
Generalized Dual Decomposition for Bounding Maximum
Expected Utility of Influence Diagrams with Perfect Recall

Junkyu Lee, Alexander Ihler, Rina Dechter
Donald Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA 92697, USA

Abstract

We introduce a generalized dual decomposition bound for
computing the maximum expected utility of influence dia-
grams based on the dual decomposition method generalized
to Lp space. The main goal is to devise an approximation
scheme free from translations required by existing variational
approaches while exploiting the local structure of sum of util-
ity functions as well as the conditional independence of prob-
ability functions. In this work, the generalized dual decom-
position method is applied to the algebraic framework called
valuation algebra for influence diagrams which handles prob-
ability and expected utility as a pair. The proposed approach
allows a sequential decision problem to be decomposed as a
collection of sub-decision problems of bounded complexity
and the upper bound of maximum expected utility to be com-
puted by combining the local expected utilities. Thus, it has
a flexible control of space and time complexity for comput-
ing the bound. In addition, the upper bounds can be further
minimized by reparameterizing the utility functions. Since
the global objective function for the minimization is noncon-
vex, we present a gradient based local search algorithm in
which the outer loop controls the randomization of the initial
configurations and the inner loop tightens the upper-bound
based on block coordinate descent with gradients perturbed
by a random noise. The experimental evaluation demon-
strates highlights of the proposed approach on finite horizon
MDP/POMDP instances.

Introduction

An Influence Diagram (ID) (Howard and Matheson 2005)
is a graphical representation of a sequential decision prob-
lem for a single agent maximizing the total expected utility
under uncertainty. In this paper, we assume that the agent
is non-forgetting, i.e., the previous history is available when
making a sequence of decisions. The Maximum Expected
Utility (MEU) query asks for a strategy that maximizes the
sum of the expected value of local utilities over the proba-
bility distribution conditioned on the strategy. Exact algo-
rithms for solving IDs are based on either variable elimina-
tion or reduction of the diagram. The variable elimination
algorithms include strong junction tree algorithm (Jensen,
Jensen, and Dittmer 1994), bucket elimination algorithm

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Dechter 2000b), and multi-operator cluster DAG architec-
ture (Pralet, Schiex, and Verfaillie 2006). The reduction type
of algorithms use node removal and arc reversal techniques
to transform the input ID to an ID with a sinlge node repre-
senting MEU (Shachter 1986), (Tatman and Shachter 1990),
and (Hansen, Shi, and Khaled 2016). Since the complex-
ity of the MEU query is NPPP complete (Mauá 2016), exact
algorithms are intractable.

Previous works on the systematic search algorithms for
solving IDs are depth-first AND/OR search algorithm ex-
ploiting the problem decomposition (Marinescu 2010), and
depth-first branch and bound search with the heuristic eval-
uation function generated by relaxing the subset of hidden
variables to be observed (Yuan, Wu, and Hansen 2010)
and (Khaled, Hansen, and Yuan 2013). Although depth-
first search only requires linear memory, the space com-
plexity for finding the optimal strategy is exponential in the
length of the past history due to the perfect recall assump-
tion. Recently, stochastic constrain programming solvers are
combined with AND/OR branch and bound search with the
interval arithmetic heuristic (Babaki, Guns, and De Raedt
2017). Various approximation algorithms are proposed
in the literature: mini-bucket elimination for ID (Dechter
2000a), sampling based methods (Ortiz and Kaelbling 2000)
and (Garcia-Sanchez and Druzdzel 2004), and sum-product
network learning approach (Melibari, Poupart, and Doshi
2016). On the other hand, local search algorithms improving
a subset of policies are proposed for solving limited memory
influence diagrams that relax the non-forgetting assumptions
and avoid the exponential space complexity (Lauritzen and
Nilsson 2001) and (Mauá and Cozman 2016). (Mauá 2016)
presented a translation scheme from an ID to marginal MAP,
hence any marginal MAP inference algorithm can be applied
to solve IDs. The variational framework provides bounds
of the MEU when the global utility function can be factor-
ized as a product of local functions. (Liu and Ihler 2012)
presented a variational form of the MEU query under mul-
tiplicative utility functions, and proposed message passing
algorithms tightening the dual form of the MEU. (Cheng et
al. 2013) applied variational belief propagation algorithm to
MDP planning. (Ping, Liu, and Ihler 2015) generalized dual
decomposition for MAP (Sontag, Globerson, and Jaakkola
2011) to marginal MAP which can also be applied to solve
IDs with a translation.

The Workshops of the Thirty-Second
AAAI Conference on Artificial Intelligence

674

Contributions: In this paper, we present a generalized
dual decomposition bound for the MEU of perfect recall
IDs free from translations to other queries. The proposed
bounding scheme decomposes a sequential decision prob-
lem by the join-graph decomposition. Then, the generalized
dual decomposition method is applied to the decomposed
clusters of the join-graph providing the upper bound of the
MEU. This bound can also be minimized by reparameteriz-
ing utility functions. We present and demonstrate a gradient
based local search algorithm that tightens the proposed up-
per bound on several MDP/POMDP domains to highlight
the potential of the proposed approach.

Background

Influence Diagrams

An influence diagram is a tuple, MMM “ xC,D,P,U, T y,
where C “ tCi : i P NCu is a set of discrete chance
variables with a set of domains tΩCi : i P NCu, and
D “ tDi : i P NDu is a set of discrete decision variables
with a set of domains tΩDi

: i P NDu. A chance variable is
drawn as a circle and decision variable is drawn as a square.
Index sets NX “ t0, 1, ¨ ¨ ¨ , |X| ´ 1u are collection of non-
negative integers representing the index of each element in
a set X. P “ tpi“ PrpCi|papCiqq : @i P Ncu is a set
of conditional probability functions indexed by the set Nc,
where each pi is defined over a set of chance variables Ci

and its parent variables papCiqĂ CYD´tCiu. The node
for a parent variable connects its child node with a directed
edge. U “ tui“uipXiq:@i P Nuu is a set of discrete real-
valued utility functions indexed by a set Nu, where each ui
is defined on a subset of variables Xi Ă CY D. A utility
node is drawn as a diamond. The parent nodes of a util-
ity node correspond to the variable in the scope of the util-
ity function. For the ease of notation, we assume that all
decision variables follow the predefined T stage temporal
ordering, which is the sequence in the index set Nd. IDs de-
fine a partition of chance variables, called information sets
tIk : k P Ndu associated with the decision variable Dk,
where the chance variables in Ik are observed immediately
before making a decision for Dk. The partial temporal or-
dering on the variables O:tI0ăD0ă¨ ¨ ¨ăIT´1ăDT´1ăIT u
can be read off from an ID since the informational arcs con-
nect chance nodes in Ik to the decision variable Dk. Note
that the chance variables in the last information set IT are
unobserved variables. Then, the MEU of a T stage ID can
be written as,ÿ

I0

max
D0

¨ ¨ ¨
ÿ

IT´1

max
DT´1

ÿ

IT

p
ź

piPP
piqp

ÿ

uiPU
uiq. (1)

The set of policies is called a strategy ΔΔΔ“tΔk:k PNdu and
each policy Δk is a probability distribution defined over the
past history and the decision variables by a mapping Δk :Ś

iĺkpp
Ś

CPIi ΩCqŚΩDi
q Ñ r0, 1s. The optimal strategy

ΔΔΔ˚ can be found by maximizing each decision variable Dk

per all instantiations of variables in the past history.

Variable Elimination for Solving IDs

The valuation algebra (Shenoy and Shafer 1990) is a gen-
eral algebraic framework for various reasoning architectures

and it allows unified representation for the variable elimi-
nation algorithm for IDs. Here, we introduce essentials of
valuation algebra for IDs following the notations in (Mauá,
de Campos, and Zaffalon 2012). A valuation of IDs ψpXq
with a scope X Ď CYD is a pair of functions pp, uq, each
defined over a set of variables X, where p is the probability
component and u is the expected utility component. From
a valuation ψpXq, P pψpXqq denotes the probability com-
ponent and EUpψpXqq denotes the expected utility compo-
nent. Given two valuations of an ID ψ1pX1q:“ pp1, u1qwith
scope X1 andψ2pX2q:“ pp2, u2qwith scope X2, the combi-
nation of two valuations is defined as ψ1pX1qbψ2pX2q :“
pp1p2, p1u2`p2u1q with new scope X1YX2. Now, we de-
fine the marginalization of a valuation. Let ψ :“ pp, uq with
scope X. Then, the marginalization of a variable Y P X
from valuation ψ is óY ψpXq :“ pÓY p, ÓY uq with new
scope X´tY u. The marginalization operator ÓY acting on
each component is

ř
Y if Y P C and maxY if Y P bD.

Then, the MEU of a T stage ID with the temporal ordering
O can be rewritten by valuation algebra as,

EUpóO tbpiPPppi, 0qu b tbuiPUp1, uiquq, (2)

where each conditional probability function pi P P and util-
ity function ui P P is converted to a valuation respectively
as, ppi, 0q and p1, uiq. In equation (2), all valuations are
combined with a single combination operator and a variable
is eliminated following the elimination ordering O.

Join-Graph Decomposition of IDs

Given an ID MMM “ xC,D,P,U, T y, a join-graph decom-
position is a triple DDD “ xGJ , χ, ψy, where GJ “ pV,Eq
is a graph and χ and ψ are labeling functions which asso-
ciate with each node v P V two sets, χpvq Ď C Y D and
ψpvq Ď PYU such that: (1) for each function fi P PYU,
there exists only one vertex v P V such that fi P ψpvq, and
scopepfiq Ď χpvq, (2) for each variable xi P C Y D, the
set tv P V : xi P χpvqu induces a connected subgraph
of GJ . Given two adjacent nodes u and v in join-graph
GJ , the separator of u and v is defined as Suv “ θpu, vq,
where the θpu, vq is an edge-labeling function satisfying
θpu, vq Ď χpuq X χpvq and two nodes containing a vari-
able xi can be connected by a path whose every edge label
includes xi. Finally, an edge-labeled join-graph is minimal
if no variable can be removed from any label while main-
taining the connectedness property.

Join-Graph Structuring Bucket elimination (BE) is a
join-tree decomposition algorithm and its space time com-
plexity is exponential in the induced-width of a problem
(Dechter 1999). BE processes variable elimination in the
following steps. First, collect all functions in a bucket
with the variable to be eliminated by an elimination order.
Then, combine functions in a bucket, marginalize the com-
bined function by the elimination variable associated with
the bucket, and send a message to the next bucket to be pro-
cessed. Mini-bucket elimination (Dechter and Rish 2003) is
a bounded inference scheme that controls the space and time
complexity of variable elimination by limiting the maximum
number of variables in each bucket to be less than the bound-

675

ing parameter i ` 1, called i-bound. Given an influence di-
agram, a minimal join-graph can be structured by schematic
mini-bucket elimination with an i-bound (Dechter, Kask,
and Mateescu 2002). In this paper, each node C in the join-
graph GJ is associated with a mini-bucket, χpCq is a set of
variables in the associated mini-bucket, and ψpCq is a set of
functions allocated to the mini-bucket.

Generalized Dual Decompoistion for MMAP

Here, we briefly review the generalized dual decomposition
for marginal MAP inference in graphical models. Given a
graphical model G “ xX,D,Fy, where X “ tXi : i P NV u
is a set of random variables index by an index set NV ,
D “ tΩXi

: Xi P Xu is a set of finite domains of variables,
and F “ tFαpXαq : α P NF qu is a set of discrete non-
negative real-valued functions indexed by the set NF , where
Fα is defined over a subset of variables Xα P X, called
its scopepFαq. G defines a factorized distribution P pXq “
exprřαPNF

θαpXαq ´ Φpθqs, where θα “ logpFαq and
Φpθq “ log

ř
X P pXq. The powered-sum elimination op-

erator is defined by
řw

x fpxq “ rřx |fpxq| 1w sw, which is
the generalization of summation (w “ 1.0) and maximiza-
tion (w Ñ 0`). Then, the marginal MAP inference task can
be written as computing the weighted log partition function,

Φpθq “ log
wnÿ

Xn

¨ ¨ ¨
w1ÿ

X1

expr
ÿ

αPNF

θαpXαqs, (3)

where the weights wi are zero for maximization variables
and one for summation variables.

The generalized dual decomposition bound for MMAP
(Ping, Liu, and Ihler 2015) bounds the weighted log parti-
tion function by generalization of Hölder’s inequality (Liu
and Ihler 2011),

log
wÿ

X

ź

αPNF

exprθαpXαqs ď log
ź

αPNF

wαÿ

Xα

exprθαpXαqs, (4)

where the non-negative weights wi P w distributed to
the factors θα are summed to the original weight wi “ř

tα:XiPXαu wα
i . This bound can be tightened by dual de-

composition (Sontag, Globerson, and Jaakkola 2011). Intro-
ducing cost-shifting functions δpα,βqpXα XXβq between a
pair of factors θαpXαq and θβpXβq, the weighted log parti-
tion function can be reparameterized by

Φpθqď log
ź

αPNF

wαÿ

Xα

exprθαpXαq̀
ÿ

βPNF

δpα,βqpXαXXβqs, (5)

where the cost-shifting functions between two factors can-
cels each other δα,β ` δβ,α “ 0. Since the upper-bound
of Φpθq in equation (5) is convex with respect to the cost-
shifting functions and weights, efficient optimization algo-
rithms are available for tightening the upper bound.

Generalized Dual Decomposition for MEU

In this section, we show the generalized dual decomposition
upper bound for the MEU of IDs and a gradient based local
search algorithm for optimizing the bound.

Derivation of the GDD Bound for MEU

Let NC be the set of clusters of a join-graph decompo-
sition D “ xGJ , χ, ψy of an influence diagram M “
xC,D,P,U, T y with a partial variable ordering O : tI0 ă
D0 ă ¨ ¨ ¨ ă IT´1 ă DT´1 ă IT u. From equation
(2), the combination of all valuations can be factorized over
the join-graph GJ by ΨpC,Dq “ bCPNC

ΨCpXCq, where
ΨCpXCq is a local combination of valuations at each clus-
ter C P NC , i.e., ΨCpXCq “ bfiPψpCqΨfipXfiq with
Ψfi “ pfi, 0q if fi P P and Ψfi “ p1, fiq if fi P U.
Following the definition of marginalization of a valuation
of IDs, we define the powered-sum elimination operator
for valuations as

řw
Opp, uq :“ přw

O p,
řw

O uq, where
řw

O
eliminates all the variables in O with the set of weights
w “ twi : @i P O, wi ě 0u associated with each vari-
able. Then, the generalized decomposition bound of IDs is
shown in the following theorem 1.

Theorem 1 (GDD Bound for MEU). Given an influ-
ence diagram M and its join-graph decomposition D “
xGJ , χ, ψy, the MEU can be bounded by the expected utility
component of the combination of powered sum-marginalized
valuations from each cluster NC ,

wÿ

O
pbCPNC

ΨCpXCq ď bCPNC

wCÿ

O
ΨCpXCq, (6)

where wC is a set of non-negative weights distributed to the
cluster C such that wi “ ř

CPNC
wC

i and 0 ď wC
i ď 1 for

each variable Xi P CYD.

Proof. Let ΨPC pXCq and ΨEUC pXCq denote a probabil-
ity and expected utility component of valuation ΨCpXCq at
cluster C P NC . The MEU can be bounded by applying
absolute value inequality from (7) to (8), Minkowski’s in-
equality from (8) to (9) and Hölder’s inequality from (9) to
(10) as shown in the following steps.

EUp
wÿ

O
pbCPNCΨCpXCqq

:“
wÿ

O
EUpbCPNCΨCpXCq

:“
wÿ

O

ÿ

iPNC

ΨEUipXiq
ź

jPNC ,j‰i

ΨPj pXjqq (7)

ď
wÿ

O

ÿ

iPNC

|ΨEUipXiq|
ź

jPNC ,j‰i

ΨPj pXjqq (8)

ď
ÿ

iPNC

wÿ

O
|ΨEUipXiq|

ź

jPNC ,j‰i

ΨPj pXjqq (9)

ď
ÿ

iPNC

wiÿ

O
|ΨEUipXiq|

ź

jPNC ,j‰i

wjÿ

O
ΨPj pXjqq (10)

“ EUpbCPNC

wCÿ

O
ΨCpXCqq

676

Algorithm 1 Gradient Based Local Search GDD-ID(i)
Require: Influence diagram, M “ xC,D,P,U, T y, elimination

ordering O, weights wi associated with a variable Xi P O,
i-bound, iteration limit Miter , restarting limit Mres

Ensure: GDD upper bound Lbest for MEU,
1: Find D “ xGJpNC ,NSq, χ, ψy with the input i-bound
2: Allocate Ψi to GJ by factor labeling function ψ of D, where

Ψi P tppi, 0q@pi P P, p1, uiq@ui P Uu
3: ASSIGN-UNIFORM-WEIGHT(GJ)
4: INITIALIZE-COST(GJ) Ź Random or Minibucket cost

shifting
5: iter=0, Lbest “ inf , Lold “ inf .
6: while iter ă Miter do
7: for pi, jq P NS do L Ð UPDATE-COST(GJ , pi, jq)
8: end for
9: for Xi P O do L Ð UPDATE-WEIGHT(GJ , Xi)

10: end for
11: if Lbest ą L then Lbest Ð L
12: else if abspLold´L

Lold
q ă ε then

13: ASSIGN-UNIFORM-WEIGHT(GJ)
14: INITIALIZE-COST(GJ)
15: end if
16: iter Ð iter ` 1, Lold Ð L
17: end while

Algorithm 2 Update-Cost by Randomized Gradient Descent
Require: Valuations at node i and j, Ψi, Ψj , initial step size η0,

final step size ηM iteration limit Miter ,
1: for (iter Ð 0; iter ă Miter; iter++) do
2: Evaluate Gradient ∇L1 by equation (14)
3: Interpolate gradient scaling factor η Ð fpiter, η0, ηM q
4: Add random noise to gradient ∇L1 Ð ∇L1 ` U
5: δUij Ð δUij ´ ηp∇L1q
6: ΨUi Ð ΨUi ` δUij , ΨUj Ð ΨUj ´ δUij

7: end for

Note that, the upper bound in Theorem 1 bounds both
joint probability and the total expected utility. The expected
utility component of the bound can be obtained by combin-
ing local expected utilities of subproblems generated by the
join-graph structuring process with i-bound, hence space
and time complexity for computing the bound is exponen-
tial in i-bound. The complexity can be easily decreased by
decreasing the i-bound, which also decrease the quality of
the bound.

When combining the local expected utilities, the non-
negative weights w are distributed to each cluster C by wC .
The upper bound of the total expected utility is the sum of
the local expected utility

řwC

O ΨEUC pXCq at each cluster C
multiplied by marginalized probabilities of all other clusters
ś

iPNC ,i‰C
řwi

O ΨPi
pXiq.

Cost Shifting Scheme for Tightening the Bound

Let NS be the set of separators defined over the edges of
the join-graph GJpV,Eq as tSij : pi, jq P Eu, where each
separator Sij also defines the intersection of scopes at both
clusters Xij “ ψpiq X ψpjq. We can introduce arbitrary
auxiliary valuations at the nodes adjacent to the separator
Sij ; δijpXijq for cluster i and δjipXijq for cluster j such

that δijpXijq b δjipXijq “ p1, 0q. Then, the cost shifting
scheme can be applied to the GDD bound for MEU shown
in Theorem 1. The new bound incorporated with pairs of
probability and expected utility functions δjipXijq at each
separator Sij can be written as,

wÿ

O
pbCPNC

ΨCpXCq ď bCPNC

wCÿ

O
Ψ

1
CpXCq, (11)

where the cost shifted valuation at cluster C is combination
of all the cost shifting valuations introduced at the cluster,
Ψ

1
CpXCq “ ΨCpXCq b rbSCjPNS

δCjpXCjqs. Now, we set
the reparameterized upper bound in equation (11) as an ob-
jective function to minimize,

LpΔ, ωq :“
ÿ

iPNC

wiÿ

O
Ψ1

EUi
pXiq

ź

jPNC ,j‰i

ÿ

wj

Ψ1
Pj
pXjq. (12)

The LpΔ, ωq is a function of the set of all cost shifting
functions Δ“tδij : pi, jq PEu and the set of all weights
ω “ twC : C P NCu.
Gradient based Optimization Algorithms

Algorithm 1 describes the outline of the gradient based lo-
cal search for optimizing the bound LpΔ, ωq. First, it per-
forms join-graph structuring with the input i-bound and de-
composes the input influence diagram M to a graph of local
clusters NC . Then, each function f P PYU is allocated to
a cluster in GJ subject to the labeling function ψpfq of the
join graph decomposition, and each weightwC

i of the chance
variable Xi at cluster C is assigned uniformly by wC

i “ 1
M ,

where the M is the number of clusters having Xi in its
scope. Before calling the inner optimization procedures, we
also initialize the bound by propagating mini-bucket mes-
sages or uniform random costs δijpXijq,@Sij P NS be-
tween cluster i and j as random initialization step of the
local search. The inner optimization loop uses block coordi-
nate descent updates that will be described in the following
part. After each step of local optimization, weights and costs
are initialized again when the improvement is less than ε to
ensure the exploration of other regions of the state space.
We set ε “1e´4 in the experiments.

Block Coordinate Descent For the efficiency and sim-
plicity, we present inner optimization procedures based on
the block coordinate descent, which divides the whole set
of optimization variables of LpΔ, ωq into set of costs Δ and
weights ω. Hence, each set is updated while the other is
fixed. While optimizing LpΔ, ωq with respect to Δ, the lo-
cal optimization routine Update-CostpGJ , pi, jqq is called
per edge pi, jq P GJ . Similarily, Update-WeightpGJ , Xi)
is called per variable Xi P O to optimize the bound with
respect to the weights wC

i associated with Xi.

Updating Costs For the local updates involving a cost
shifting pair pδPij

, δEUij
q, we will restrict the form of pairs

to be p1, δUij
q with introducing a new notation for the nor-

malized utility component ΨU pXq :“ ΨEU pXq{ΨP pXq.
Note, δEUij

“ δUij
when δPij

“ 1. This choice of fixing

677

δPij “ 1 renders the nonconvex and complicated global ob-
jective function LpΔ, ωq in equation (12) to a simpler con-
vex local objective function L1pδUij

q as follows.

L1pδUij
q“ρi

wiÿ

O
ΨPi

|rΨUi
δ̀Uij

s|̀ ρj
wjÿ

O
ΨPj

|rΨUi
δ́Uij

s|,
(13)

where ρi “ řwi

O ΨEUi
{řwi

O ΨPi
. The gradient of L1 with

respect to δUij
can be evaluated by

BL1

BδUij

“ ρi
ÿ

XizXij

ΛipΨEUi
q

ΨUi

´ρj
ÿ

XjzXij

ΛjpΨEUj
q

ΨUj

, (14)

where ΛipZ0pXqq is called a pseudo belief of the cluster i
(Liu 2014). When evaluating a pseudo belief, the Z0pXq
can be either probability component ΨPi or expected util-
ity component ΨEUi . In equation (14), pseudo beliefs are
evaluated by expected utility components. Let Xk be the
k-th variable of O associated with wk, and Xi:j denotes
the sequence of variables from the i-th variable to j-th
variable in O. Then, ZipXi`1:|O|q is defined recursively
by a partial powered-sum up to X1:i by ZipXi`1:|O|q “řwi

Xi
Zi´1pXi:|O|q, and ΛipZ0pXqq “ ś

k“1..nrZk´1

Zk
s 1
wk .

In principle, any non-linear optimization routine could be
used to minimize the bound. From experimental evaluation,
we observed that the computation of gradient and objective
function becomes numerically unstable when weights wC

i
are small or expected utility values are close to zero. In addi-
tion, the number of parameters in the cost shifting functions
δUij

increases exponentially in i-bound, which challenges
sophisticated second-order optimization routines. There-
fore, we modified gradient descent to perturb the analytic
gradient with a random noise vector with varying step sizes
as described in Algorithm 2. The modification from the stan-
dard gradient descent is in line 4, adding a random noise U to
the gradient ∇L1. Note that, Algorithm 2 evaluates the gra-
dient only once in each iteration and skips testing the step
size of usual gradient descent, thus it willing to accept infe-
rior solutions. The step size of the randomized gradient η is
determined by a step interpolation function fpiter, η0, ηM q
which decreases η by 1{iter. In the experiment, we set
tuning parameters of f as η0 “ 0.1, ηM “ 1e´4, and
Miter “ 20, and sampled noise from Up´1, 1q.
Updating Weights For updating the weights associated
with a chance variable Xi, we used exponentiated gradient
descent algorithm (Ping, Liu, and Ihler 2015). The expo-
nentiated gradient descent algorithm transfroms optimiza-
tion with a set of constraints,

ř
wj

i “ 1 and 0 ď wj
i ,

to unconstrained by the following parameterization wC
i “

exppvCi q{
ř

αPNC ,XiPχpαq exppvαi q.
The gradient of LpΔ, ωq with respect to a single weight

wC
i at cluster C can be evaluated by

ρCHEUC pXi|Xi`1:|O|q̀
ÿ

jPNC ,j‰i

ρjHPC pXi|Xi`1:|O|q. (15)

The equation (15) involves the entropy terms of pseudo
marginals of expected utility and probability components

Ns, A, No T, Nv , Nf , w T, Nv , Nf , w

POMDP1 3,3,2 5,23,28,12 10,43,53,23
POMDP2 4,4,1 5,29,34,13 10,54,64,22
POMDP3 5,7,3 5,50,60,24 10,95,115,42

MDP1 6,8,- 10,76,106,10 20,146,206,10
MDP2 10,6,- 10,120,150,14 20,230,290,15
MDP3 16,8,- 10,186,256,25 20,356,496,26

Table 1: Random MDP/POMDP Problem Statistics.

ř
X1:i´1

ΛCpΨEUC q and
ř

X1:i´1
ΛCpΨPC q. Following the

standard exponentiated gradient descent, all the weights are
updated by

wC
i Ð wC

i exppηr BLBwC
i

´
ÿ

jPNC ,XiPχpjq
wj

i

BL
BwC

j

sq (16)

and normalized to ensure
ř

jPNC ,XiPχpjq w
j
i “ 1. In the

experiments, the step size η in equation (16) was found by
the line search with Armijo rule (Nocedal and Wright 2006).

Experimental Evaluation

We evaluated the proposed gradient based local search
GDD-ID(i) on influence diagrams generated from random
factored MDP/POMDP problems with a finite step size T.
For reference, we also solved the same problem instances
with SARSOP (Kurniawati, Hsu, and Lee 2008) with dis-
counting factor 0.999 and compared the expected utility by
simulating the infinite horizon policy for the length T, pro-
viding a lower bound of the optimal finite horizon MEU.

The experiment was designed to explore the quality of
upper bounds by varying the i-bounds and the number of
iterations on the random problem instances with controlled
complexity. Table 1 summarizes the problem statistics of
structure of factored MDP/POMDPs from which we gen-
erated 6 random instances. The first column characterizes
the structure of MDP/POMDPs The Ns is the number of
binary state variables, A is number of actions, and No is
the number of binary observation variables. Influence di-
agrams were generated by unrolling MDP/POMDP for T
time steps, Nv is the total number of variables Nf is the to-
tal number of functions, and w is the average constrained
induced width. The problem statistics were chosen to re-
flect common benchmark instances. For the POMDP mod-
els, we matched pNs, A,Noq to produce models to reflect the
sizes of common POMDP benchmark instances. The finite
time steps were also chosen from common ranges shown
in the probabilistic planning literature. The prototype of
GDD-ID(i) is implemented in Python script language, we
allowed 1 hour time limit, 1000 iteration limit, and provided
i-bounds from 1, 5, 10, and 15.

Quality of GDD Bound for MEU

Table 2 reports the quality of the upper bound Lgdd for each
problem instance. When problem instances can be solved
exactly by variable elimination, the quality was measured
by the ratio of the upper bound divided by the exact MEU,
Q˚ “ Lgdd{L˚. If a problem instance cannot be solved

678

T short (MDPs 10, POMDPs 5) long (MDPs 20, POMDPs 10)

Instance 0 1 2 0 1 2

Quality Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe Q˚ Qmbe

MDP
1 1.26 -42.71 1.31 -41.98 1.38 -37.8 1.3 -99.51 1.33 -83.55 1.45 -80.72
2 1.47 -33.58 1.43 -22.51 1.62 -43.18 1.49 -68.22 1.44 -53 1.63 -91
3 - -103.37 - -111.01 - -106.15 - -226.75 - -210.8 - -239.23

POMDP
1 2.23 -4.05 1.79 -1.50 2.19 -3.36 4.06 -4.16 1.45 -1.71 1.88 -0.76
2 2.54 -1.84 2.17 -4.08 1.36 -1.08 4.91 -3.27 1.42 -4.50 1352.56 -4.30
3 3.28 -2.29 21.06 -1.80 17.28 -1.99 620.36 -14.37 1352.56 -4.58 5168.76 -7.39

Table 2: Quality of GDD bound. Q˚ is the ratio between the Lgdd and MEU (or lower bound of MEU simulated by SARSOP
algorithm when exact solution is unknown.) Qmbe is the improvement of the bound in log scale. Time steps are 10 and 20 for
MDP instances, and 5 and 10 for POMDP instances.

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

6

7

8

9

10

11

12

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=5), 3425.62
MBE bound(i=5)
Exact Solution(w=15), 1538.70

(a) POMDP-1-0-5 T=5, w=15

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

7

8

9

10

11

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=10), 5329.73
GDD(i=15), 4514.35
MBE bound(i=10)
MBE bound(i=15)
Exact Solution(w=20), 3123.048

(b) POMDP-1-1 T=10, w=20

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

6

8

10

12

14

16

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=5), 34844.08
GDD(i=10), 3149.91
MBE bound(i=5)
MBE bound(i=10)
Exact Solution (w=13), 1454.72

(c) POMDP-2-1 T=5, w=13

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

8

10

12

14

16

18

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=10), 26813.59
GDD(i=15), 11599.30
MBE bound(i=10)
MBE bound(i=15)
SARSOP (w=21), 3316.66

(d) POMDP-2-2 T=10, w=21

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

8

10

12

14

16

18

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=10), 76355.03
GDD(i=15), 49526.08
MBE bound(i=10)
MBE bound(i=15)
SARSOP (w=26), 2351.94

(e) POMDP-2-2 T=10, w=26

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

20

40

60

80

100

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=5), 15752.09
MBE bound(i=5)
Exact Solution (w=11), 12145.67

(f) MDP-1-0 T=20, w=11

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

20

40

60

80

100

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=5), 8674.46
GDD(i=10), 9338.29
MBE bound(i=5)
MBE bound(i=10)
Exact Solution (w=14), 6373.80

(g) MDP-2-0 T=10, w=14

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

50

100

150

200

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=5), 16085.20
GDD(i=10), 17487.49
MBE bound(i=5)
MBE bound(i=10)
Exact Solution (w=14), 12102.17

(h) MDP-2-1 T=20, w=14

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0

50

100

150

200

250

300

E
x
p

e
ct

e
d

 U
ti

lit
y
 (

Lo
g

)

GDD(i=10), 21002.66
GDD(i=15), 22000.60
MBE bound(i=10)
MBE bound(i=15)

(i) MDP-3-1 T=10, w=15

Figure 1: Anytime convergence behavior of GDD-ID(i). Each subplot shows the trace of the GDD-ID(i) from the two largest
i-bounds applicable to the problem instance. The upper horizontal lines are mini-bucket bounds found at the initialization step
and the lower horizontal lines are the exact MEU or the lower bound for MEU simulated by SARSOP.

exactly, we used the sample average of the expected util-
ity by simulating an infinite horizon policy by SARSOP
(Kurniawati, Hsu, and Lee 2008) for 100 times. In the ta-

ble, we show results from the maximum applicable i-bound
tried. We also propagated mini-bucket elimination mes-
sages and uniform random costs at the initialization step.

679

Qmbe “ lnpLgdd{Lmbeq shows the improvement from the
mini-bucket bound Lmbe to Lgdd in log scale. Compared
with Lmbe, Lgdd presents significant improvements on all
problem instances, and Lgdd is within a small constant fac-
tor from the optimal bound. The quality of the bound gets
looser as the gap between the i-bound and the induced width
increases. In the case of instances generated from MDP-
3 structure, GDD generated upper-bounds for the problems
with |S| “ 216 while variable elimination and SARSOP
failed.

Convergence of GDD Bound for MEU

Figure 1 shows the anytime convergence behavior of Lgdd

on several problem instances. We can observe that the
higher i-bound produces tighter upper bounds on all in-
stances. However, the higher i-bound generates larger scope
sized functions and slows down the local updating routines.
In the case of the instance in 1(b), GDD(i=15) iterated 51
times but GDD(i=10) iterated 381 times with 81 restarts.
In all instances except 1(a) and 1(c), the gradient based
local search almost converged to the local optimum after
the first outerloop iteration. In 1(d), GDD(i=15) achieved
Lgdd “ 11, 674.47 after the first iteration (took 996 sec-
onds) while the Lgdd at the termination was only 11, 599.30.
The spikes in 1(a), 1(b), and 1(c) show the restarting of
the inner loop optimization. For the problem instance 1(c),
GDD-ID(i=10) immediately improved after the first restart-
ing at 2118 seconds. The bound before restarting was get-
ting stuck at a local optima of around 3608 for almost 2000
seconds. However, restarting immediately produced a better
Lgdd “ 3184 only in two iterations. This instance illustrates
the benefit of random restarting. Nevertheless, the rest of the
6 instances in Figure 1 spent the 1 hour time budget only for
the first cycle due to the overhead of dealing with large scale
gradient updates.

Conclusion and Future Work

In this paper, we proposed a new bounding scheme for the
maximum expected utility of influence diagrams. First, we
derived the bounding inequality that interchanges the combi-
nation and elimination operator for the valuation algebra for
influence diagrams in Theorem 1. Then, we applied the gen-
eralized dual decomposition bound to the join-graph decom-
position of influence diagram that decomposes a sequential
decision problem into a collection of independent subprob-
lems. The proposed scheme bounds the maximum expected
utility by combining local expected utilities and tightens the
bound by reparameterizing the normalized utility functions.
We also demonstrated a gradient based local search algo-
rithm by evaluating random MDP/POMDP instances.

From the experimental evaluation, we observed positive
aspects of GDD-ID(i): (1) it converged to a local optimum
in a small number of iterations with the noisy gradient up-
date that does not require any function evaluations, (2) ran-
dom restarting helped GDD-ID(i) to escape local optima,
and (3) GDD-ID(i) can generate optimistic heuristics for
problems with a large state space. However, there are several
issues that need to be addressed in future. The tested GDD-

ID(i) code implemented in Python language was not effi-
cient enough to perform larger scale experiments that could
empirically verify the positive sides of the algorithm.

The proposed scheme can be used as a new class of
heuristic generators for the search based probabilistic plan-
ners. Since sequential decisions are localized to a set of in-
dependent clusters, it is interesting future work to extend the
current GDD-ID(i) to guide online probabilistic planning in
the form of dynamic heuristic. GDD-ID(i) produces not
only the upper bound for the maximum expected utility but
also generates a cost-optimized collection of sub-decision
problems that can be immediately served as a sub-optimal
strategy. This is an important aspect in probabilistic plan-
ning since the optimal strategy is exponential in the length
of the history. GDD-ID(i) can generate a compressed strat-
egy in a principled manner and the space complexity can be
easily adjusted by the i-bound.

Acknowledgments

This work was supported in part by NSF grants IIS-1526842
and IIS-1254071, and by the US Air Force under Contract
No. FA8750-14-C-0011 and FA9453-16-C-0508.

References

Babaki, B.; Guns, T.; and De Raedt, L. 2017. Stochastic
constraint programming with and-or branch-and-bound. In
Proceeding of the 26th International Joint Conference on
Artificial Intelligence.
Cheng, Q.; Liu, Q.; Chen, F.; and Ihler, A. T. 2013. Varia-
tional planning for graph-based mdps. In Advances in Neu-
ral Information Processing Systems 26, 2976–2984.
Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for bounded inference. Journal of the ACM (JACM)
50(2):107–153.
Dechter, R.; Kask, K.; and Mateescu, R. 2002. Iterative join-
graph propagation. In Proceedings of the 18th Conference
on Uncertainty in Artificial Intelligence, 128–136.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113(1):41–85.
Dechter, R. 2000a. An anytime approximation for optimiz-
ing policies under uncertainty. In AIPS-2000 Workshop on
Decision Theoretic Planning.
Dechter, R. 2000b. A new perspective on algorithms for
optimizing policies under uncertainty. In Proceedings of the
5th Conference on Artificial Intelligence and Planning Sys-
tems, 72–81.
Garcia-Sanchez, D., and Druzdzel, M. J. 2004. An efficient
sampling algorithm for influence diagrams. In Proceedings
of the Second European Workshop on Probabilistic Graphi-
cal Models (PGM–04), 97–104.
Hansen, E. A.; Shi, J.; and Khaled, A. 2016. A pomdp
approach to influence diagram evaluation. In Proceeding of
the 25th International Joint Conference on Artificial Intelli-
gence.
Howard, R. A., and Matheson, J. E. 2005. Influence dia-
grams. Decision Analysis 2(3):127–143.

680

Jensen, F.; Jensen, F. V.; and Dittmer, S. L. 1994. From
influence diagrams to junction trees. In Proceedings of the
10th international conference on Uncertainty in artificial in-
telligence, 367–373.
Khaled, A.; Hansen, E. A.; and Yuan, C. 2013. Solv-
ing limited-memory influence diagrams using branch-and-
bound search. In Proceedings of The 29th Conference on
Uncertainty in Artificial Intelligence, 222–231.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sarsop:
Efficient point-based pomdp planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
systems, volume 2008. Zurich, Switzerland.
Lauritzen, S. L., and Nilsson, D. 2001. Representing and
solving decision problems with limited information. Man-
agement Science 47(9):1235–1251.
Liu, Q., and Ihler, A. 2011. Bounding the partition func-
tion using hölder’s inequality. In Proceedings of the 28th
International Conference on Machine Learning, ICML ’11,
849–856.
Liu, Q., and Ihler, A. 2012. Belief propagation for structured
decision making. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence, 523–532.
Liu, Q. 2014. Reasoning and Decisions in Probabilistic
Graphical Models–A Unified Framework. University of Cal-
ifornia, Irvine.
Marinescu, R. 2010. A New Approach to Influence Diagrams
Evaluation. Springer London. 107–120.
Mauá, D. D., and Cozman, F. G. 2016. Fast local search
methods for solving limited memory influence diagrams.
Int. J. Approx. Reasoning 68(C):230–245.
Mauá, D. D.; de Campos, C. P.; and Zaffalon, M. 2012.
Solving limited memory influence diagrams. Journal of Ar-
tificial Intelligence Research 44:97–140.
Mauá, D. D. 2016. Equivalences between maximum a poste-
riori inference in bayesian networks and maximum expected
utility computation in influence diagrams. Int. J. Approx.
Reasoning 68(C):211–229.
Melibari, M. A.; Poupart, P.; and Doshi, P. 2016. Sum-
product-max networks for tractable decision making. In
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, 1846–1852.
Nocedal, J., and Wright, S. J. 2006. Numerical Optimiza-
tion, Second Edition. Springer New York.
Ortiz, L. E., and Kaelbling, L. P. 2000. Sampling methods
for action selection in influence diagrams. In Proceedings
of The 16th Conference on Uncertainty in Artificial Intelli-
gence, 378–385.
Ping, W.; Liu, Q.; and Ihler, A. T. 2015. Decomposition
bounds for marginal map. In Proceedings of Advances in
Neural Information Processing Systems 28, 3267–3275.
Pralet, C.; Schiex, T.; and Verfaillie, G. 2006. From influ-
ence diagrams to multi-operator cluster dags. In Proceed-
ings of the 22nd Conference on Uncertainty in Artificial In-
telligence, 393–400.

Shachter, R. D. 1986. Evaluating influence diagrams. Op-
erations research 34(6):871–882.
Shenoy, P. P., and Shafer, G. 1990. Axioms for probability
and belief-function propagations. In Proceedings of The 4th
Conference on Uncertainty in Artificial Intelligence, 169–
198.
Sontag, D.; Globerson, A.; and Jaakkola, T. 2011. Introduc-
tion to dual decomposition for inference. Optimization for
Machine Learning 1(219-254):1.
Tatman, J. A., and Shachter, R. D. 1990. Dynamic program-
ming and influence diagrams. IEEE transactions on systems,
man, and cybernetics 20(2):365–379.
Yuan, C.; Wu, X.; and Hansen, E. A. 2010. Solving multi-
stage influence diagrams using branch-and-bound search. In
Proceedings of the 26th Conference on Uncertainty in Arti-
ficial Intelligence, 691–700.

681

