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Abstract

In this paper we propose the application of techniques from
the field of creativity research to machine learned models
within the domain of games. This application allows for the
creation of new, distinct models without additional training
data. The techniques in question are combinatorial creativity
techniques, defined as techniques that combine two sets of in-
put to create novel output sets. We present a survey of prior
work in this area and a case study applying some of these
techniques to pre-trained machine learned models of game
level design.

Introduction

Procedural content generation (PCG) represents a set of
varied approaches in which a designer encodes some de-
sign knowledge in an algorithm, which then generates novel
video game content (Hendrikx et al. 2013). This set of tech-
niques has some drawbacks, in particular that it typically
requires high quality design knowledge to function. Pro-
cedural content generation via machine learning (PCGML)
makes use of knowledge extraction from games via machine
learning as an alternative to hand-coded design knowledge.
However, PCGML shares the limitations of machine learn-
ing approaches. Namely a dependence on the type and quan-
tity of training data available. Most games have a limited
amount of content of a limited number of types, meaning
that knowledge extracted from a game is limited in terms of
scale and descriptive power. Alternatively, one could con-
sider training on content from multiple games, but individ-
ual games tend to vary too much to apply machine learning
techniques (Summerville et al. 2017). In addition, extract-
ing knowledge from games is not a fully automated process,
requiring that a human designer implement a game-specific
knowledge scraping tool, seek out some general represen-
tation (Guzdial and Riedl 2016a), or make use of a pre-
authored corpus, which only shifts the burden to an earlier
designer (Summerville et al. 2016). We propose a solution
to both of these problems, recombining learned models to
create novel models to maximize the generative space while
minimizing the required training data and human effort.
Computational creativity is a field that represents the in-
tersection of artificial intelligence and creativity (Colton and
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Wiggins 2012). We focus on a set of techniques within
this field referred to as combinatorial creativity techniques.
These techniques recombine existing knowledge to create
new usable knowledge, relying on structure from the original
knowledge representations in order to create new knowledge
representations with similar value (Boden 2004). For exam-
ple, consider combining the concepts of “man” and “wolf”
to create the concept “werewolf”’, one can use similarities
between the original concepts to ensure a consistent, novel
concept. One could consider applying these techniques to
recombine knowledge extracted from games, but these tech-
niques historically have required hand-authored knowledge
representations, which differ from typically messy machine
learned models. Alternatively one could directly recombine
knowledge extracted from a game (levels, rules, etc.) rather
than a model trained on that content. However, machine
learned models typically capture a higher abstraction of
structure, which benefits combinatorial creativity techniques
in terms of the size of output content and likelihood of valid
structure.

In this paper we propose applying combinatorial creativ-
ity techniques to machine learned models of knowledge ex-
tracted from games. We survey related work in this area, in-
cluding prior applications of combinatorial creativity tech-
niques to games. We present formalizations of three histor-
ical combinatorial creative techniques and one novel tech-
nique. In a case study on preexisting machine learned level
design models extracted from games we demonstrate the
trade-offs of the various approaches in terms of novelty and
value of their output. We end with a discussion of remaining
work.

Related Work

There have been many approaches to combinatorial creativ-
ity over the years, which we briefly summarize. Case-based
reasoning (CBR) represents a general Al problem solving
approach that relies on the storage, retrieval, and adaption of
existing solutions (De Mantaras et al. 2005). The adaption
function has lead to a large class of combinatorial creativ-
ity approaches, which we can place into the categories of
substitutional adaption and structural adaption (Wilke and
Bergmann 1998; Fox and Clarke 2009). These techniques
tend to be domain-dependent, for example for the prob-
lem of text generation or tool creation (Hervds and Gervds
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Figure 1: Representation of the canonical four space concept
blending approach from (1998).

2006; Sizov, Oztiirk, and Aamodt 2015). Murdock and Goel
(2001) combine reinforcement learning with case-based rea-
soning, which aligns with our work to combine computa-
tional creativity and machine learning research. However,
the technique does not look to automatically derive cases
or concept spaces and then combine these structures.

Beyond CBR there exists a wide range of combinatorial
creativity techniques. The area of belief revision, modeling
how beliefs change, includes a function to merge prior exist-
ing beliefs with new beliefs(Konieczny, Lang, and Marquis
2004; Steels and De Beule 2006; Cojan and Lieber 2008;
2009; Konieczny and Pérez 2011). Belief merging has been
applied to CBR as an adaption function (Cojan and Lieber
2012), further aligning it as a combinatorial creativity tech-
nique. However, due to the nature of its work it focuses on
a single final merged belief state, and we are interested in
larger output sets. The mathematical notion of convolution
has been applied to blend weights between two neural nets
in work that parallels our desire to combine computational
creativity and ML, but without promising results (Thagard
and Stewart 2011).

We identify three specific combinatorial creativity tech-
niques for deeper investigation, due to the fact that they
are well-formed in domain-independent terms, with distinct
and large spaces of output combinations: concept blending,
amalgams, and compositional adaption.

Concept Blending

Fauconnier and Turner (1998) formalized the “four space”
theory of concept blending. In this theory they described
four spaces that make up a blend as seen in Figure 1: two
input spaces represent the unblended elements, input space
points are projected into a common generic space to identify
equivalence, and these equivalent points are projected into a
blend space. In the blend space, novel structure and patterns
arise from the projection of equivalent points. Fauconnier
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and Turner (1998; 2002) argued this was a ubiquitous pro-
cess, occurring in discourse, problem solving, and general
meaning making.

Concept blending typically requires a large amount of
human authoring for individual concept spaces. Recently
O’Donoghue et al. (2015) have looked into deriving this
knowledge automatically from text corpora, producing
graphical representations of nodes and their verb connec-
tions. Our own work runs parallel to O’Donoghue et al., but
in the domain of two dimensional video games levels and
without the dependency rules that exist in the english lan-
guage. There has been work in blending individual tagged
exemplars together based on surface level features of com-
ponents (Alhashim et al. 2014).

Fauconnier and Turner originally developed a set of
heuristics for domain-independent measures of quality for
blends. As an alternative more recent work has looked to the
introduction of goals for blends (Li et al. 2012).

Amalgamation

Ontafién designed amalgams as a formal unification function
between multiple cases (Ontafiéon and Plaza 2010). Simi-
lar to concept blending, amalgamation requires a knowledge
base that specifies when two components of a case share a
general form, for example “French” and “German” can both
share the more general form “nationality”. Unlike concept
blending, this shared generalization does not lead to a merg-
ing of components, but requires that only one of the two can
be present in a final amalgam. For example, a “red French
car” and a “old German car” could lead to an “old red French
car” or an “old red German car”.

Amalgams have been utilized as the adaption function
in CBR systems (Manzano, Ontanén, and Plaza 2011),
combined with concept blending for product development
(Besold and Plaza 2015), and adapted to an asymmetrical
form for story generation (Ontanén, Zhu, and Plaza 2012).
Amalgamation represents a strong general method for com-
binatorial creativity. However it suffers from the same fall-
backs of other adaption methods in terms of a traditional
reliance on authored knowledge bases and domain-specific
generalization.

Compositional Adaption

Compositional adaption arose as a CBR adaption approach
(Holland 1989; Fox and Clarke 2009), but has found signifi-
cant applications in adaptive software (McKinley et al. 2004;
Eisenbach, Sadler, and Wong 2007). The intuition behind
compositional adaption is that individual component cases
can be broken apart and reused based on their connections.
In adaptive software this takes the shape of sets of functions
with given inputs and outputs that can be strung together to
achieve various effects, which makes compositional adap-
tion similar to planning when it includes a goal state or out-
put. However, it can also be applied in a goal-less way to
generate sequences of components.

Compositional adaption has been applied to recipe gen-
eration (Miiller and Bergmann 2014; Badie and Mah-
moudi 2017), intelligent tutoring systems (Reyhani, Badie,
and Kharrat 2003), and to traditional CBR approaches
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Figure 2: Example of the four combinatorial creativity techniques. Two input spaces on left with example output from the four
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(Chedrawy and Abidi 2006). Unlike amalgamation and con-
cept blending, compositional adaption does not require an
explicit knowledge base by default. However, it is common
to make use of the knowledge base to generalize components
and their relationships in order to expand the set of possible
recombinations. As with the prior combinatorial creativity
approaches, this knowledge base is almost always human-
authored.

Computational Creativity and Games

Combinatorial creativity and computational creativity re-
search in general are rarely applied to video games. Prior
work has looked into knowledge intensive concept blend-
ing systems to create new elements of video games such as
sound effects and 3D models (Ribeiro et al. 2003; Martins
et al. 2004). The Game-O-Matic system made use of con-
cept mapping to match verbs onto game mechanics to cre-
ate arcade-style games based on human-authored mapping
knowledge (Treanor et al. 2012). Gow and Corneli (2015)
proposed a system to generate small games via amalgama-
tion. Permar and Magerko (2013) presented a system to pro-
duce novel interactive narrative scripts via concept blending,
using analogical processing. The work presented in this pa-
per focuses on a two-dimensional platformer game, a very
different domain. Most related in terms of computational
creativity, Cook et al.’s ANGELINA system produces entire
video games with a computational creativity bent, though
it does not make use of machine learning or combinatorial
creativity (Cook, Colton, and Gow 2017).

Snodgrass and Ontafién leveraged transfer learning to
train a machine learning approach on levels from two sep-
arate platform games, meant to address a lack of training
data, but with the effect of combining level structure in the
generated levels (Snodgrass and Ontafién 2016).

Approaches

In this section we present brief descriptions of our imple-
mentations of three historical and one novel combinatorial
creativity techniques. We chose the three historical tech-
niques, concept blending, amalgamation, and compositional
adaption, due to their relative domain independence. The last
technique, conceptual expansion, can be understood as a hy-
brid technique combining elements of concept blending and
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compositional adaption. For a grounded example of these
approaches in terms of their output see Figure 2.

For this implementation we make use of a graph-based
representation, which assumes individual nodes with edges
connecting nodes with some relationship. At one level of
abstraction all of these approaches follow the same process.
First, take in two graphs as input, as seen on the left side of
Figure 2, Second, construct a mapping between elements of
the two graphs. This mapping typically requires some out-
side knowledge, either in the form of hierarchical informa-
tion (e.g. houses and boats can be said to have the same par-
ent object), distance functions, or an authored mapping. Al-
ternatively, mapping can make use of graph structure, look-
ing for similarities in node and edge relationships, irrespec-
tive of the semantic meaning of the node and edge values. Fi-
nally, once a mapping is reached each approach makes use
of a unique algorithm to construct final combinations. No-
tably there are typically many possible final combinations
for each approach, depending on the two input spaces and
constructed mapping. In addition, this is a traditional usage
example for illustration purposes, while we propose utilizing
machine learned models as input.

We now list the four techniques in terms of the algorith-
mic approach each uses to construct combinations in the
third step of the process outlined above. We present each
technique in terms of its algorithmic complexity. For the pur-
poses of the example we assume the following mappings of
the two inputs presented in Figure 2: house and boat, live
in and ride, passenger and resident, and land and water as
taken from (Goguen 2006).

e Amalgamation: Amalgamation, the process that pro-
duces amalgams, considers mapped elements to be inca-
pable of co-existing in a final amalgam. In the example
of Figure 2 house and boat could not both be present in a
final amalgam. Instead amalgamation first chooses one of
each of the mapped elements, then adds all of these cho-
sen elements and as many of the non-mapped elements as
possible based on node-edge relationships to the final out-
put graph. We can understand amalgamation as most like
the every day usage of the term combination.

e Conceptual Blending: Concept blending produces
blends. As described in the related work section, histor-
ically concept blending relies on four distinct spaces: the



two input spaces, a generic space, and the actual blend
space. The abstract mapping stage we discussed above
can be understood as the mapping into a generic space.
From this generic space mapping the blending algorithm
derives a final mapping to apply in the blend space, which
can vary from an empty mapping to the full generic space
mapping. For example in Figure 2 the displayed output
is from a blend space mapping equivalent to the generic
space mapping except for the mapping of land and water
as discussed in (Goguen 2006).

All individual mapped elements are combined into a
single new blended element, such as house/boat and
rides/lives in. The final blend is composed of all of these
blended elements and as many of the non-blended el-
ements as possible given open node-edge relationships.
The goal is to maximize the shared information between
the blend and the two input spaces. The choice of what
blend space mappings to apply represents the majority of
conceptual blending’s expressive power.

Compositional Adaption: Compositional adaption pro-
duces compositions. In compositional adaption the nodes
and edges from the original input spaces are broken apart
into individual pieces. These pieces can then be strung
back together to create compositions based on the given
mapping. For example the edge on from Input 2 in Fig-
ure 2 connects to nodes boat and water. But because of
the mapping of house and boat, the compositional adap-
tion can attach the node house in the place of boat, lead-
ing to the composition “house on water”. The process can
be understood as randomly choosing nodes and edges to
add to an initially empty composition based on currently
open slots. This process can stop whenever there are no
unconnected edges, meaning we can end up with smaller
graphs than the input spaces, which accounts for most of
compositional adaptions expressive power. In many cases
the output of compositional adaption can be understood
as a superset of the output of amalgamation.

Conceptual Expansion: Conceptual expansion is a pro-
cess that produces combinations referred to as expan-
sions. Expansion in this case refers to a more general form
of blending between mapped elements, in which we de-
fine N variables [0,1] representing the amount to which
each of the N mapped elements are expressed in the ex-
panded element. For example if we imagine two mapped
nodes, one with a value 5.0 and one with a value -5.0, we
can imagine a number of expanded nodes with all possible
values between 5.0 and -5.0. If the node values were cate-
gorical values of A and B we could expand final nodes of
either A, B, or AB. The process begins by randomly gen-
erating either a node or edge, and then expanding appro-
priate nodes or edges based on unconnected relationships.

We can understand conceptual expansion in the case with
all categorical values as a hybridization of conceptual
blending and compositional adaption. In particular con-
ceptual expansion creates the individual blended elements
based on the given mappings as in conceptual blending,
then constructs expansions piece-by-piece according to
these mappings as in compositional adaption. We can un-
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Figure 3: Example of the machine-learned level graphs for
overworld (left) and castle (right) type levels, reproduced
with permission from (Guzdial and Riedl 2016b).

derstand conceptual expansion’s output as representing
the superset of output of both of these techniques, which
further includes output neither technique could produce
individually as seen in Figure 2.

Case Study: Combining Machine-learned
Game Level Models

In this paper we propose applying combinatorial creativity
techniques to machine learned models in order to generate
new models without additional training data. As an illustra-
tion of the potential for this, and to give a deeper understand-
ing of these techniques we ran a case study applying combi-
natorial creativity techniques to machine-learned models of
Super Mario Bros. levels. In particular we drew on the mod-
els applied to a prior approach at marrying machine learn-
ing and creativity techniques, Guzdial and Riedl’s (2016b)
probabilistic graphical models. We lack the space to fully de-
scribe these models, but they can be understood as graphical
models that probabilistically specify the relative positions
of level components. The graphical nature of these models
makes for a simple adaption of the techniques discussed in
this paper. Notably we remove the weights from the edges
of these models as all of the historic combinatorial creativity
techniques were not designed to handle numeric variables.

We drew on five of the Guzdial and Riedl (2016b) learned
graphs for this case study representing each class of Super
Mario Bros. level: overworld, underground, athletic (some-
times called treetop levels), castle, and underwater. We visu-
alize the overworld and castle graph in Figure 3. We pulled
from the simplest machine-learned graphs of each type, the
graphs having an average size of six nodes and seven edges.
For mapping, we made use of hierarchical information as
our mapping strategy with hierarchical information adapted
from the classes used by Summerville and Mateas (2016)
(e.g. “enemy” as a parent of all game enemies, “solid” as a
parent of all unbreakable level components, etc.). We made
use of every pair of input graphs, making for a total of ten
pairs, and generated all possible unique output combinations
for each approach. In the case of blended elements we com-
bined the sets of shapes and relationships contained in the
original graphical model’s nodes and recalculated the prob-
ability distributions based on these sets. For further details
please see (Guzdial and Riedl 2016b).

To classify the output we measured a normalized edit dis-
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Figure 4: Output counts for each of the approaches for all
the combination tasks.

tance from the two input graphs as graph novelty. We note
that we are measuring novelty from both inputs, we will
never see a novelty value of 0 as some amount of the out-
put will be shared by the input. Given that these are gener-
ative level design models we also measured the playability
value of each output graph by generating a hundred levels
with each output and determining the percentage that could
be completed with an A* agent.

We created a random baseline for comparison purposes by
creating a random graph and assigning random values from
the input elements and all possible blends of the input ele-
ments to the edges and nodes of each graph. The output of
this approach can be understood as a superset of all possible
output of the other approaches, but without any of the bene-
fits that might come from leveraging the existing structure of
the input graphs. Notably we limited the size of the possible
graphs to the maximum size of the two input graphs.

Case Study Results

We present the total number of unique outputs given the in-
put of all ten combinations by each approach in Figure 4.
The random baseline produces by far the most unique output
graphs, followed by conceptual expansion, and then the re-
maining three approaches. While it is difficult to tell on the
same graph we note that compositional adaption and con-
ceptual blending both produced significantly more output
than amalgamation based on the pairwise Wilcoxon Mann-
Whitney U test (p < 0.001). However conceptual blend-
ing and compositional adaption did not produce significantly
different numbers of unique output graphs.

Given the massive disparity in the size of the output, we
chose to break the output into four categories based on the
metrics of novelty and playability, defined according to low
vs. high novelty (with a cut-off of 0.5) and low vs. high
playability (with a cut-off of 0.5 or 50% playable levels).
We present the average percentage of unique output in each
of these categories by approach in Table 1 (with playabil-
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Table 1: Output summary of percentages of the different ap-

proaches.
Approach Low P/Low N Low P/High N High P/Low N High P/High N
Amalgams 3.57% 4.23% 86.3% 5.88%
Blends 6.74% 12.6% 36.7% 43.9%
Compositions 3.33% 25% 9.17% 62.5%
Expansions 10.5% 46.8% 14.5% 30.7%
Random 2.5% 73.5% 1.07% 23.6%

Table 2: Output summary of the average whole values of the
different approaches.

Approach Low P/Low N Low P/High N High P/Low N High P/High N
Amalgams 1 1 11 1
Blends 28 52 152 182
Compositions 10 72 26 180
Expansions 523 2,331 722 1,529
Random 621 18,268 266 5,866

ity value represented as P and novelty represented as N) and
the average values of unique output per combination in Ta-
ble 2. Following the practice of expressive range (Smith and
Whitehead 2010), we present scatterplots of our generators
output in Figure 5 of playability (x-axis) and novelty (y-
axis). These values reflect our intuitions of the approaches.
For example: output amalgams have generally high value but
low novelty, blends have consistently high value, and com-
positions have a bias towards high value and high novelty.
This represents a clear trade-off in terms of approach, and
can potentially inform when each should be used. Expan-
sions are more even across all four categories, with a bias to-
wards higher novelty. In addition conceptual expansion pro-
duces nearly ten times more high quality output, producing
15,290 highly playable and novel expansions in comparison
to 1,800 compositions, 1,820 blends, and only 10 amalgams
in this category. The random output has a strong bias to-
wards non-playable, highly novel output, which matches our
expectation given it doesn’t make use of any of the structural
information from the inputs.

Case Study Illustrative Output

In order to give a more in depth understanding as to the per-
formance of these different approaches we present an illus-
trative example of a high novelty, high playability output for
each of the combinatorial creativity techniques for the over-
world castle blend. We also include a single generated out-
put level sections for each output graph, though we note each
graph is capable of generating a variety of level structure. As
one can see in Figure 6 each graph is distinct. The amalgam
and blend are the most complex, due to the requirement that
they make use of the maximum amount of elements possi-
ble. Of the remaining three, the composition and expansion
differ in that the expansion has a blended element with the
two “enemies” combined. Lastly, while the random output
is technically novel and playable it involves merging clouds
with the ground and having floating fences, which leads to
generated levels that differ significantly from the standard
Super Mario Bros. levels.



3
ooooooo

Amalgams Blends

Compositions

Expansions Random

Figure 5: Scatterplots of the output values for each approach, the x-axis is playability [0,1] and the y-axis is novelty [0,1].

Composition

Expansion

Random
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nation, with an associated generated output level chunk.

Discussion

The initial results from our case study identify cases
in which each presented combinatorial creative technique
could be applied. Amalgamation presents a safe option when
one lacks the ability to differentiate between valuable and
non-valuable output, but only produces a small number
of additional unique models. Concept blending and com-
positional adaption appear similar in the table representa-
tions, but significantly different output spaces when visual-
ized. Conceptual blending produces output similar to amal-
gams, though an order of magnitude more results. Compo-
sitional adaption produces roughly equivalent output to con-
cept blending, but a much larger variety in terms of model
novelty. We note that there are domains that are more or less
suited to the notion of blended elements. For example, when
the input variables have numeric values (e.g. does 3 and 4
make 7, 34, 43, or something entirely different). Lastly, con-
ceptual expansion produced by far the most unique output
graphs, and could therefore prove helpful in cases where one
can differentiate between low and high quality content and
desires an order of magnitude increase in the number of out-
put models.

We note there are limitations with this case study, particu-
larly with our choice of playability as a metric. Even if only
twenty percent of the output from a level design model is
playable, if one can differentiate between playable and un-
playable content then the unplayable output can be avoided.
Further, playability does not account for many important as-
pects of a level, such as style and subjective player experi-
ence. One can see this most clearly in the results of the ran-
dom baseline, which produced many levels that were tech-
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nically playable but from the authors’ perspective in no way
resembled Super Mario Bros. levels. We note this case is
partially but not completely captured by novelty, as identical
elements arranged in entirely new ways would still represent
a low novelty score. Despite this we find that playability is
still a helpful comparative metric at least for this initial case
study.

We do not anticipate combinatorial creativity techniques
to function in all circumstances. As noted above they require
inputs, some ability to map between the inputs, and some
way to evaluate output combinations. These limitations offer
some ability to influence the performance of the presented
methods, for example different mappings will lead to very
different output.

Conclusions and Future Work

In this paper we propose the application of combinatorial
creativity techniques to machine learned models derived
from knowledge extracted from games. In particular we pro-
pose applying combinatorial creativity techniques to maxi-
mize the expressive power of PCGML given minimal train-
ing data. Towards this end we present a brief survey and
case study applying combinatorial creativity techniques to
machine learned models of level design. We note a single
case study is inconclusive, but we present some evidence
that these techniques can be used to create orders of magni-
tude more novel, high quality level design models.

In the future we look to apply combinatorial creativity
techniques to other types of machine learned models trained
on knowledge extracted from games. In particular we’re in-
terested in non-level game content such as game rules and



aesthetic content. Outside of PCGML we intend to inves-
tigate the ability for combinatorial creativity to aide in au-
tomated game playing, adapting prior game playing agent
knowledge to novel environments.
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