification models. With those
models, we can predict the state of each story and localize
structural damage inside a building. However, the estimation
accuracy decreases when earthquake intensities varies be-
tween training and test data. This is because the degree of
building damage changes at different intensity levels, result-
ing in different data distributions. Therefore, a key physical
constraint in this case is the earthquake intensity level.

The Problem of Distribution Changes

While the pedestrian identification and building damage es-
timation application differ in many ways, in both cases the
distribution of testing data changes based on a specific and
measurable physical constraint. We can use this observation
to further analyze the learning problem with prior attempts
of domain adaptation to compensate for data distribution
changes. In supervised machine learning, if training and test
data are from different distributions, the prediction on the test
data with models built on the training data will be inaccurate.
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One simple solution is to obtain the labeled training data
from all data distributions. However, in real-world applica-
tions, obtaining labeled training data for all data distribution
changes is very difficult if not impossible. In the pedestrian
identification example, collecting footstep data under every
possible walking speed would not be practical.

Therefore, in this paper, we focus on this common problem:
the test data distribution is different from the training set, es-
pecially when the difference is significant. However, we have
much unlabeled data. In the concept example shown in Figure
1, the unlabeled data marked with darker color have a simi-
lar distribution to the labeled data, while the lighter-colored
labeled and unlabeled data have different distributions. As
the dash-line model shows, if we train a model using either
supervised learning or traditional semi-supervised learning,
it is not general enough to correctly separate data with a very
different distribution from the labeled data. Our ILPC method
seeks to attack this problem (see the solid line in Figure 1).

ILPC: Iterative Learning Using Physical

Constraints

We propose ILPC to solve inaccuracy caused by distribution
changes even for significant changes. ILPC trains a model
iteratively and controls the order of unlabeled data used in
each iteration according to measurable physical constraints.
In this section, we first discuss these two key ideas in details
and then present our ILPC algorithm.

Using Multiple Domain Adaptation Models to
Cover Gradually Changing Distributions

When data distribution changes significantly, ILPC iteratively
constructs multiple domain adaptation models in order to
handle a changing distribution. A single domain adaptation
model can handle a limited range of distribution changes. In
order for the domain adaptation model to predict well with
this change, ILPC labels some of the unlabeled data with a
prediction confidence score higher than an empirical thresh-
old. In this way, our ILPC method extends the distribution of
labeled data. In the next iteration, ILPC constructs another
domain adaptation model using also the newly labeled sam-
ples, which then predicts a broader data distribution than
the previous iteration. Multiple iterations of this extension
process will eventually cover all significantly different distri-
butions. The initial domain adaptation model is trained with
the initial labeled data distribution and the selected unlabeled
data. For example, in pedestrian identification, the initial la-
beled data are of people’s medium walking speeds. When a
person walks faster or slower (unlabeled), the training model
is extended gradually using both labeled and unlabeled data.

Guiding the Model Distribution Order According
to Physical Constraints

To use the iterative approach discussed above, we assume
that, within each iteration, the unlabeled and labeled data dis-
tributions should not have a significant difference. To meet
this assumption, ILPC selects the data for each iteration uti-
lizing the relationship between the data distribution and the
physical constraints. First, we define the physical constraints

define the physical constraint x;
uniformly discretize x into {x1, x2, · · · , xk};
for n ← 1 to k do

Dataselected = [];
for each sample in Dataunlabeled do

if xn < xsample ≤ xn+1 then
Dataselected = Dataselected ∪ sample;

end

end
Prediction, Conf idence =
DomainAdaptation(Datalabeled, Dataselected);

New_Labeled_Data = [];
for each result in Prediction do

if Conf idenceresult > threshold then
New_Labeled_Data =
New_Labeled_Data ∪
result and the corresponding sample;

end

end
Datalabeled = Datalabeled ∪New_Labeled_Data;

end

Algorithm 1: The novel ILPC algorithm.

that cause data distribution changes through either heuris-
tic rules or common sense. For example, in the pedestrian
identification application, we know from previous research
that walking speed and walking pattern (gait) are strongly
correlated. Once these constraints are defined, the sensing
system extracts the data (feature) along with its correspond-
ing physical constraints. Based on the physical constraint
values, the system decides if the distribution of the test data
1) is within the labeled data distribution, 2) has a similar
enough distribution to the labeled data to be trained in the
next iteration, or 3) has a very different distribution from the
labeled data and therefore needs to wait for the model to be
extended. We discuss the details of ILPC next.

ILPC Algorithm

Based on the two key ideas introduced above, we present
the ILPC algorithm. The pseudo code is shown in Algorithm
1, in which DomainAdaptation(Dlabeled, Dunlabeled) is a
function that conducts traditional domain adaptation learning
(Shi and Sha 2012; Pan et al. 2011). We initialize the system
by determining which physical measurements affect the data
distribution and then discretize the physical constraints into
k levels. We assume that the range of the physical constraint
[xmin, xmax] is uniformly discretized into {x1, x2, · · · , xk},
where x1 = xmin, xk = xmax. That means there are k − 1
intervals [xn, xn+1], where 1 ≤ n ≤ k − 1.

Iterative learning. To address the distribution change in
each interval, we construct one domain adaptation model for
each interval. Specifically, we construct k−1 domain adapta-
tion models. We then assign the n-th model to handle the data
distributions subject to the identified physical attribute with
values in the range [xn, xn+1], where n ∈ {1, 2, · · · , k − 1}.
We determine the value k by observing the empirical his-
togram of the sample count. We select an appropriate k
such that there are sufficiently many data samples in each
interval [xn, xn+1]. In the n-th iteration, ILPC constructs
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the n-th model by domain adaptation methods based on
the selected unlabeled data Dataselected with attribute val-
ues in [xn, xn+1] and the labeled data Datalabeled. Select-
ing Dataselected with attribute values in [xn, xn+1] guaran-
tees limited distribution change between Dataselected and
Datalabeled, which can be handled with high accuracy by
existing domain adaptation methods.

Model expansion. Using the n-th model, we label the un-
labeled data with high prediction confidence Dataselected.
The final confidence score of a prediction can be calculated
from multiple sample points measured for this prediction. In
this paper, we introduce two ways to compute a prediction
confidence threshold: 1) summing based thresholding and
2) clustering centroid distance based thresholding. The first
method is easier to implement but works well when the data
of different distributions are not skewed significantly. The
second method works on more skewed datasets, though it
takes extra calculation.

Experiments

We test ILPC on two real-world sensing datasets to validate
that our approach can effectively handle distribution changes
between training and test data.

Real-World Sensing Datasets

In this section, we introduce two sensing datasets used in
our experiments: the pedestrian identification dataset (Pan et
al. 2017) and the mid-earthquake building health monitoring
dataset (Xu, Zhang, and Noh 2017).

Pedestrian identification data The floor vibration based
gait dataset we use here includes vibration signals from 10
participants who each contribute 10 walking experiments at
a number of controlled step frequencies. The controlled step
frequencies are μ, μ± σ, μ± 2σ, and μ± 3σ, where μ and
σ are selected from a prior survey (Öberg, Karsznia, and
Öberg 1993). In each walking experiment, the system uses
the 7 consecutively detected footstep signals closest to the
sensor to classify the subject’s identity (Pan et al. 2017). It
outputs the majority prediction of these 7 footsteps as the final
identity. For the prediction of each footstep, we conduct a
one-against-one strategy, i.e., for 10 pedestrians, we conduct
a binary classification on 10×9

2 = 45 pairs of pedestrians and
then average the classification accuracy of the 45 pairs.

Building health monitoring during earthquake data
The building vibration based earthquake dataset is collected
from 5 buildings with up to 20 floors. Each building con-
tributes 44 samples. For this collected dataset, we predict
damage to the structure in terms of Story Drift Ratio (SDR).
There are two label classes: no damage (0% ≤ SDR < 1%)
and damaged (SDR ≥ 1%) (Council 2000). We output the
story damage estimation based on the majority vote from
multiple data points on the same floor. Each time we make a
binary prediction for a story, we have 10 data samples from
different sensors. The majority prediction of these 10 data
samples gives us our model’s final output.

Experimental Setup

This section describes the experimental setup. We first de-
scribe the setup of baseline methods. Then we explain our
ILPC methods and our methods with random training order.
Finally, we detail the parameters of our experiment.

Baseline methods The baseline methods selected are
supervised learning SVM (SVM) (Chang and Lin 2011),
Transductive SVM (TSVM) (Joachims 1999b), Graph-based
semi-supervised learning (GSSL) (Zhu et al. 2003), and
Information-Theoretical Learning (ITL) (Shi and Sha 2012).
We choose them because TSVM and GSSL are state-of-the-
art semi-supervised learning methods and ITL outperforms
several other domain adaptation methods on our datasets.

Our ILPC methods To demonstrate the benefit of ILPC
on datasets with significant distribution change, we integrate
the baseline methods into our ILPC algorithm (Algorithm
1), thus creating hybrid methods. We use TSVM, GSSL and
ITL as instances of our ILPC method. The ILPC hybrids
are therefore ILPC-TSVM, ILPC-GSSL and ILPC-ITL. The
detailed parameters of each of these learning methods are the
same as the ones used for the baselines.

Random order iterative methods To demonstrate the im-
portance of extending the model in the order guided by mea-
sured physical constraints, we further evaluate the iterative
learning methods but without the training order. We ran-
domly select the test data from different distributions for
each iteration. We refer to these methods as RandomI-TSVM,
RandomI-GSSL, and RandomI-ITL corresponding to the se-
lected baseline methods.

Experimental parameter settings The detailed settings
of these learning methods are as follows. We use the software
SVM light (Joachims 1999a) to run SVM and TSVM in our
experiments with the RBF kernel. Therefore, the parameters
that affect these methods include the kernel parameter γ, as
well as the weights of training loss introduced by labeled
and unlabeled data C1 and C2. In our experiments, they are
set as γ = 1, C1 = 16, and C2 = 1 respectively. We select
the parameters γ and C1 through 5-fold cross validation and
parameter C2 as default. In GSSL, we use the Euclidean dis-
tance as the distance metric in the graph. In ITL, the weight
of the regularization term is 10, which achieves the highest
accuracy according to the accuracy of the validation dataset.

Prediction confidence score We calculate the prediction
confidence score based on the output of each method: 1) For
SVM and TSVM, the prediction confidence of a data sample
is the distance of this sample to the classification decision
boundary. 2) For GSSL, the prediction confidence of a data
sample is its weight in the constructed graph. 3) For ITL, the
prediction confidence is the probability output by the sigmoid
function in logistic regression.
In the pedestrian identification problem, we calculate the

confidence score of one pedestrian as the sum of the foot-
step model confidence scores within one walking instance. In
earthquake building health monitoring, we train a k-means
model on the selected unlabeled data. The unlabeled data
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Figure 3: Classification accuracy on changing test data distribution using different learning methods. The x-axis shows the
physical attribute value corresponding to the change of data distribution. The y-axis shows the classification accuracy. Figure (a) -
(c) show the results of pedestrian identification. Figure (d) - (f) show the results of during-earthquake building health monitoring.

points closer to the centroids in the k-means model are as-
signed a higher confidence score. The confidence score of
each floor is then calculated as the sum of the confidence
scores assigned through clustering analysis.

Result Analysis

To evaluate the two key ideas of the ILPC, we first compare
traditional domain adaptation methods to our ILPC. Then we
compare the results of the algorithm with and without our
physical constraint-guided training order.

Evaluation I: Level of Distribution Changes
between Training and Test Data.

In Figure 3, we compare the prediction accuracy of our meth-
ods (marked as the purple solid line with star markers) and of
baseline traditional domain adaptation methods (marked as
the red dashed line with cross markers) under different levels
of distribution change between training and test data.

Case study 1: pedestrian identification In the case of
pedestrian identification, we categorize people’s walking
speeds into four levels: the average step frequency μ and
the gradually increasing step frequencies μ + σ, μ + 2σ,
and μ + 3σ, where σ is the standard deviation of a sub-
ject’s step frequency (Öberg, Karsznia, and Öberg 1993;
Pan et al. 2017). Figure 3 (a), (b), and (c) demonstrate iden-
tification accuracy for the investigated methods. The x-axis
shows 0, σ, 2σ and 3σ, which indicate data samples with the
physical constraint value of μ, μ + σ, μ + 2σ, and μ + 3σ
respectively. The y-axis shows the accuracy of predicting the

data sample using different methods. As the test data distri-
bution becomes increasingly different from the training data
(increasing number of σ), the test accuracy tends to decrease.

Our ILPC methods outperform our baseline domain adap-
tation methods, especially in cases where test and labeled
data have very different walking speeds. ILPC-TSVM, ILPC-
GSSL, and ILPC-ITL achieve 92.2%, 85.3%, and 96% av-
erage accuracy for all data distribution respectively, while
their corresponding traditional domain adaptation methods
achieve 86.5%, 79%, and 95%. For all investigated meth-
ods, the larger the walking speed difference from the labeled
dataset, the lower the identification accuracy. Our ILPC han-
dles training and test data distribution difference better than
our baseline methods.
We compared the algorithm runtime of SVM, TSVM, and

ILPC-TSVM in our prior work of pedestrian identification
(Pan et al. 2017). Although TSVM and ILPC-TSVM have signif-
icantly higher runtime, compared to collecting the amount of
labeled data that covers all data distributions, they still save
on the overall time needed.

Case study 2: building health monitoring during earth-
quakes For this dataset, the labeled data distribution is
limited to samples with intensity less than 0.34. First, we
test with earthquake data of between 0.34 and 7.64 inten-
sity. We then discretize the earthquake intensity by 0.01, and
we present the results in 6 levels to understand the accuracy
change trend 1. Figure 3 (d), (e), and (f) classify the damage
estimation results in 6 levels based on earthquake intensity.

1In Figure 3, we only show up to 5.2 due to this discretization
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Our ILPC methods outperform baseline domain adaptation
methods as shown in Figure 3 (d), (e), and (f). At the maxi-
mum data distribution difference, the TSVM, GSSL, and ITL
achieve an accuracy of 35.3%, 42.7%, and 87.3%, respec-
tively, while our ILPC methods ILPC-TSVM, ILPC-GSSL, and
ILPC-ITL achieve 94.7%, 84%, and 99.3%, resulting in up
to 2.7× improvement compared to traditional domain adapta-
tion methods. The average accuracy over all data distributions
is 48%, 48.6%, and 75.9% respectively for the baseline meth-
ods and 80.1%, 72.8%, and 88% for ILPC methods, which
shows up to a 1.7× improvement.
The accuracy improvement by ILPC is caused by label-

ing test data in each iteration. As the iteration and labeling
continue, more and more samples with features that appear
in high-intensity earthquakes are labeled. Our ILPC meth-
ods show an increasing trend in prediction accuracy when
the earthquake intensity increases. This is because degree of
building damage changes at different intensity levels. The
data distribution of high-intensity earthquakes are more dif-
ferent from those of low-intensity earthquakes, resulting in a
higher classification accuracy.

Evaluation II: The Impact of Iteration Order

To understand the importance of physical constraints in guid-
ing the model’s distribution order, we focus on the com-
parison between the random learning order (marked as the
green solid line with triangle markers) and the physical con-
straints guided learning order (our ILPC methods, marked
as the purple solid line with star markers) in Figure 3. In
both pedestrian identification and building health monitoring
applications, the accuracy of our ILPC methods is higher
than that of the random-order methods. For ILPC-TSVM and
ILPC-GSSL, the larger the distribution difference is, the better
our ILPC methods perform.

For the pedestrian identification application, we show pre-
diction results in Figure 3 (a), (b) and (c). When the dis-
tribution difference is 3σ, the ILPC-TSVM and ILPC-GSSL
achieves 82.5% and 74.7% accuracy, while the random order
version achieves only 74.7% and 66.9% accuracy. This hap-
pens because using physical constraints to control the order
limits the data distribution change in each iteration. There-
fore, more test data can be labeled with high confidence and
contribute to the later iterations as labeled data. RandomI-
ITL performs worse than ILPC-ITL at the beginning of the
model extension (1σ). It achieves 92.2% while ILPC-ITL
achieve 98.9%. When more data is labeled through more
iterations, the accuracy increases.
For the building damage estimation application, we show

prediction results in Figure 3 (d), (e) and (f). ILPC-TSVM
and ILPC-GSSL achieve 94.7% and 84% accuracy when pre-
dicting building damage during the highest intensity earth-
quakes, higher than that of RandomI-TSVM and RandomI-
GSSL (80.7% and 63.3%). RandomI-ITL and ILPC-ITL
show up to 99.3% and 100% accuracy in this dataset, and
therefore ILPC-ITL does not show significant improvement
on RandomI-ITL. RandomI-ITL outperforms ITL due to the
iteration and labeling. ILPC-ITL achieves a similar level of
accuracy to RandomI-ITL, because ITL is robust to the data
distribution change in this dataset. Using iteration (RandomI-

ITL and ILPC-ITL) amplifies its adaptation ability. Using
physical constraints to control distribution order consistently
improves the accuracy of our methods.

Related Works

ILPC is closely related to and built upon two types of learning
methods: transductive learning and domain adaptation.

Transductive learning is a technique that addresses the
distribution change between training and test data, including
self-training, low-density separation, and graph-based meth-
ods (Chapelle, Schöl kopf, and Zien 2010). Low-density sepa-
ration methods, such as Transductive SVM (TSVM) (Joachims
1999b; Chapelle, Schöl kopf, and Zien 2010), tend to place
decision boundaries where the unlabeled data has low den-
sity. The graph-based methods (GSSL) (Zhu et al. 2003) con-
struct a graph where the nodes are the labeled and unlabeled
data points. In addition to having good accuracy in the la-
beled training data, the graph-based methods learn a model
where the prediction of unlabeled data is smooth in the con-
structed graph. Previous works (Belkin and Niyogi 2004;
Li and Zhou 2011; Li et al. 2013; Wang, Wang, and Li 2016;
Li, Wang, and Zhou 2016) show that traditional transduc-
tive learning methods such as TSVM and GSSL, may have
decreased accuracy with unlabeled data in the model training.
To avoid accuracy decrease, unlabeled instances are selec-
tively used in the transductive learning (Li and Zhou 2011;
Wang, Wang, and Li 2016; Li, Wang, and Zhou 2016).

Domain adaptation adapts a model learned from data
in a source domain to data with a different distribution
in a target domain. There are many domain adaptation al-
gorithms developed, such as Transfer Component Analy-
sis (TCA) (Pan et al. 2011), Maximum Independence Do-
main Adaptation (MIDA) (Yan, Kou, and Zhang 2016), Sub-
space Alignment (SA) (Fernando et al. 2013), Information-
Theoretical Learning (ITL) (Shi and Sha 2012), Geodesic
flow kernel (GFK) (Gong et al. 2012) and Stationary Sub-
space Analysis (SSA) (Von Bünau et al. 2009). In general,
both transductive learning and domain adaptation methods
can only handle distribution change in a limited range. Our
ILPC methods can be used with both of them to handle a
larger range of distribution changes.

Conclusion

In physical systems, the training and test data distributions
are often significantly different, resulting in potentially inac-
curate learning models. Previous domain adaptation methods
can improve accuracy but are limited by the distribution
change range. We develop ILPC, an iterative learning method
guided by sensible physical constraints that indicate the data
distribution similarity. First, we train multiple domain adapta-
tion models iteratively to cover different parts of the gradually
changing distribution. Second, in each iteration, we use the
trained domain adaptation model to label the test data and
extend the model. The test data trained in each iteration is
guided by the assigned physical constraints to ensure the
similarity of the data distribution handled in each iteration.
We evaluate our ILPC on two real-world sensing datasets
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and it shows up to 2.7× prediction accuracy improvement
compared to the corresponding traditional domain adaptation.
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