
Evaluation of Type Inference with Textual Cues

Amirreza Shirani,† A. Pastor Lopez-Monroy,†

Fabio Gonzalez,‡ Thamar Solorio,† Mohammad Amin Alipour†
†Department of Computer Science, University of Houston, TX

‡Department of Systems and Computer Engineering, National University of Colombia, Bogota, Columbia

Abstract

Type information plays an important role in the success of in-
formation retrieval and recommendation systems in software
engineering. Thus, the absence of types in dynamically-typed
languages poses a challenge to adapt these systems to support
dynamic languages.
In this paper, we explore the viability of type inference using
textual cues. That is, we formulate the type inference prob-
lem as a classification problem which uses the textual features
in the source code to predict the type of variables. In this
approach, a classifier learns a model to distinguish between
types of variables in a program. The model is subsequently
used to (approximately) infer the types of other variables.
We evaluate the feasibility of this approach on four Java
projects wherein type information is already available in the
source code and can be used to train and test a classifier. Our
experiments show this approach can predict the type of new
variables with relatively high accuracy (80% F -measure).
These results suggest that textual cues can be complementary
tools in inferring types for dynamic languages.

Introduction

Several recommendation and information retrieval systems
have been designed to help programmers in various software
development tasks; for example, code completion (Bruch,
Monperrus, and Mezini 2009), retrieval of related Stack
Overflow posts (Ponzanelli et al. 2014), and recommenda-
tion of bug fixes (Chen and Kim 2015). Type information
plays an important role in improving the performance of
these systems.

Types define categories of entities with similar proper-
ties (Mitchell 2003), which make them highly discriminant
features in any information retrieval tasks. Suppose the sce-
nario in which a novice programmer seeks to learn about
finding an element in a list of type ArrayList in Java.
Let us consider two queries: “Java list find an element”, and
“Java arraylist find an element” for this information retrieval
task. Figure 1 illustrates the search results of execution of
queries on the Stack Overflow search engine.

In the example given in Figure 1, type ArrayList in
the second query is specifying the data type where the sort-
ing needs to be done. In contrast, the first query has only

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the general term list. Therefore, the results returned by
Stack Overflow reflect the specificity of the query and this
is clearly reflected in the number of results returned by both
queries, the more general one has around five times more
matches. It is likely that a useful answer is still somewhere
in the list of ∼ 880 results returned, but the user will have
to spend more time searching in that list than in the more
specific query. Glancing at the results, it is obvious that the
results of the second query are more relevant to the program-
mer’s intent than the first query. It is due to the discriminant
type information ArrayList that has narrowed down the
search results significantly.

Lack of type information can significantly degrade the
performance of information retrieval systems. It is partic-
ularly problematic for the dynamic programming languages
that the variables are not annotated by type information.

In this paper, we explore the viability of reducing the type
inference problem to a classification problem. It is based
on two insights: (1) types can be viewed as labels for vari-
ables with similar properties, such as valid operations on the
variables of a particular type, (2) programmers usually tend
to embed some hints about the type of variables in the vari-
able names (Martin 2009). Thus, using the textual features
in the source code, a classification technique can be able to
distinguish between variable with different properties.

In this paper, we evaluate the viability of type inference
with classification based on textual cues. Textual cues in-
clude the identifier name, meaning, and association with
other tokens in the source code. More specifically, we train
and evaluate multiple models with different feature sets us-
ing two classification techniques to predict the types of vari-
ables in four Java projects from two open-source organiza-
tions. We evaluate the intra-project accuracy classifiers for
various feature sets.

We choose Java because it relieves us from the burden of
type annotation for training and testing of classifiers. How-
ever, it has a limitation that a variable can have only one type
in a scope of the program, which is not the case in dynamic
languages such as JavaScript.

This work is a part of our ongoing effort to build an in-
formation retrieval system for Python. We hope that these
experiments help us in devising techniques for a reliable ap-
proximation of types in dynamically-typed languages.

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

783



Figure 1: Search results for “Java list find element”, and
“Java arraylist find element”, on the Stack Overflow search
engine. The second query produces more relevant results.

Methodology

This section presents the classification model for type in-
ference as well as the experimental setup for its evaluation.
The classification model receives features that characterize a
variable and produces a prediction of its corresponding type.
In our experimental evaluation, we use Java source files from
large open-source projects. Since Java is a statically-typed
language, it is straightforward to determine the type of a
variable by parsing the source code. The goal of the experi-
mental evaluation is to determine whether a machine learn-
ing model is able to infer the type from a limited set of tex-
tual cues.

The representation of instances is the first step in the strat-
egy, which involves the extraction of relevant textual fea-
tures. The second step is the classification step, which is the
part to infer the types. The following two sections present

the aforementioned steps.

Feature Extraction and representation

Given a variable name in source code, we extract the follow-
ing textual information from the text:

1. Normalized variable names:
After extracting pairs of variable-type by using Java
parser library, to be able to extract textual features we
need to follow a couple of preprocessing steps. First, we
transform all names to lower-case. In most cases, vari-
ables are in the compound form. (combination of words
e.g. ”myString” or ”my string”) By considering differ-
ent cases, we split them up into atomic words (to ”my
string”).

2. Associated method calls: We add all instance meth-
ods that co-occur (by dot operator) with the variable
in the source code. For example, in one sample
the variable text typed as String, can have the
following four different method calls in the body of
function: text.trim(), text.toLowerCase(),
text.replace(x,y), and text.indexOf(y).

Derived Features

The textual information extracted for each variable is pro-
cessed to derive additional relevant features. For this, we
consider traditional textual features and also automatically
learned contextual features.

• We use the following traditional features: n-gram: n-gram
is a contiguous sequence of n items from a given sequence
of text. The items can be words or characters. For word
sequences, an n-gram of size 1 is referred to as a ”uni-
gram”; size 2 is a ”bigram”; size 3 is a ”trigram” and so
on. For character sequences, a char n-gram of size 1 is
referred to as a ”char unigram”; size 2 is a ”char bigram”;
size 3 is a ”char trigram” and so on. We also used binary
n-gram which instead of the frequency of word sequences
it considers binary representation. We use different sets
of traditional features on normalized variable names in-
cluding unigram (U), bigram (B), trigram (T), binary uni-
gram (bi-U), binary-bigram (bi-B), binary-trigram (bi-T),
char trigram (C3), char four-gram (C4), char five-gram
(C5). We also included associated method calls (bi-MC)
for each variable as features.
Figure 2 illustrates a couple of derived traditional features
for the normalized identifier helperClassName.

• We also used word2vec, W2V for short, of the words
to capture the approximate semantic relation between
terms (Mikolov et al. 2013). A W2V model embeds a
word into a vector that captures the semantic value of the
word in terms of the distribution of words that co-occur
with it in a large corpus. For example, a vector suggested
for counter can be very close to numberOf vector be-
cause they are associated with similar concepts. In this
paper, we use two W2V models, one trained on Google
News (Mikolov et al. 2013) and the other on Stack Over-
flow (Fu and Menzies 2017). Stack Overflow W2V is

784



uni-gram: helper, class, name

bi-gram: helper class, class name

trigram: helper class name

char-trigrams: hel, elp, lpe, per, er[space], ...

Figure 2: Derived features for helperClassName

Project Organization Version #Pairs #Types
CLI Apache 1.4 323 51
IO Apache 2.5 1156 18
Ant Apache 1.10 12260 334
JDT Eclipse 9.3.1 52461 2958

Table 1: Projects Characteristics.

a domain-specific word embedding that has been trained
from Stack Overflow Java text.

Classification Techniques

We use two classification techniques: Support Vector Ma-
chine, and Logistic Regression. These classification tech-
niques are common approaches in such classification tasks.
We used popular classification API for SKLearn with de-
fault configuration for this experiment.

Data

In this section, we describe data that used in our experi-
ments. Table 1 illustrates the projects that we used in our
experiments. In this table, #Pairs denotes the total num-
ber of pairs in training and testing, #Types is the number
of types used in the projects. We chose four large, mature
open-source Java projects: CLI, IO, Ant, JDT from two
major open-source organizations: Apache foundation, and
Eclipse foundation. CLI is a command line library that pro-
vides interface to integrate the command-line arguments, IO
is a Java library to assist IO functionality such as reading and
writing files. Ant is a Java library and command tool for
building programs mainly in Java programming language.
JDT is the Java development tool for the Eclipse integrated
development environment.

Results and Evaluation

In this section, we present and discuss the results of the ex-
periments. We evaluate the performance of different feature
sets using two classifiers. We train the classifiers on 60% of
data and we test them on the remaining 40%.

Table 2 describes the feature sets that we evaluated in this
paper. We tried feature sets that empirically found outper-
form other sets.

Figure 3 compares the results of the classification us-
ing six selected feature sets. We use weighted F -measure,
which is a common performance metric for classifiers.

Research Questions We seek to answer the following re-
search questions.

1. How different feature sets perform in type inference?

Sets Features

1 U, ’bi-U’, ’C3’, ’C4’, ’C5’, bi-MC, G-W2V
2 U, ’bi-U’, ’C3’, ’C4’, ’C5’, G-W2V
3 U, ’bi-U’, ’C3’, ’C4’, ’C5’, bi-MC, SO-W2V
4 U, ’bi-U’, ’C3’, ’C4’, ’C5’, SO-W2V
5 U, ’bi-U’, ’C3’, ’C4’, ’C5’, bi-MC, G-W2V, SO-

W2V
6 U, ’bi-U’, ’C3’, ’C4’, ’C5’, G-W2V, SO-W2V

Table 2: Features used in each Features Sets. In the ta-
ble, U=Unigram, bi-U=Binary unigram, C3=Char tri-gram,
C4=Char four-gram, C5=Char five-gram, bi-MC= Binary
method call, G-W2V=Google W2V, SO-W2V=Stack Over-
flow W2V

2. Which models perform better for type inference?

Performance of Feature sets

Models based on feature sets 2,4 and 6, which do not include
information about the associated methods manifest lower ac-
curacy compared to models based on feature sets 1, 3, and 5.
Intuitively, the set of associated functions represent the oper-
ations allowed on the variable which can be a good predictor
of the type of the variable.

In our experiments, W2V improves the overall accuracy
of models which is the reason that we included it as one
of the main features in classification. Between the feature
sets using W2V based on Stack Overflow data and W2V
based on Google News, there is no noticeable difference in
the accuracy of models. It may suggest that there is little
need to train domain-specific V2W models and the models
based on natural language can be used instead.

Performance of Classifiers

In our experiments, models could predict a large portion of
types in the test data (F -measure higher than 0.6 and as high
as 0.8). In our experiments, logistic regression performs
slightly better than SVM for most feature sets. It can be
due to the sparseness of the representation of a large number
of features used in classification.

Related Work

The most related work are (Raychev, Vechev, and Krause )
and (Xu et al. 2016) that use probabilistic graphical mod-
els to statistically infer types of identifiers in JavaScript and
Python programming languages, respectively. These works
take into account the control and data dependence into code.
In contrast, we treat the programs as natural text and ignore
the underlying semantic and syntactic relations between el-
ements.

Conclusion and Future Work

We presented the approach of type inference with textual
cues. We evaluated different models with various configura-
tions for predicting the type of variables in a program using
the textual features in the source code. Our results suggest
that textual features can be good predictors of types.

785



(a) Feature Set 1 (b) Feature Set 2 (c) Feature Set 3

(d) Feature Set 4 (e) Feature Set 5 (f) Feature Set 6

Figure 3: Weighted f-measures of different feature sets. Columns ending with LR and SVM denotes F -measure for Logistic
Regression and SVM models, respectively.

In this work, we only evaluated the performance of clas-
sification for type classification in intra-projects. We eval-
uated the performance of classification in across-projects
and across-organizations settings in a recent technical re-
port (Shirani et al. 2017) where we discuss the limits and
opportunities in carrying over the type classification model
of a project to another project. Here, we evaluated our model
using Java projects. However, our final goal is to devise such
system for dynamic languages, particularly for Python.

In this work, we used only two classic classifiers with ad-
hoc feature selection. In future, we plan to try other tech-
niques such as random forests, and neural networks. Fur-
thermore, we plan to use a more systematic feature selection
approach such as (Bhalerao and Rajpoot 2003) to find the
more effective feature sets.

Acknowledgements

We thank Andrew Truelove and Victor Florintsev for com-
ments on the earlier drafts of this paper.

References

Bhalerao, A. H., and Rajpoot, N. M. 2003. Discriminant
feature selection for texture classification. In (BMVC2003.
Bruch, M.; Monperrus, M.; and Mezini, M. 2009. Learn-
ing from examples to improve code completion systems. In
ESEC/FSE ’09.
Chen, F., and Kim, S. 2015. Crowd debugging. In
ESEC/FSE 2015.
Fu, W., and Menzies, T. 2017. Easy over hard: A case study
on deep learning. In ESEC/FSE 2017.
Martin, R. C. 2009. Clean code: a handbook of agile soft-
ware craftsmanship. Pearson Education.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Mitchell, J. C. 2003. Concepts in programming languages.
Cambridge University Press.
Ponzanelli, L.; Bavota, G.; Di Penta, M.; Oliveto, R.; and
Lanza, M. 2014. Mining stackoverflow to turn the ide into
a self-confident programming prompter. In MSR 2014.
Raychev, V.; Vechev, M.; and Krause, A. Predicting pro-
gram properties from big code. In ACM SIGPLAN Notices,
volume 50.
Shirani, A.; Lopez-Monroy, A. P.; Gonzalez, F.; Solorio, T.;
and Alipour, M. A. 2017. Type inference without a type sys-
tem; evaluation of type prediction with textual hints. Techni-
cal report, University of Houston, Department of Computer
Science.
Xu, Z.; Zhang, X.; Chen, L.; Pei, K.; and Xu, B. 2016.
Python probabilistic type inference with natural language
support. In FSE 2016.

786


