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Abstract

Recent works on gradient based attacks and universal per-
turbations can adversarially modify images to bring down the
accuracy of state-of-the-art classification techniques based on
deep neural networks to as low as 10% on popular datasets
like MNIST and ImageNet. The design of general defense
strategies against a wide range of such attacks remains a chal-
lenging problem. In this paper, we derive inspiration from re-
cent advances in the fields of cybersecurity and multi-agent
systems and propose to use the concept of Moving Target De-
fense (MTD) for increasing the robustness of a set of deep
networks against such adversarial attacks. To this end, we for-
malize and exploit the notion of differential immunity of an
ensemble of networks to specific attacks. To classify an input
image, a trained network is picked from this set of networks
by formulating the interaction between a Defender (who hosts
the classification networks) and their (Legitimate and Mali-
cious) Users as a repeated Bayesian Stackelberg Game (BSG).
We empirically show that our approach, MTDeep reduces
misclassification on perturbed images for MNIST and Im-
ageNet datasets while maintaining high classification accu-
racy on legitimate test images. Lastly, we demonstrate that
our framework can be used in conjunction with any existing
defense mechanism to provide more resilience to adversarial
attacks than those defense mechanisms by themselves.

Introduction

State-of-the-art systems for image classification based on
Deep Neural Networks (DNNs) are used in many impor-
tant tasks such as recognizing handwritten digits on cheques
(Jayadevan et al. 2012), object classification for automated
surveillance (Javed and Shah 2006) and autonomous vehi-
cles (De La Escalera et al. 1997). Adversarial intent to make
these classification systems misclassify inputs can lead to
dire consequences. For example, being able to make a clas-
sifier misclassify the digit ‘1’ as ‘9’ might help an adversary
withdraw more money from the bank than the amount hand-
written on a cheque. In fact, in (Papernot et al. 2016a) and
(Szegedy et al. 2013) authors show how models for hand-
written digit recognition built using the MNIST dataset can
be easily attacked. In (Papernot et al. 2016a), road signs say-
ing ‘stop’ are misclassified, which can make an autonomous
vehicle behave dangerously. Such attack mechanisms also

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: To classify an input image, the MTDeep system
uses a network selected randomly from an ensemble of net-
works. As an attacker is not sure which network will clas-
sify their malicious input, the success rate of an attack that
affects only one network in the ensemble is reduced.

exist for state-of-the-art vision systems that recognize faces,
which may be used for authentication, target identification
etc. as shown in (Sharif et al. 2016). Furthermore, the ma-
nipulated image generated by an adversary is, in almost
all cases, indistinguishable from the original image when
viewed by a human observer.

These adversarial attacks exploit the fact that Deep Neu-
ral Networks (DNNs) have high biases in certain regions of
the high dimensional space onto which input data is pro-
jected. Adversaries try to perturb legitimate input data to-
wards a decision boundary so that it is misclassified by the
network. Formally, if D̂(x) denotes the class of an image
x output by a Deep Neural Network D̂, an adversarial per-
turbation p when added to the image x tries to ensure that
D̂(x) �= D̂(x+ p). Minimum perturbations, in addition, try
to minimize some norm of p, which ensures that the changed
image x+p and the original image x are indistinguishable to
humans. Fast Gradient (FGSM) attack (Szegedy et al. 2013)
and Jacobian Saliency Maps (JSM) (Papernot et al. 2016a)
are examples of methods used for such purposes.

Popular defenses against such attacks, at a high level, gen-
erate adversarial samples using an attack algorithm and in-
corporate them into the training set (with the correct labels)
so that the classifier is now trained on data that gets pro-
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jected into empty regions of the higher dimensional space.
This process is known as adversarial training.
Recent work on universal adversarial perturbation generates
a single perturbation for a Neural Network classifier, which
when added to any input images, can adversely bring down
the classification accuracy of even the state-of-the-art clas-
sifiers (ResNet-152 (He et al. 2016)) from 95.5% to as low
as 14.6% on the Imagenet dataset (Moosavi-Dezfooli et al.
2016). Unfortunately, the authors demonstrate that adversar-
ial training (termed as ‘fine-tuning’ in the paper) is an inef-
fective defense mechanism for this attack.

In this paper, we propose Moving Target Defense (MTD)
as a general technique for defending Deep Neural Networks
against all class of attacks (see Figure 1) that can be used in
conjunction with existing defense mechanisms. In the sec-
tion on related works, we categorize the state-of-the-art at-
tacks on Deep Neural Networks for image classification into
three classes, followed by introduction to the relevant liter-
ature in the fields of cybersecurity and multi-agent systems
that form the backbone of our approach. In this paper, we

(i) Propose MTDeep - an MTD framework for DNNs that
can be used as ‘security-as-a-service’ to bootstrap any ex-
isting defense mechanism to increase the robustness of a
classification system to adversarial attacks.

(ii) Formalize the notion of differential immunity for MTD
systems and propose the problem of developing differen-
tially immune network configurations, which in turn seeks
to reduce the transferability of perturbed images, as an
open research problem.

(iii) Formulate the interaction between MTDeep and its users
as a Repeated Bayesian Game and find the optimal
switching strategy in order to exploit the differential im-
munity of its composing classifiers. We show that this is
necessary as simple strategies like uniform random selec-
tion might even be worse in terms of security than using
single classifiers (rendering the MTD useless).

(iv) Show that finding the Stackelberg equilibrium of this
game seeks to solve a multi-objective optimization prob-
lem that maximizes classification accuracy on legitimate
input data and reduces misclassification error on adversar-
ially modified data.

We empirically demonstrate the effectiveness of our contri-
butions on MNIST and Imagenet datasets.

Related Work

Attacks on Deep Neural Networks and Existing
Defense Strategies

In this section we will do a brief review of existing work
on crafting adversarial attacks on deep neural networks and
efforts being made to combat them.
• Gradient-based perturbations: Recent literature has
shown multiple ways of generating adversarial samples for
a test image input to a DNN (Moosavi-Dezfooli, Fawzi, and
Frossard 2016; Papernot et al. 2016a; Szegedy et al. 2013).
In these works, either (i) the input features whose partial
derivatives on the DNN’s Loss Functions are high are mod-
ified by a small amount to make the DNN misclassify them,

or (ii) the geometric space around a point is examined to
find the closest class-separation boundary. Apart from as-
suming that the test image which is to be modified is avail-
able beforehand, similar to a chosen ciphertext attack, these
attacks often make further assumptions pertaining to knowl-
edge about the network that is being used for classification.
• Black-box attacks: Black-box attacks against DNNs train
a (smaller) substitute model by assuming that the network
being attacked provides test labels for a list of images the
adversary provides (Papernot et al. 2017), similar to chosen
plaintext attacks. Gradient based attacks on this substitute
model have been shown to generalize to the actual network.
Recent work on zeroth order optimization has further shown
it is possible to create black-box attacks without the need for
substitute models (Chen et al. 2017).

A popular defense against these types of attacks involves
first generating adversarial images by modifying the training
inputs using one (or all) of the attack methods described. The
generated images along with the expected labels are then
used to fine tune the parameters of the neural network in
the training phase. This helps the DNN to reduce its bias
in the unexplored high dimensional space, reducing the ef-
fectiveness of the adversarial perturbations. Ensemble ad-
versarial training (Tramèr et al. 2017) and stability training
(Zheng et al. 2016) are improvements on this defense tech-
nique. Besides these, other methods like defensive distilla-
tion (Papernot et al. 2016b) and dimensionality reduction &
‘anti-whitening’ (Bhagoji, Cullina, and Mittal 2017) also ex-
ist but we refrain from discussing these in detail since our
proposed framework can be used in conjunction to any of
these to provide stronger security guarantees.
• Universal perturbations: In this attack, a single pertur-
bation image for a particular network is constructed. This
DNN-specific perturbation when added to any input image,
makes the network misclassify it (Moosavi-Dezfooli et al.
2016). Thus, although it might be time consuming to gener-
ate a single perturbation, only one “universal” perturbation
image per network needs be computed. Interestingly, the au-
thors show that adversarial training is ineffective in increas-
ing robustness against these attacks (and the other works on
developing defense mechanisms, mentioned above, have not
shown that they can mitigate this either).

Besides these, there has been some effort in trying to
protect machine learning systems against attacks using ran-
domization techniques such as in (Biggio, Fumera, and Roli
2008). Unfortunately, the framework proposed is not generic
enough to be used for DNNs. Furthermore, while such works
try to prevent misclassification under attack, they land up re-
ducing the classification accuracy significantly. In contrast,
work on using ensemble models for DNNs simply tries to
increase classification accuracy for legitimate users but pro-
vide no protection against adversarially modified test images
(Ioffe and Szegedy 2015). There has also been work on us-
ing ensemble models to detect adversarial samples for the
MINST dataset (Abbasi and Gagné 2017). This requires the
distribution of how a sample from a specific class is likely to
be misclassified into another class, which is either unavail-
able or difficult to obtain in most cases. Furthermore, the
idea of using a classifier (or learning a controller) to classify
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an input image as legitimate or adversarial is highly insecure
since that classifier (or controller) itself can be adversarially
attacked. Thus, existing works for securing DNNs against
adversarial attacks are either mostly classifier/attack/dataset
specific or fail to reason about attacker strategies.

Adoption of Moving Target Defense (MTD) for
Boosting the Security of DNNs

Moving Target Defense (MTD) is a paradigm used in soft-
ware security that tries to reduce the success rate of an attack
by constantly switching between multiple software systems
(Zhuang, DeLoach, and Ou 2014). Practical use of MTDs in
Web Application Systems have been shown to enhance sys-
tem security (Taguinod et al. 2015). Based on the principles
of MTD, we design a general purpose security framework
for Neural Networks (MTDeep) in this paper.

Devising strategies for MTD systems have been shown to
be a difficult problem. In order to provide formal guaran-
tees about the security of such systems, one needs to reason
about these attacks in a multi-agent game theoretic fashion
(Sengupta et al. 2017). They show that this leads to defense
strategies that outperform trivial randomization strategies.

Thus, we compile the interaction between the image clas-
sification system driven by an ensemble of DNNs (MTDeep)
and its users into a Repeated Bayesian Game, providing
provable guarantees on the expected performance and secu-
rity of the system. In MTDeep, an input image is classified
by one of the networks in the ensemble chosen randomly
based on a strategy generated using game-theoretic reason-
ing in the formulated multi-agent setup.

Although our framework is motivated to provide security
for DNNs, it can also be used for boosting security of any
Machine Learning (ML) model against any form of attack,
since the switching strategies can be easily generated for
any ‘known’ set of attacks. The game theoretic reasoning
ensures that the attacker cannot increase the misclassifica-
tion rate by strategic manipulation over the space of these
known attacks. Most importantly, MTDeep reasons about
trying to balance between providing security while affect-
ing the accuracy for legitimate users of the system only by a
small amount. Such a consideration is often absent in present
works on the design of security mechanisms for DNNs.

Moving Target Defense for Deep Neural

Networks (MTDeep)

In a Moving Target Defense (MTD) system, the defender
has multiple system configurations. The attacker has a set
of attacks that it can use to affect some of the configura-
tions in the defender’s system. Given an input to the system,
the defender selects one of the configurations to run the in-
put and returns the output generated by that system. Since
the attacker does not know which system was specifically
selected, it is no longer as effective as before (Figure 1).
Thus, randomization in selecting a configuration for classi-
fication (on each input) is paramount. A potential downside
of such a framework is that it might land up reducing the
accuracy of the overall system in classifying non-perturbed

images. Thus, we want to retain good classification perfor-
mance while guaranteeing high security.
In this section, we first describe the agents in our framework
and actions they can execute, which include describing the
defender along with their DNN configurations for the MTD
framework and the user–their types (adversarial and legiti-
mate) and the action set of each type. Lastly, we show that
randomized switching over the set of defender’s configura-
tions needs to reason about the MTDeep system in a game
theoretic fashion. An equilibria of this game gives us an opti-
mal selection strategy that maximizes classification accuracy
and security for the defender’s system.

Defender Configurations

The configuration space for the defender in the MTD frame-
work for DNNs are a ensemble of DNNs that are trained on
the same task but ideally not affected by the same attack. For
classifying images, Convolutional Neural Networks (CNNs)
are known to produce the best results. Thus, although the dif-
ferent DNN configurations used by the defender might differ
in the number of layers, parameters, hyperparameters or ac-
tivation functions, they will likely have to use CNN units
to produce comparable results. Formally, let N denote the
set of defender configurations. In our experiments, N is an
ensemble of three and six neural networks for MNIST (see
Table 1) and ImageNet (see Table 3) respectively.

User Types and Action Sets

Our second player, namely the users, are of two types–
Legitimate User (L) and the Adversary (A). L tries to use
the MTDeep system for classifying images for a specific task
without any adversarial intent. These are the target users of
most the present machine learning ‘as-a-service’ providers.
The second type, i.e. the adversary A, is essentially trying
to perturb input images to make the DNNs misclassify the
label for these inputs. L has a single action that represents
inputting an image for classification, where as the attacker
may use multiple attack actions.

In our threat model, we consider a strong adversary who
knows the different architectures we use in our MTDeep sys-
tem. Thus, they can generate an attack (say, using the Fast
Gradient Method or Universal Perturbations) for each of the
networks in our system. We let U denote this set of attacks
the attacker generated against our system. Note that an attack
(∈ U ) generated for a specific network in MTDeep, may
or may not be effective for the other configurations which
brings us to the concept of Differential Immunity.

Differential Immunity

For Neural Networks, the effectiveness of an attack is di-
rectly proportional to its misclassification (or fooling) rate,
i.e, the probability of test samples it can make the network
mis-classify. Formally, let E : N×U → [0, 100] denote this
fooling rate function where, en,u is the fooling rate when an
attack u(∈ U) is used against a network n(∈ N).

For an attack (u ∈ U ), we would like it to be effective for
only one particular configuration and ineffective for all the
others. Whenever this property holds for all attacks against
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Legitimate User (L)
MTDeep Classification Image

CNN (99.1, 99.1)

MLP (98.3, 98.3)

Hierarchical-RNN (98.7, 98.7)

Table 1: Pay-off matrix for the defender and the Legitimate
User (L) type for MNIST. The reward for both the players is
the accuracy of classification on non-perturbed images.

Adversarial User (A)
MTDeep FGSMCNN FGSMMLP FGSMHRNN

CNN (11.63, 88.37) (47.54, 52.46) (74.65, 25.35)

MLP (36.37, 63.63) (1.96, 98.04) (38.10, 61.90)

HRNN (35.72, 64.28) (24.08, 75.92) (9.65, 90.35)

Table 2: Table showing the normal form game matrix for the
defender and the Adversarial User (A) type. The reward val-
ues for A is equal to the fooling rate and the reward for the
defender is the accuracy of the system under attack.

an MTD system, there is something to be gained by switch-
ing between multiple configurations (and thus using MTD).
The property called differential immunity aims to capture
this. We now define differential immunity δ formally as,

δ(U,N,E) = min
u

maxn en,u −minn en,u + 1

maxn en,u + 1

where minn en,u and maxn en,u denote the minimum and
maximum impact that an attacker can cause when using the
attack u against the MTD system. Notice that if the maxi-
mum and minimum impact differ by a wide margin, then the
differential immunity of the MTD system should be higher.
This is represented in the numerator. The denominator en-
sures that an attack which has high impact reduces the dif-
ferential immunity of a system compared to a low impact
attack even when their maximum and minimum values dif-
fer by the same margin. The +1 factor in the denominator
of the function prevents division by zero. The +1 in the nu-
merator is to ensure that when minn en,u = maxn en,u, the
higher the value of maxn en,u, lesser the δ and vice versa.
Notice that 0 ≤ δ ≤ 1 since 0 ≤ en,u ∀ n, u.

Constructing an ensemble N of DNNs with has high dif-
ferentially immunity is non-trivial in light of existing work
(Szegedy et al. 2013). The authors show that ideas like parti-
tioning the training data and training the different networks
(∈ N ) on the disjoint data sets does not seem to make the
networks differentially immune. The notion of transferabil-
ity of an attack against DNNs introduced by the authors
seems to be opposite to the notion the differential immu-
nity of an ensemble of networks. We show later that even an
ensemble with various architectures, we can provide only a
weak level of differential immunity.

MTD as a Repeated Bayesian Game

For MTDeep to be secure, it should randomly pick a net-
work n each time to classify an input image. If we use a
naive strategy like uniform random to pick a network, we
will have equal chances of choosing networks that have low
classification accuracy or high vulnerability to perturbed im-
ages. Also, with time the attacker will eventually infer the
defender’s strategy and exploit the highly vulnerable config-
urations which might lead to worse security guarantees for
the MTDeep than using a single network (as we show in our
experiments). We now formulate our system as a Repeated
Bayesian Game to design an effective strategy.
The use of our MTDeep framework in safety critical sys-
tems should ensure that the accuracy of classification for

Legitimate User (L)
MTDeep Classification Image

VGG-F (Chatfield et al. 2014) (92.9, 92.9)

CaffeNet (Jia et al. 2014) (83.6, 83.6)

GoogLeNet (Szegedy et al. 2015) (93.3, 93.3)

VGG16 (Simonyan and Zisserman 2014) (92.5, 92.5)

VGG19 (Simonyan and Zisserman 2014) (92.5, 92.5)

ResNet-152 (He et al. 2016) (95.5, 95.5)

Table 3: Table showing the normal form game matrix for the
defender and the Legitimate User (L) type for ImageNet.
The reward values for both the players is same as the classi-
fication accuracy.

legitimate users is not affected. In essence, we want MT-
Deep to be effective for the legitimate users and alongside
increase the accuracy of classification for the adversary gen-
erated images, making this a multi-objective optimization.
Fortunately, this can easily be captured by using the proba-
bility of player types in our game theoretic framework that
lets us associate relative importance to each of the user types
(L and A). Thus, the two types of users have a probability
associated with them, making this a Bayesian Game.

An (intelligent) adversary can infer the switching strat-
egy of the defender by probing or observing the traffic on
the system for a reasonable amount of time. They can then
reason about their attacks when attacking the system. In our
threat model, the defender has to account for this behavior
before choosing their switching strategy, making this a Re-
peated Game. We now formulate the game as a non-zero sum
game where the player utilities are defined as follows:

• For the Legitimate User, L and the defender both get a re-
ward value that represents the accuracy of the DNN sys-
tem. Thus, for using a network n in the ensemble N with
classification accuracy (say) 93% for an input image both
the defender and L get a reward of 93 (see Tables 1 & 3).

• For the Adversary, the reward values for an attack u
against the network n is given by en,u, which corresponds
to the fooling rate. The defender’s reward in this case is
the accuracy n when classifying the input image perturbed
using u, which is (100− en,u) (see Tables 2 & 4).

Defender’s Strategy for Switching

A defender has to launch the MTDeep system first to be-
gin the game. This imparts a leader-follower paradigm to
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Adversarial User (A)
MTDeep UPV GG−F UPCaffeNet UPGoogLeNet UPV GG−16 UPV GG−19 UPResNet−152

VGG-F (6.3, 93.7) (28.2, 71.8) (51.6, 48.4) (57.9, 42.1) (57.9, 42.1) (52.6, 47.4)

CaffeNet (26.0, 74.0) (6.7, 93.3) (52.3, 47.7) (60.1, 39.9) (60.1, 39.9) (52.0, 48.0)

GoogLeNet (53.8, 46.2) (56.2, 43.8) (21.1, 78.9) (60.8, 39.2) (60.2, 39.8) (54.5, 45.5)

VGG-16 (36.6, 63.4) (44.2, 55.8) (43.5, 56.5) (21.7, 78.3) (26.9, 73.1) (36.6, 63.4)

VGG-19 (36.0, 64.0) (42.8, 57.2) (46.4, 53.6) (26.5, 73.5) (22.2, 77.8) (42.0, 58.0)

ResNet-152 (53.7, 46.3) (53.7, 46.3) (49.5, 50.5) (53.0, 47.0) (54.5, 45.5) (16.0, 84.0)

Table 4: Table showing the normal form game matrix for the defender and the Adversarial User (A) type. The reward values
for A is equal to the fooling rate and the reward for the defender is the accuracy of the system under attack.

the formulated Repeated Bayesian Game where the defender
leads and the attacker follows over a repeated time frame
to infer the leader’s strategy. Satisfying the multi-objective
criterion, mentioned above, is now equivalent to finding the
Stackelberg Equilibrium of this game.

We now find the Stackelberg equilibrium in our game by
using the optimization problem formulated in (Paruchuri et
al. 2008). Let us denote the strategy vector for the defender
as �x and their reward as RD

n,u when the defender uses the net-
work n and user selects the action u. Similarly, the strategy
vectors for the adversary and the legitimate user types are �qA
and �qL and their rewards are RA

n,u and RL
n,u respectively. We

seek to maximize the defender’s reward while allowing the
attacker to choose the most effective attack, which can be
described as follows,

max
x,q

∑

n∈N

(α ·
∑

u∈U

RD
n,u xnq

A
u + (1− α) ·RD

n,u xnq
L
u )

s.t.
∑

n∈N

xn = 1

∑

u∈U

qDu = 1

0 ≤ xn ≤ 1 ∀ n ∈ N

qDu ∈ {0, 1}
0 ≤ vD −

∑

n∈N

RD
n,uxn ≤ (1− nD

a )M

∀ u ∈ UD ∀ D ∈ {A,L}
where α, the probability of the adversary A attacking a MT-
Deep system and M is a large positive number. Equation
1 maximizes defender’s expected reward (i.e, classification
accuracy) over �x and the strategy vector of the user types
weighted by the relative importance assigned to the attacker,
denoted as α. The first four constraints ensure that the strat-
egy vectors sum up to 1 since individual xn and qu repre-
sent probability values for the defender to select network n
and user to select action u. The last constraint represents
the dual of the attacker’s optimization problem which tries
to maximize their expected reward vD over the defender’s
strategy. This constraint captures the fact that the attacker
knows �x and uses it to select its attack strategy �q. Notice
that the second constraint forces the users L and A to se-
lect a pure strategy. As the authors in (Paruchuri et al. 2008)

show, this constraint is not limiting for the attacker because
for the attacker A there always exists a pure strategy in sup-
port of any mixed strategy it can select that gives A the same
reward. For the attack the attacker selects, the right side of
the last constraint becomes 0 making vD =

∑
n∈N RD

n,u.
The defender’s strategy, in the worst case, will be a pure

strategy that directs it to use a single network for classifica-
tion. This is equivalent to most modern day classifiers.

Experimental Results

In this section, we first compare the effectiveness of MT-
Deep on non-adversarially trained ensemble of networks for
MNIST and ImageNet datasets against the constituent net-
works and a baseline MTD with DNNs that uses Uniform
Random Strategy we call MTD-URS. We then show that
piggybacking an existing defense mechanism (like adversar-
ial training) with MTDeep results in robustness gains against
adversarial attacks when using the BSG formulation.

MTDeep with Non-Adversarilly Trained Networks

MNIST For our experiments, we trained three networks
in the MNIST dataset which were based on (and hence
called) Convolution Neural Net (CNN), Multi Layer Percep-
tron (MLP) and Hierarchical Recurrent Neural Net (HRNN)
to produce relatively high classification accuracies. The size
of the training and testing sets were 50000 and 10000 images
respectively. We then developed Fast Gradient Based attacks
(with perturbation bounded by ε = 0.3) for each of these
networks and calculated its misclassification rate on the test
set for all the networks. These values and the classification
accuracies of the networks are were used to obtain the util-
ities of the players in our game (2 & Table 1 respectively).
The value of δ for this system is only 0.29. Interestingly, we
notice that even with different types of fundamental units
(like CNN, MLP and RNN) for the individual networks the
transferability of FGSM attacks is high.

In Figure 2a, we plot the objective values of using MT-
Deep Vs. any of the single networks as α varies from 0 to
1. When α = 0, the MTDeep always selects the CNN to
produce maximum classification accuracy of 99.1%. In con-
trast, MTD-URS has a classification accuracy of 98.2% be-
cause it uses the lesser accurate classifiers as well. When
α = 1, the single networks misclassify 98.0% (in the worst
case) and 88.4% (in the best case) of the input images.
MTDeep misclassifies only 70% of the time even when it
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Figure 2: Expected accuracy of the non-adversarially trained Deep Neural Network for the legitimate user (α = 0) and the
attacker (α = 1) when using MTDeep vs. any one of the original networks.

uses such highly vulnerable networks as a part of its en-
semble. The mixed strategy of the defender in this case is
�x = (0.274, 0.061, 0.665). MTD-URS misclassifies 76%
of the time because it picks more vulnerable configurations
with equal probability. With a misclassification rate of 70%,
MTDeep is not meant to be a stand-alone solution but as a
service that has the potential to improve the security of clas-
sification systems based on DNNs in the front end especially
when no effective defense mechanisms exist.

Imagenet For our experiments, we use six different net-
works that have excelled in ILSVRC 2012 (Russakovsky et
al. 2015) validation set (50, 000 images) in the defender’s
ensemble (see Table 3). Since generating Fast Gradient At-
tacks on these large networks for every single images is time
consuming, we use Universal Perturbations (UP) developed
for each network in (Moosavi-Dezfooli et al. 2016), which
have to be generated only once. These are the attack actions
of the adversary A for this game. These UPs were generated
by making sure that the l − ∞ norm of the perturbations
were less than a bound ξ = 10. The utilities for this game is
shown in Table 4 for A and Table 3 for L. As state earlier,
researchers have shown that adversarial training are ineffec-
tive against this attack (Moosavi-Dezfooli et al. 2016) and
no other proven defense mechanisms exist.

The differential immunity of this ensemble, although
greater than 0.29 for the MTDeep system for MNIST, is
only 0.34. In Figure 2b, we plot the objective function value
(given by Equation 1) for the MTDeep and ignore MTD-
URS (as it is will always performs worse than MTDeep)
along with the objective values of each of the constituent
networks when the probability of an adversary type α varies.
When α = 0, MTDeep uses the most accurate network that
maximizes the classification accuracy. Hence, the plots for
ResNet-152 and MTDeep start at the same place. As adver-
sarial test samples become more ubiquitous, the accuracy
against perturbed inputs drops for all the constituent net-
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Figure 3: Accuracy of the MTDeep as the number of net-
works in the defender’s configuration vary.

works of the ensemble. Thus, to stay protected, MTDeep
starts to switch between the networks.

When the system receives only adversarial samples, i.e.
α = 1, the accuracy of MTDeep is 42% compared to 20%
for most of the single DNN architectures. The strategy in this
case is �x = (0, 0.171, 0.241, 0, 0.401, 0.187) which does
not use the configurations that have high vulnerability. If
we used MTD-URS, it would switch to the vulnerable net-
works with equal probability, reducing the security of the
ensemble. Although the 20% accuracy bump for modified
images might not seem to be a drastic improvement, note
that the individual networks have (i) high misclassification
rates against Universal Perturbations designed for them (ii)
present defense mechanisms (like adversarial training) are
shown to be ineffective against Universal Perturbations and
(iii) the differential immunity of our system is only 0.34 and
there is no way of generating ensembles with high differen-
tial immunity and comparable classification accuracy.
We now explore the participation of individual networks in
the equilibria for MTDeep in Figure 3. The results clearly
show that while it is useful to have multiple networks provid-
ing differential immunity (as testified by the improvement of
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Adversarial User (A)
MTDeep FGSMC FGSMM FGSMH CWL2

CNN 94.2, 5.8 97.8, 2.2 97.6, 2.4 80.0, 20.0
MLP 96.0, 4.0 87.0, 13.0 63.2, 36.8 90.0, 10.0

HRNN 95.9, 4.1 87.9, 12.1 93.2, 6.8 60.0, 40.0

Table 5: Table showing utilities for the defender and the User
types when for classification of MNIST images with adver-
sarially trained networks.

accuracy in adversarial conditions), the leveling-off of the
objective values with more DNNs in the mix does underline
that there is much room for research in actively developing
DNNs that can provide greater differential immunity. An en-
semble of such networks equipped with MTD can provide
significant gains in both security and accuracy.

MTDeep with Adversarially Trained Networks

Adversarial training has emerged to be an effective defense
mechanism against a multitude of different attacks. For this
process, an attack algorithm is used to generate perturbed
images, which are used (with their correct labels) in the
training phase of the network. Unfortunately, the adversar-
ially trained nets are only immune to perturbed imaged gen-
erated by this algorithm and may still be vulnerable to other
(more expensive) adversarial manipulations like (Carlini and
Wagner 2017). Even though one might think of adversarially
training a network using images generated by all attack al-
gorithms invented till date, it is (i) an expensive process and
(ii) does not provide guarantees that a new algorithm will
not render the network vulnerable.

We now show how MTDeep can be used in conjunction
with adversarially trained neural network configurations to
reduce misclassification rates. We adversarially train (with
perturbations generated by the FGSM method) the three
networks described before– CNN, MLP and HRNN– on the
MNIST dataset. The adversary not only has the FGSM at-
tacks against which the adversarial training provides some
immunity, but also a new iterative attack devised using (Car-
lini and Wagner 2017) that finds robust attacks against exist-
ing defenses. The matrix for game between MTDeep and A
is shown in Table 5. We generate the misclassificaion rates
on the entire test data for the FGSM attacks and on 20 test
data points using 1000 iterations for the new attack devel-
oped in (Carlini and Wagner 2017) (CWL2).

In Figure 4, we plot the objective function values for the
MTDeep systems vs. its constituent networks as the value of
α varies from 0 to 1. As mentioned earlier in the contribu-
tions, in this case, MTD-URS is worse than having a classi-
fication system with a single network (CNN). When chances
of attack is high (i.e. α = 1), the misclassification rate of
MTDeep is about 24% whereas, that of CNN, the most ro-
bust among the constituent networks, is 20%.

In the worst case, MTDeep uses a single network. Thus,
it can never be insecure that than any of its constituent net-
work. Thus, MTDeep can be used to bootstrap existing de-
fense mechanisms of Neural Networks and provides higher
robustness to adversarially manipulated images.
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Figure 4: Objective function values on Adversarially Trained
Networks for MNIST as α goes from 0 to 1.

Conclusion and Future Work

In this paper, we introduced MTDeep, a framework inspired
by Moving Target Defense (MTD) in cyber security, as
‘security-as-a-service’ to help boost the security of exist-
ing classification systems based on Deep Neural Networks
(DNNs). We defined the concept of differential immunity for
an ensemble of networks, exploiting it to design switching
strategies for MTDeep. In essence, we construct a Repeated
Bayesian Game for capturing the interaction between MT-
Deep and its users, showing that the Stackelberg equilibrium
of our game provides the optimal switching strategy for MT-
Deep that tries to reduce the misclassification on adversar-
ially modified images while maintaining high classification
accuracy for the legitimate users of the system. We show
that this formulation is necessary when using MTDeep be-
cause naive switching strategies with an ensemble can lead
to more vulnerable systems than using single networks. We
empirically show the effectiveness of MTDeep against se-
lected attacks for the MNIST and Imagenet datasets. Lastly,
we demonstrate that using MTDeep with existing defense
mechanisms for DNNs provide higher security guarantees
those using the defense mechanisms by themselves.

In our experiments, the differential immunity of the en-
semble of networks turns out to be the limiting factor in in-
creasing the robustness of MTDeep against adversarial at-
tacks. Thus, this work not only demonstrates the relevance
of MTD in the context of transferability of attacks, but also
brings to the table the open research problem of developing
networks with high differential immunity. Given that MTD
boosts the security of DNN based systems, we are exploring
directions to incorporate the differential immunity measure
into a trainable loss function such that we can train ensem-
bles that have high differential immunity.
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