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Abstract

The growth of life expectancy entails a rise in prevalence
of aging-related neurodegenerative disorders, such as Parkin-
son’s disease. In the ongoing quest to find sensitive behavioral
markers of this condition, computerized tools prove particu-
larly promising. Here, we propose a novel method utilizing
unsupervised morphological segmentation for accessing mor-
phological properties of a speaker’s language. According to
our experiments on German, our method can classify patients
vs. healthy controls with 81 percent accuracy, and estimate
the neurological state of PD patients with Pearson correla-
tion of 0.46 with respect to the unified Parkinson’s disease
rating scale. Our work is the first study to show that unsuper-
vised morphological segmentation can be used for automatic
detection of a neurological disorder.

1 Introduction
Automatic detection of aging related neurological diseases
has gained a lot of interest as the population ages. These
methods have a wide range of practical applications, such
as aiding the diagnosis and tracking the progression of neu-
rodegenerative diseases, which are essential for effective
treatment planning. Parkinson’s disease (PD) is a neurode-
generative disease characterized by slowness of movement,
rigidity, tremor, gait, and posture problems. Most Parkin-
son’s disease patients develop speech impairments affect-
ing phonation, articulation, prosody and intelligibility (Ho
et al. 1999). In the linguistic domain, PD involves deficits in
semantic, syntactic, and prosodic processing abilities dur-
ing language production and comprehension (Birba et al.
2017). For example, patients have a particularly salient im-
pairment in processing action verbs (i.e., verbs denoting
bodily movements) (Fernandino et al. 2013, Bocanegra et
al. 2017), have disproportionate deficits in verb generation
compared to noun generation (Péran et al. 2009, Silveri et
al. 2012), and experience difficulties in processing syntacti-
cally complex sentences (Grossman et al. 1992, Natsopou-
los et al. 1993). As PD patients experience a wide range of
syntactic difficulties, and syntactic functions are frequently
performed in the morphological domain in morphologically
rich languages, PD presumably affects the morphology of a
patient’s language.
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Since motor impairment directly affects speech produc-
tion capabilities, most studies on automatic classification
of PD through language analysis use acoustic features only
(Orozco-Arroyave et al. 2015, Bayestehtashk et al. 2015).
There are several studies which have analyzed spontaneous
texts in PD using non-automated approaches (Illes 1989,
Benke et al. 2000, McNamara and Durso 2003, Vanhoutte et
al. 2012). The only study assessing spontaneous discourse in
PD via automated tools is Garcı́a et al. (2016). They explore
differences in part-of-speech tag frequencies, word repeti-
tions, performed semantic analysis, and obtained 75 percent
classification accuracy using POS tags.

We propose a novel method utilizing unsupervised mor-
phological segmentation for accessing morphological prop-
erties of a speaker’s language, validated with a classifica-
tion and regression scheme. According to our experiments
on interviews with PD patients and healthy controls in Ger-
man, our method can classify patients vs. healthy controls
with 81 percent accuracy, and estimate the neurological state
of PD patients with Pearson correlation of 0.46 with re-
spect to the unified Parkinson’s disease rating scale (UP-
DRS). UPDRS is the most commonly used scale for assess-
ing the severity of the disease in the clinical study of PD
(Ramaker et al. 2002). Our work is the first study to show
that unsupervised morphological segmentation can be used
for automatic-detection of a neurological disorder. The main
advantage of using unsupervised morphological segmenta-
tion over other automated language analysis methods is that
it can be applied to languages for which automated tools are
not available to obtain linguistic analyses, as the only re-
source required to train an unsupervised morphological seg-
mentation algorithm is large amounts of text. Therefore, the
method we present in this paper can be applied to any lan-
guage with a writing system.

Our work differs from most psycholinguistics and neu-
roscience studies on linguistic aspects of neurological dis-
orders in multiple ways: First and foremost, our method is
not intended for theoretical understanding of human lan-
guage production and processing capabilities, but for practi-
cal purposes. Second, we performed automated analysis of
the subjects’ language, as opposed to using human annotated
data. Third, we present results that are generalizable to un-
seen data. Finally, the NLP technique we use, unsupervised
morphological segmentation, by design, does not necessar-
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ily generate analyses that are in line with the linguistic anal-
yses of morphemes. Instead, it is an empirical data-driven
method that estimates probability distributions of substring
patterns, and uses them to find the optimal segmentation of
the data it is trained on. Unsupervised morphological seg-
mentation is generally used as a preprocessing step for other
NLP tasks, where its usefulness is evaluated in terms of an
increase in the performance of the overall system. Similarly,
we used it merely as a tool for feature extraction, thus the
linguistic irrelevance of the method is not a topic of concern
for our purposes, unlike it is in theoretical fields.

Despite the aforementioned differences between our work
and theoretical studies focused on the same phenomenon,
the features that proved to be useful in our experiments are
in line with the results of studies on speech disfluencies of
PD patients. Therefore, we believe our results can provide
insights for psycholinguistics and neuroscience, at least as a
methodological framework to quantify speech patterns asso-
ciated with PD.

The paper is organized as follows: We first present the
unsupervised morphological segmentation tool we used in
Section 2. We present our feature extraction method in Sec-
tion 3, the data in Section 4, our feature-selection method in
Section 5, and the performance of our method in Section 6.
Finally, we provide a discussion on the features that proved
to be useful in our experiments in Section 7.

2 Morphological Segmentation
Morphology is a discipline of linguistics which studies
the combinatorial rules for combining morphemes, such as
stems, prefixes and suffixes, into words. Morphemes are de-
fined in linguistic theory as the smallest meaning-bearing
units as well as the smallest elements of syntax (Matthews
1991).

We used Morfessor (Creutz and Lagus 2005), an un-
supervised morpheme segmentation and morphology in-
duction tool. Morphological segmentation breaks down
words into substrings as ‘morpheme-like’ units. For exam-
ple, the word ‘postprocessing’ can be segmented as ‘post-
PREFIX’, ‘process-STEM’, and ‘ing-SUFFIX’. The quote
on ‘morpheme-like’ is due to the fact that morphological
segmentation is performed on orthographic representations.
The orthography of German is fairly transparent. Therefore,
it is possible to use orthographic strings as approximations
to phonemes for practical NLP applications. The most com-
mon form of representation of language in NLP is ortho-
graphic. As a result, having a workable approximation to
actual phonemes and morphemes through orthography is of
major importance for practical NLP applications.

Morfessor assumes three categories of morphemes: pre-
fix, suffix, and stem. Since Morfessor uses a probabilistic
model to discover morphemes from unannotated text cor-
pora, the category of a morpheme is inferred solely based
on how frequently it occurs at the beginning/end of a word
in the corpus. In this regard, we suggest the reader of this
paper to consider ‘prefixes’ as substrings that frequently oc-
cur at the beginning words, and ‘suffixes’ as substrings that
frequently occur at the end of words, as opposed to the lin-
guistic conception of these terms.

Morfessor’s algorithm makes use of the following prop-
erties of morphemes to learn morpheme segmentations: the
frequencies of morphemes, the lengths of morphemes in
terms of number of characters, the categories of morphemes,
and the predictability of a morpheme given the previous
morpheme. Our method uses the same properties of mor-
phemes for feature extraction. Consequently, we use the dis-
tributions of morphological patterns in the corpus Morfessor
is trained on as a reference point from where we can assess
the morphological properties of a speaker’s words.

3 Feature Extraction
We base our feature extraction method on the very popu-
lar notion of word-frequency in psycholinguistics, the study
of which dates back as far as 1950s (Howes 1957, Rosen-
zweig 1956, Pollack, Rubenstein, and Decker 1959). Since
then, word-frequencies have been used as a variable sen-
sitive to and predictive of performance in fluency, compe-
tence, and difficulty of retrieval. As cognitive resources are
diminished with aging, and more so in aging related neu-
rodegenerative diseases, word-frequency affect has been ob-
served to manifest itself in various aspects of language pro-
duction (Tainturier, Tremblay, and Lecours 1989, Hodgson
and Ellis 1998, Balota et al. 2002, Rayner et al. 2006).

As a generalization of words frequencies, our feature ex-
traction method uses frequencies of morphological patterns
as a proxy for Parkinsonian speech patterns. For this pur-
pose, we estimated probabilities of morphological patterns
from a corpus as follows: First, we trained Morfessor to
learn morpheme segmentations from a corpus. Then, we
used the learned morpheme segmentations to segment the
words in the corpus and the interviews. Next, we estimated
probability distributions of morphological patterns from the
segmented corpus. Finally, we used the probability distribu-
tions estimated from the corpus to extract features from the
interviews. Since we segmented the words in the corpus by
the segmentation model Morfessor learned from it, the dis-
tributions we used for feature extraction are outcomes of an
optimization over patterns of substrings in the corpus.

3.1 Morphological Features
Morpheme Categories We estimate the probability of
a morpheme m given its category p(m|c(m)), where c(m)

stands for the category function: The category function c(m)

returns one of the categories in C = {prefix, stem, suffix}.
Similar to word-frequency, p(m|c(m)) means frequency of
a morpheme in a corpus. However, unlike word-frequency,
it is normalized for each morpheme category separately. For
that matter, most of the morphological patterns explained in
this section are conditioned on the morpheme categories, in
that, we do not combine the frequencies of morphological
patterns across categories in C. We also estimate the proba-
bility of a category given the morpheme p(c(m)|m).

We estimate the probability of a morpheme given the
previous morpheme p(m, c(m) | m−1, c(m−1)), where m−1

stands for the morpheme that comes before morpheme m.
This forward probability is again conditioned on the cate-
gories of m and m−1, i.e., it is estimated for each category
pair separately.
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Morpheme given category c

{ p(m|c(m)) : m ∈ M ∧ c(m) = c} (1)
Category c given morpheme

{ p(c(m)|m) : m ∈ M ∧ c(m) = c} (2)
Morpheme given category c & length

{ p(m|c(m), l(m)) : m ∈ M∧ c(m) = c} (3)
Poisson on length per category c

{ppois(λc, l(m)) : m ∈ M∧ c(m) = c} (4)
Forward probability for category pair c0 and c1

{p(m, c(m) | m−1, c(m−1)) :

m ∈ M∧ c(m) = c1 ∧ c(m−1) = c0} (5)

Table 1: Morphological patterns involving probability distri-
butions. M stands for morphemes in a sample. c(m) stands
for the category function. l(m) stands for the length function.

Morpheme Lengths We estimate the probability of ob-
serving a morpheme of a certain length p(l(m)), where l(m)

stands for the length function. We model p(l(m)) ∼ Pois(λ) as
a Poisson distribution, where λ is estimated as the mean mor-
pheme length in a corpus. As we estimate λ for each mor-
pheme category separately, we use a subscript as λc when it
is necessary to distinguish between different categories.

We set an upper bound on the length function to make it
robust to noise. The distribution of lengths of morphemes
may have a long tail towards long morphemes, due to noise
in the corpus. As a result, one unlikely long morpheme in a
subject’s interview, again due to noise, undesirably creates
a feature that causes overfitting. To address this issue, we
redefine the length function as follows:

l(m) = min(length(m), U)

where U is the upper bound, min means minimum, and
length(m) returns the number of characters in a morpheme.
We calculate the upper bound U as follows:

U = min
x

Fpois(λ, x) > 0.9

where Fpois is the cumulative distribution function for the
Poisson distribution, and λ is the mean stem length in the
corpus.

Finally, we estimate the probability of a morpheme m,
given its category and its length: p(m|c(m), l(m)). We ob-
served that factoring out morpheme frequencies not only in
terms of their categories, but also in terms of their lengths
provides better learning performance.

Table 1 summarizes the morphological patterns presented
so far, where we use set notation to express our collection
of probabilities of morphological patterns in a given sample
into sets. The sets are in turn used to calculate the follow-
ing statistics: maximum, minimum, and standard deviation.
In Table 1, m stands for a morpheme, and M stands for all
morphemes in an interview. All sets in Table 1 are multisets,
i.e., they can have repetition of identical elements.

Patterns 1, 3, and 4 in Table 1 involve only one category
c. Therefore, we compute a set using all morphemes m in M
for each morpheme category. Pattern 5, on the other hand,

involves two categories c0 and c1, because it is defined over
pairs of morphemes that are adjacent to each other. There-
fore, they are computed for all category pairs that were ob-
served adjacent to each other in the data. We consider only
morphemes that are adjacent to each other within a word,
not across words.

Finally, we use the rate of pairs of morpheme categories
that occur adjacent to each other in an interview as a feature,
as follows:

|{(m,m−1) : c(m) = c1 ∧ c(m−1) = c0}|
|M| (6)

such that m ∈ M and m−1 ∈ M. |M| is the total number of
morphemes in an interview, and (c0, c1) is the category pair
for which the rate feature is computed. We use both the base
and the logarithm of this value as a feature.

3.2 Word-based Features
We compare the performance of our model with a
word-based baseline-model. We use the same feature-
extraction method that we use for morphemes with-
out utilizing morphological information as follows: In-
stead of morphological-pattern frequencies, we use word-
frequencies, instead of morpheme-lengths, we use probabil-
ities of word-lengths. Again, we compute sets of probability
scores from each interview {p(w)|w ∈ W}, where W stands
for the words in an interview, and p(w) stands for word-
frequency. Similarly, we use Poisson distribution to model
lengths of words to compute sets of probability scores for
each interview: {ppois(λ, l(w))|w ∈ W}.

We estimate the λ parameter for the Poisson distribution,
and probabilities of words from the same corpus we used for
the morphological patterns. As we obtain a score for each
word in an interview, we again use the following statistics
over the set of scores as features: maximum, minimum, stan-
dard deviation.

We use probability of word-length ppois(λ, l(w)), and word-
frequency p(w) only in the baseline model, but not in the
morpheme-based model in our experiments.

Estimating probability of word-length through mor-
phemes If a word has a large number of characters, it may
be because it has a large number for short morphemes. Al-
ternatively, it may have a small number of long morphemes.
A word-based model cannot make the distinction between
these two cases. We model this discrepancy as follows: For
each morpheme in a word, we compute their morpheme-
length probabilities p(l(m)), as described in the previous sec-
tion, and then multiply them to obtain a score for the en-
tire word. We thus estimate the probability of the length
of a word through the lengths of its morphemes. In our
morpheme-based model, we use the estimated-word-length-
probabilities.

As we obtain a score for each word in an interview, we
again use the following statistics over these scores as fea-
tures: maximum, minimum, and standard deviation.

4 Data
The interview data is a small spoken language corpus in
German. 176 German native speakers, 88 patients with PD
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(47 men, 41 women), and 88 healthy controls (44 men, 44
women) were recorded at the Knappschaftskrankenhaus of
Bochum in Germany (Skodda, Visser, and Schlegel 2011).
The subjects were demographically comparable in terms of
gender, age, and education. The age of male patients ranged
between 44 and 82 years (mean 66.7 ± 8.4), while the age of
the female patients ranged from 42 to 84 years (mean 66.2 ±
9.7). The mean value of UPDRS was 22.7 ± 10.9. Regarding
the control group, the age of men ranged from 26 to 83 years
(mean 63.8 ± 12.7), and the age of the women was between
54 and 79 years (mean 62.6 ± 15.2). The average time post
PD diagnosis was 7.1 ± 5.8 years.

The participants were asked to briefly describe a typi-
cal day in their lives. The resulting monologues were hand
transcribed. There was only one interview per subject. Pa-
tient interviews consist of a total of 4552 words, and 6172
morphemes, whereas healthy control interviews consist of
4552 words and 8267 morphemes. Since demarcation of
sentences is not straightforward in spoken language, we do
not provide any statistics over the number of sentences in the
interviews.

For estimating probability distributions, we used the Open
Subtitles corpus (Tiedemann 2009). Subtitles are presum-
ably similar to the interviews, in that subtitles include a large
amount of spoken language data. German Subtitles corpus
has 187 million words and 210 million morphemes. 89 per-
cent of the morphemes are stems, eight percent are prefixes,
and the rest are suffixes. The average number of characters
in a stem is 3.39, which is the λ parameter for the Poisson
distribution that we used to calculate the upper bound on the
length function. In the corpus, the average number of mor-
phemes in a word is 1.13.

5 Feature-selection
Since we automatically generated a large number of fea-
tures, eliminating features of low quality is essential to the
performance of our method. We resorted to an experimental
method for eliminating low quality features within a leave-
one-out cross-validation setting (LOOCV). We split the data
to folds of train-test sets. Within each fold, we performed
feature selection as explained in this section, and predicted
the label for the test sample using the selected features.

As initial filtering, we used univariate feature selection
methods. We obtained a p-value for each feature by comput-
ing a t-test for classification, and computing Pearson r for
regression. We eliminated features with p-value greater than
0.01. We then performed an ANOVA-F test, and modeled the
decreasing scores as a logarithmic decay curve for classifi-
cation, and modeled the decreasing p-values as a logarith-
mic decay curve for regression. We found a threshold on the
curve using a non-parametric method as follows: for each
feature index i on the x axis, we computed percent-change
in the curve, and we computed whether the percent-change
at position i is greater the percent-change in position i − 1.
We used the first such position as a threshold to eliminate
features with low scores.

We followed univariate selection methods with stability-
selection (Meinshausen and Bühlmann 2010). We used the
scikit-learn implementation of Randomized Logistic

Acc Prec Rec Med Classifier
Morph 0.81 0.91 0.69 2 Linear SVM
Baseline 0.6 0.58 0.7 1 RBF SVM

Pearson r Median Regressor
Morph 0.46 2 Lasso
Baseline 0.23 1 Lasso

Table 2: The ‘morph’ rows show the results obtained by us-
ing the morphological features. Baseline rows show results
obtained by using only the word-based features. ‘Acc’ stands
for accuracy, ‘prec’ for precision, ‘rec’ for recall, and ‘med’
for the median number of features across folds. The initial-
ization code along with the grid search parameters of the
estimators in the last column can be found in the Appendix.

Regression for classification. Stability selection returns a
score for each feature, which we again modeled as a loga-
rithmic decay curve, and eliminated features with low scores
as explained above.

Next, we used recursive feature elimination (RFE) using
RFECV in the scikit-learn package. Given an estima-
tor, RFE selects features by recursively considering smaller
and smaller sets of features. First, an estimator is trained on
the initial set of features and weights are assigned to each of
them. Then, features whose absolute weights are the small-
est get pruned. This procedure is recursively repeated on the
pruned set until the features are exhausted. RFECV performs
RFE in a cross-validation loop to find an optimal set of fea-
tures. As RFECV requires an estimator to obtain weights for
the features, we used Linear SVM for classification, and Lin-
ear Regression for regression in RFECV.

As RFECV returned an optimal set of features, we rerun
RFECV on the optimal set returned by the previous run, un-
til it no longer returned a smaller set. In other words, we
repeated RFECV until it converged.

6 Results
Table 2 shows the accuracy, the precision and the recall rates
for the classification experiments. Pearson r correlation be-
tween the predicted values and the UPDRS scores are shown
for the regression experiments. Table 2 also shows the me-
dian number of features across folds used by the estimators.
Finally, the best performing estimator is given. All results
are averages across folds in a LOOCV setting.

Our method performed significantly better than the word-
based baseline-model for both regression and classifica-
tion. For classification, the word-based baseline-model pro-
vided ten percent improvement over majority class predictor,
which is 0.5, the chance level, as the number of patients and
controls were balanced.

Table 3 shows the features that proved to be most use-
ful for classification and regression, sorted in terms of
the average absolute weight assigned to them across folds,
which are given in the last column. The second column
gives the number of the pattern in Table 1. We did not in-
clude the word-based baseline-model in Table 3, because
all features involving word-frequencies were eliminated dur-
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Regression Reference Weights
Probability of a prefix standard deviation (1) -2.06
Probability of length of a prefix maximum (4) -1.76

Classification
Rate of prefix-prefix pairs logarithm (6) 0.51
Probability of length of a prefix maximum (4) -0.33
Probability of a prefix maximum (1) -0.25
Probability of a stem given a prefix in the previous position standard deviation (5) 0.20

Table 3: Features that were selected in at least 20 percent of the folds, and for which the average absolute weight across folds
(as shown in the last column) was also among the highest.

ing feature-selection in both the classification and the re-
gression experiments. The only feature the baseline-model
used was the minimum word-length probability. Accord-
ingly, the comparable feature in the morpheme-based model,
the minimum estimated-word-length-probability, proved to
be a useful feature for both classification and regres-
sion. Clearly, estimated-word-length-probabilities and prob-
abilities of word-lengths are correlated. However, we ob-
served that the features involving the estimated-word-
length-probabilities are more significant than the features in-
volving probabilities of word-lengths both in terms of uni-
variate tests and learning performance.

7 Discussion
Features involving prefixes were disproportionately more
useful than features involving stems, and no features involv-
ing suffixes proved to be useful in our experiments. Note that
a ‘prefix’ in the context of unsupervised segmentation could
either be a ‘prefix’ in the linguistic sense, or be a ‘stem’ that
has never occurred as a free morpheme in the data Morfes-
sor was trained on. In this regard, features involving prefixes
in Table 3 can be interpreted more generally as features in-
volving morphemes that occur at the beginning of words.
This finding is in line with the results of studies on speech
disfluencies in PD patients.

Stuttering-like speech disfluencies are not uncommon in
Parkinson patients (Anderson et al. 1999), which are often
attributed to speech motor initiation problems, as acoustic
analysis of speech of PD patients indicate difficulty while
starting of vocal articulation (Goberman, Blomgren, and
Metzger 2010). In addition, the patients in our study were
recorded when they were on L-DOPA medication, and it
has been shown that PD patients on medication that increase
dopamine levels, such as L-DOPA, may demonstrate an in-
crease of speech disfluencies, and in particular stuttering
(Wu et al. 1997).

Observation of features related to stems and prefixes in
Table 3, but the lack of features related to suffixes in Ta-
ble 3 can be explained by cognitive-load due to composition-
ality characteristics of morpheme categories. Prefixes are
necessarily followed by other morphemes, whereas stems
need not be followed by other morphemes. Suffixes, on the
other hand, are very unlikely to be followed by other mor-
phemes. As a result, morphological information attached to
prefixes are larger than stems, which are in turn larger than
suffixes. We observed that the greater the morphological re-

quirements leading to word completion upon articulation of
a given morpheme category (prefix > stem > suffix), the
greater the categories robustness to discriminate between pa-
tients and controls. This ranking of morpheme categories is
in line with the observations in Table 3.

8 Conclusion
We used unsupervised morpheme segmentation for feature
extraction to quantify Parkinsonian speech patterns. Our
method used corpora to learn a segmentation model, which
in turn was used to derive a measure to assess the mor-
phological properties of a speaker’s language. We validated
our method by classifying PD vs healthy controls, and pre-
dicting UPDRS scores. Our method can capture the alter-
ations PD patients experience during speech production, as
we obtained significant performance in classification accu-
racy, and prediction of UPDRS.

German is a fusional language, i.e., boundaries between
morphemes are hard to determine. As a result, the dis-
crepancy between the morpheme-like orthographic strings
learned by unsupervised morphological segmentation and
the actual morphemes is significant. Despite this discrep-
ancy, our method was robust enough to perform well, even
on fusional languages.

Our method has wide practical applicability in the med-
ical domain, including speech assessment of PD, and other
neurodegenerative diseases such as fronto-temporal demen-
tia, Alzheimer’s and Huntington’s Disease. In addition to the
practical value of our method, we believe that our results can
also provide theoretical insights for psycholinguistics and
neuroscience.

Appendix
Initialization parameters of the estimators from sklearn
and lightning packages:

Linear SVM: LinearSVC(penalty="l2",
class_weight="balanced") GridCV: {"C":
[0.1, 0.5, 1, 2], loss:["hinge", "
squared_hinge"]}

RBF SVM: SVC("kernel": ["rbf"], probability=
True) GridCV:{"gamma": numpy.logspace
(-2, 0, 6).tolist() + numpy.logspace
(0,1,5)[1:].tolist(), "C": numpy.
logspace(-2, 2, 5).tolist()}

Lasso: CDRegressor(max_iter=200, tol=1e-3,
loss=’squared’, penalty=’l1’, debiasing=

130



True) GridCV:{"alpha": np.logspace(-2,
2, 5)}
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