
Retrieving Game States with Moment Vectors

Zeping Zhan, Adam M. Smith
Design Reasoning Laboratory

Department of Computational Media
UC Santa Cruz

{zzha50,amsmith}@ucsc.edu

Abstract
Game scholars need to find moments in games that advance
their arguments, and artificial intelligence algorithms need
to recall states that are most promising for exploration. This
paper considers the problem of engineering a representation
for game states that is suitable for retrieval in the vector
space model. Retrieving moments from gameplay traces for
two popular Super Nintendo Entertainment System games,
we evaluate several different representations including one
derived from a deep embedding of screenshot pixels based
on a supervised memory prediction task. The results suggest
compact moment vectors may be a promising representation
for building future systems that intend to build higher level
knowledge about games.

Introduction
In videogames and other interactive media, the space of pos-
sible states of a system can be vast. In this paper, we seek to
engineer a compact and semantically rich representation of a
game’s state, preferably one derived from just observations
(e.g. screenshots rather than hidden memory state). Looking
to natural language processing (NLP) for inspiration, word
vectors are compact numerical representations of words that
implicitly capture semantic knowledge (Turian, Ratinov, and
Bengio 2010). By operating on word vectors rather than dis-
crete words, new NLP systems can reason over texts (se-
quences of words) with very large vocabularies without the
need to learn each word’s meaning from scratch. This pa-
per introduces the concept of moment vectors for abstract-
ing interactive system states. By embedding observations of
a game into moment vectors, we hope to enable future sys-
tems to quickly build higher level knowledge.

Such a representation for game moments could unlock a
new domain of content-based information retrieval. Given a
screenshot from a known game, we might ask a system to
find which moments in an indexed sequence of states (such
as from recordings of expert play) are most relevant. We
might even ask it to synthesize a new complete state which
is as faithful as possible to the given query. This capability
could empower game scholars, such as those targeted by the
Game and Interactive Software Scholarship Toolkit (Kalt-
man et al. 2017) to search for specific moments contained
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within culturally impactful games. It could also aid algo-
rithms for automatic exploration, such as Rapidly-Exploring
Random Trees (LaValle 1998), in tasks such as mapping
spaces of play (Osborn, Summerville, and Meteas 2017).

Beyond retrieval, moment vectors could be used as low-
level representations in systems designed for other tasks.
They might help answering know-what questions such as
“What is the player’s location in space or overall narrative
progress?” or know-how questions such as “Which action
should I take next to make progress towards the given goal?”

This paper offers a first step in engineering a suitable
moment vector representation. As a domain of focus, we
examine moments in Super Nintendo Entertainment Sys-
tem (SNES) games. The SNES platform was chosen to
balance societal relevance, platform complexity, variety of
game types, and availability of pre-existing expert gameplay
traces. Inspired by deep visual search models such as Pro-
ductNet (Bell and Bala 2015), we consider vectors resulting
from training on an auxiliary cross-modality prediction task.
Across multiple games and multiple notions of relevance, we
evaluate the retrieval ability for different vector representa-
tions using the mean Average Precision (mAP) metric.

Moment Retrieval Setting
We approach the retrieval problem using the vector space
model (Manning, Raghavan, and Schütze 2008, Chap. 6).
In this model, queries and documents (moments to be re-
trieved) are represented by vectors in a moderately high-
dimensional space (hundreds of dimensions). The relevance
of a document to a query is modeled by the cosine similar-
ity (dot product of normalized vectors) between their vector
representations.

Corpora
Our initial experiments focus on retrieving moments
from pre-recorded interaction traces. On websites such
as TASvideos,1 community members collect tool-assisted
speedruns (TAS) represented as game controller input se-
quences. When played back in a specially prepared game
platform emulator such as BizHawk,2 these traces often

1http://tasvideos.org/
2http://tasvideos.org/Bizhawk.html
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demonstrate spectacular feats of virtuosic play such as com-
pleting difficult games within just a few minutes. While
many speedruns intentionally skip past much of a game’s
content by exploiting precise timing and glitches, certain
traces aim to show off all of the game’s content.

For Super Metroid (a platformer game which involves
backtracking through previously visited parts of the world
after collecting special items), we use a specific3 “100%”
trace that expertly completes the game without mistakes and
restarts. For Super Mario World (a linear platformer without
mandatory backtracking), we recorded our own trace that
demonstrates three of the game’s nine worlds with less-than-
expert play (including multiple attempts at certain difficult
levels). Both traces are approximately one hour in length.

We associate moments in these games with individual dis-
play frames. SNES games display 60 frames per second. To
keep data sizes manageable for our initial experiments, we
consider only one moment per second (every 60th frame in
the sequence). For each moment, we store a lossless repre-
sentation of the game’s display (a 224× 256× 3 RGB color
image with one byte per color channel) as well as the entire
state of the game and game platform as modeled by the em-
ulator (approximately 3 megabytes of data capturing proces-
sor registers, main memory, video memory, audio memory,
and other subsystem state).

For popular SNES games, the game hacking (modding)
community has accumulated extensive notes on the precise
meaning of various locations in memory (such as for Super
Mario World4). As these notes are only available for a sub-
set of SNES games and not readily available for games on
other platforms, we will only make use of them indirectly:
in noting which regions of memory are often used to store
player-relevant game state information (rather than for tem-
porary buffers used in operations like decompression which
are not directly visible from the player experience).

Relevance
Retrieval problems require a certain notion of relevance to be
formalized before a system can be evaluated. In these initial
experiments, we consider a hypothetical video search task:
given a screenshot, which points in a pre-recorded sequence
of moments are similar?

In one (temporal) formulation of relevance, we assume
that moments that are near one another in time are to be
considered relevant. Given a query frame from time t in the
sequence, the boolean relevance of moment i in the same
sequence will be judged by a threshold k on the absolute
time difference: |t− i| ≤ k.

This is an imperfect formulation of the retrieval task for
our corpora as, either by mandatory backtracking or restarts
from mistakes in play, two moments with a large time differ-
ence may feel quite similar to one another. Nevertheless, it
requires representations to encode a sense of progress within
a given level.

We consider three different values of k so as to evalu-
ate the utility of the representations on different time scales.

3http://tasvideos.org/2436M.html
4http://www.smwcentral.net/?p=map&type=ram

Our k = 2 scenario demands that the retrieval system can
make very precise judgements. In one hour of play, just
4/3600 = 0.11% of moments will be considered relevant.
A retrieval system effective on this timescale could help an
artificial intelligence system that was trying to solve for in-
puts that play along with the appearance of a pre-recorded
video found on a video sharing website. Our one-minute or
k = 60 scenario (3.3% relevant moments in one hour) de-
mands that the retrieval system can generalize beyond the
precise look of a certain moment in play and capture longer
range structure such as progress through a sequence of lev-
els and worlds or through a narrative. A system effective on
this timescale could help scholars identify the context of iso-
lated screenshots even if no indexed corpus comes close to
the query. We also consider the approximate geometric mid-
point k = 10 to understand any time-dependent trends.

In a second formulation of binary relevance (one that ac-
counts for backtracking), we consider spatial thresholds. In
Super Mario World, we consider two moments to be relevant
to one another if they happen in the same level.5 In Super
Metroid, we check if they happen within the same room tile:
roughly one screenfull of player visible terrain.6

Evaluation
To evaluate retrieval quality, we consider the mean Average
Precision (mAP) metric (Manning, Raghavan, and Schütze
2008, Chap. 8) where the averaging happens over several
different queries. From each input sequence, we select query
moments spaced one minute apart and judge the system’s
ability to recall moments that are temporally or spatially
similar (excluding the query itself). For a given query and
ranked result list, the Average Precision metric records the
density (ranging from 0.0 to 1.0) of relevant results in the
top of the list, averaged over the increasing number of rel-
evant moments retrieved. This metric is maximized when a
retrieval system ranks all of the relevant moments at the top
of the list and all irrelevant moments below them. We ask
our system to rank all of the moments in the corpus (rather
than yielding short top-10 list as would be more typical in a
web search task).

Moment Vector Representations
In this section, we consider several different moment vector
representations, some of which are impractical but serve as
useful reference points. We would like our moment vectors
to be both compact and derived from only screenshot data
(as this is how they are likely to be used in the future), but
we acknowledge that, in some sense, the ground truth repre-
sentation of a moment is the full platform state snapshot.

Mem-3MiB The first representation we consider is the
raw state snapshot itself, a vector of byte values in a three
million dimensional space. This representation is both im-
practical (we usually do not have platform snapshots avail-
able to use as queries) and unwieldy (3MiB per moment

5Identified by “pointer to level’s sprite data” (https://www.
smwcentral.net/?p=map&type=ram)

6Identified by “Room’s Automap X[/Y] coordinate” (https://
drewseph.zophar.net/Kejardon/RAMMap.txt)
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makes for bloated archives). Having examined RAM map
listings for several SNES games, we hypothesize that this
representation overemphasizes low-level details that are in-
visible from the player perspective.

Mem-128KiB The next representation we consider is the
128KiB of memory efficiently accessible by the CPU (some-
times called WRAM7 and contrasted with PPU/VRAM of
similar size). This representation is more compact, but still
has many of the problems listed above.

Mem-4KiB Focusing on a region of RAM most often used
to store key game state across a wide variety of SNES games
(such as the position of characters on the screen, the score,
the currently selected weapon, etc.), we next consider just
the first 4KiB of WRAM. In the later representations derived
using machine learning techniques, we use this segment of
RAM as the target for supervised learning tasks.

Mem-PCA256 To compactly represent game state, we
would much prefer a smaller vector. To represent the poten-
tial fidelity of a 256-dimensional vector representation, we
apply Principal Component Analysis (PCA) to find a linear
reduction of the 4096-dimensional representation above into
this lower dimensional space.

Pix-168KiB So far, every representation has been based
on the invisible contents of memory. To support search by
screenshot, we next consider using the 224 × 256 × 3 =
168KiB of pixel data as a raw representation of the display.
Although this data could be provided by users of a search
tool, it is hardly a compact representation (larger than all of
WRAM). Even with this much data, a better representation
derived from pixels might additionally consider the values
of pixels over time as extracted from a short movie.

Pix-PCA256 Next, we consider mapping the raw pixel
data down to 256 dimensions using PCA as well. Although
a deep image autoencoder (Krizhevsky and Hinton 2011)
might do this task better, we retain the use of PCA here as a
baseline comparison method.

Just as we know that some bytes of memory have a more
direct impact on player experience than others, we expect
that some pixels (or pixel patterns) are more salient than
others. To derive a representation of screenshots that empha-
sizes those patterns that are most predictive of the play expe-
rience, we setup a supervised machine learning task where
the inputs come from screenshot pixels and the target out-
puts come from the 4KiB segment of memory mentioned
above. We train separate models for the separate games.

Pix2Mem-MLP256 As a baseline method for this pixels-
to-memory prediction task, we consider a simple Multi-
Layer Perceptron (MLP) with a single hidden layer consist-
ing of 256 hidden units. This simple neural network uses the
ReLU activation and is trained to optimize a Mean Squared
Error (MSE) loss on the byte value regression task.

7https://en.wikibooks.org/wiki/Super NES Programming/
SNES memory map

Pix2Mem-CNN256 As a more interesting model for the
pixels-to-memory prediction task, we consider a deep con-
volutional neural network including a bottleneck layer with
256 dimensions. This network (for which the precise layer
configuration is beyond the scope of this paper) is trained
to optimize the average categorical cross-entropy loss on the
task of predicting the precise value of each byte of mem-
ory (4096 simultaneous 256-way multi-class classification
tasks). To generate 256 dimensional moment vectors using
this model, we apply only the subset of layers that gener-
ate the low dimensional embedding (collectively known as
the encoder model). Although the larger predicted memory
state may someday be useful for synthesizing new complete
game states (from which play might be resumed) given just
low-dimensional latent vectors, we have a preference for the
compact bottleneck representation.

These representations clearly do not exhaust the space of
possibilities; they are designed to give insight into what it is
important for moment vectors to represent.

Random Finally, to give a sense of default difficulty for
the retrieval problem in the various relevance formulations,
we also include mAP results for a trivial retrieval system that
uses random scores to sort the results (ignoring the vector
representations).

Experiments
For the two moment corpora described above, we con-
structed several retrieval tasks. Our Super Mario World cor-
pus consisted of 3604 moments of which 90 evenly spaced
moments were selected to be used as queries. For Super
Metroid, we similarly selected 68 queries from the corpus
of 4102 moments. Mean subtraction was applied to the mo-
ment vectors of each corpus, and no further pre-processing
was performed. For each query, we defined temporal rel-
evance on three different timescales k ∈ {2, 10, 60} and
spatial relevance using game-specific memory inspection.
Using cosine distance between representation vectors and
query vectors to rank moments, we evaluated the effective-
ness of each representation strategy using the mean average
precision (mAP) metric described above.

Figure 1 captures the results of our experiments. Not rep-
resented in these results are the outcomes for informal ex-
periments with several alternative deep convolutional neural
network architectures. Although several of these alternatives
performed worse than the network reported here, we expect
there is ample room for improvement both on the pixels-
to-memory prediction task the embedding-for-retrieval re-
trieval task.

Discussion
First examining the results for the memory-based models
(Mem-3MiB, Mem-128KiB, and Mem-4KiB), our hunch
that the most significant data in memory is contained within
the first 4KiB of WRAM is largely confirmed. Across games
and relevance formulations (except for spatial relevance in
Super Metroid, Metroid-XY), including a wider view of
memory only negatively impacts retrieval performance.
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Figure 1: Mean average precision (mAP) scores for retrieval with different moment vector representations (higher is better).
Mem* representations are derived from platform memory state while Pix* representations depend only on screenshot pixels.

Numbered retrieval tasks use a game-independent temporal notion of relevance while Mario-Level and Metroid-XY use
game-specific spatial notions of relevance. Random retrieval performance indicates task difficulty (lower is harder).

Examining the performance of the PCA-reduced view of
this important memory window (Mem-PCA256), we see
that the dimensionality of the vector can be dramatically re-
duced (by 16x here) with only modest negative impacts on
retrieval performance. In informal experiments, a reduction
to just 128 dimensions performed almost as well.

Moving to the pixel-based models, we find large drop in
retrieval performance. This is not surprising, however, given
that we know that memory contains details not inferable
from (individual) screenshots. We conjecture that the raw
pixel vector representation (Pix-168KiB) over-represents
large patches of background art that do not change with
a granularity that is particularly useful for localizing mo-
ments. The dimensionality-reduced view of the pixel vector
(Pix-PCA256) seems to overcome this slightly by account-
ing for correlations between pixels.

Looking at the baseline machine learning approach
(Pix2Mem-MLP256), we see that extracting the meaning-
ful game state from an image requires more than a simple
linear transformation. By contrast, the deep model is able to
achieve retrieval performance closer to the memory-based
models despite working from only a single frame of pixels.

As suggested above, the notion of temporal relevance

used in these experiments is not ideal because it does not
consider backtracking or replaying through the same part of
a world to be relevant. The fact that this happens in the cor-
pora for the two games considered limits the mAP perfor-
mance even of systems that could perfectly identify the posi-
tion of the player’s avatar. Systems that perform perfectly on
this task, then, are those that are able to accurately encode
the time since the input sequence began recording. Given
that some elements of memory contain counters (used in im-
plementing state machines for animation), it is possible that
some of the apparent retrieval performance in the memory-
influenced systems (Mem and Pix2Mem) might be due to a
potential learning-to-time effect.

Examining results for the spatial notions of relevance, we
see qualitatively similar performance to that for temporal
relevance. If the various representations are learning to time,
they seem to be learning a usefully local sense of timing.

Results for the Random model suggest there is value in
all of the vector representations. In top-10 result lists for
a hypothetical screenshot-based moment search engine (as
estimated by mAP), the memory-based representations will
usually yield 6 relevant results, the deep image analysis rep-
resentation will usually yield 4, and the other representations
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will yield at least one. Meanwhile, for all but the Mario-
Level sense of relevance, a random sorting of the results will
usually yield zero relevant moments.

In practice, a mature retrieval system would use one or
more levels of re-ranking (Yang et al. 2016) to boost the
precision of short result lists. In such systems, a generous
list of results obtained by cosine similarity search would
be re-sorted based on additional criteria not present in the
screenshots themselves (such as metadata filters, interactive
relevance judgements, or historical click-through data).

Future Work
To better understand the retrieval quality of moment vec-
tors, a small collection of moments could be hand-annotated
with their human-perceived relevance to a query image. Ac-
knowledging that users may not have the ideal query images
on hand, such a dataset could also record the use of weights
on or analogies between multiple query images to indicate
relevance to a moment that is not directly represented in any
of the query images. To indirectly indicate the state of being
in a late-stage boss battle with full health for Super Metroid,
the user might subtract two early-game moments for which
health difference is the only meaningful change and add this
to a moment from the late-stage boss battle with low health.

Towards understanding the ability of moment vectors to
support extracting higher level knowledge, the same input
sequences used in our experiments (or other speedruns from
the TASvideos site) could be used as supervision in a policy
learning scenario. Does the moment vector representation
allow one to better generalize from limited data? Can train-
ing a representation on data from multiple games at a time
support knowledge transfer?

The moment vectors in this paper considered the state of
the game platform in the instant between display frames. A
notion of “moment” perceivable by human players might in-
clude what has happened recently (and even what is most
likely to happen next). Future experiments should consider
reasoning with moment vectors over time, such as with
a recurrent neural network, to extract information about a
broader notion of moment than the current frame. Alterna-
tively, a screenshot from one second later in the speedrun
might be considered as the training target in an image-to-
image prediction task that bypasses the need to identify
semantically-rich regions of platform memory.

Related Work
Engineering (via machine learning or otherwise) state ab-
stractions has a long history in artificial intelligence. Work
such as that by Cobo et al. (2011) demonstrates that human
expert behavior can guide the development of useful abstrac-
tions that improve the data efficiency of future learning. Ab-
stractions need not be constructed before use, as, Sturtevant
et al. (2005) demonstrate building abstractions on-line dur-
ing the execution of a heuristic search algorithm.

The strategy of engineering vector representations for re-
trieval by training a deep network on a proxy task (Lin et
al. 2015) has recently had major impacts on the field of
content-based image retrieval. When retrieval in particular is

the intended use of embedded vectors, the learning task can
be adjusted to specifically optimize the quality of the em-
bedding for the purposes of judging distances between rele-
vant and irrelevant pairs (Bell and Bala 2015). This is useful
when images are being used to retrieve a different type of
data. We would like to retrieve very different-looking images
that depict semantically-similar moments. Where Bell et al.
intend to retrieve household products (such as lamps and
couches) despite changes in camera orientation and light-
ing, we would like to retrieve moments from similar times
and locations in a game despite graphical effects such as full-
screen flashing or changing user-interface modes.

Ryan et al. (2016) considers the problem of retrieving
related games from an embedded vector space. Our work
makes two important points of contrast with this. First, we
consider content-based retrieval (based on what is to be
seen by playing the game) rather than metadata-based re-
trieval (based on what is written and recorded about the
game). Second, we consider indexing corpora of individual
moments within a given game while Ryan et al. consider
entire games as the objects to be represented by vectors.
These perspectives are complementary, and we believe they
should be combined in the future. For a system attempting to
learn a cross-game perceptual model (going from pixels to
compressed state vector for more than one game), having a
compact encoding of information around genre, theme, and
expected play styles might stabilize training. Likewise, by
matching a representation of the contents of a game with a
representation of the metadata for popular games, we might
be able to project information onto unpopular or as-yet un-
released games for which no external metadata is available.

Conclusions
In this paper, we introduced the problem of engineering mo-
ment vector representations. Moment vectors are (ideally)
compact vector representations of the most important as-
pects of the state of a game at a specific point during play
(at the granularity of a single frame). By examining differ-
ent treatments of game memory and visual display informa-
tion, we were able to define a representation that depends
only on displayed pixels while having retrieval performance
approaching that of similarly compact models based on ac-
cess to hidden memory state. We intend for moment vectors
to serve the needs of both human game scholars as well as
artificial intelligence algorithms that need to quickly recall
relevant game states based on visual clues alone.
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