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Abstract

Given its easy accessibility and prevalence, Twitter has been
actively used as an alternative data source for health surveil-
lance research, and personal health experiences play an im-
portant role in such surveillance activities. Therefore, there
is a need to develop efficient and effective methods to iden-
tify Twitter posts related to personal health experiences. In
this work, we present a method which combines word embed-
dings, convolutional, and Long Short-Term Memory (LSTM)
recurrent neural networks to detect personal health experi-
ence tweets. The word embedding and convolutional layers
serve as a pre-processing step for unsupervised feature learn-
ing. This step helps to eliminate the need for feature en-
gineering. We studied three distributed word representation
methods: word2vec, fastText, and WordRank to represent the
tweet texts in a vector space model. Vectors of the word rep-
resentations were later used in a convolution layer for further
pre-processing, and were fed to an LSTM based Recurrent
Neural Network (RNN) model for classification. Our results
showed that approach outperforms, with a significant margin,
conventional classifiers that used human engineered features.
The RNN based model had a significant improvement in pre-
cision compared to the other methods (by 123%). This im-
provement helps to detect more true positive Personal Health
Experience tweets.

Introduction

The World Health Organization defines that public health
surveillance is the continuous, systematic collection, analy-
sis and interpretation of health-related data needed for the
planning, implementation, and evaluation of public health
practice (WHO ). Information obtained from the population
is most valuable and important to surveillance activities. In-
formation directly reported by the population is of signifi-
cant importance in understanding their health related issues,
and there is a need to develop efficient ways of analyzing
this data.

Emergence and prevalence of social media such as Face-
Book and Twitter have made it possible for people to share
their personal experiences on social media. Studies have
shown that general purpose social media such as Twitter
can be used for surveillance of health-related issues (Dredze
2012) and public health surveillance (Yepes, MacKinlay,
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and Han 2015). There have been a number of studies that
validate the use of Twitter for surveillance of health re-
lated issues. Examples include: influenza pandemics (Chew
and Eysenbach 2010; Signorini, Segre, and Polgreen 2011;
Collier, Son, and Nguyen 2011; Bilge et al. 2012; Nagel
et al. 2013; Gesualdo et al. 2013; Broniatowski, Paul,
and Dredze 2013; Fung et al. 2013; Nagar et al. 2014),
Haitian cholera outbreak (Chunara, Andrews, and Brown-
stein 2012), Ebola outbreak (Odlum and Yoon 2015), non-
medical use of a psychostimulant drug (Adderall) (Hanson
etal. 2013), drug abuse (Chary et al. 2013), smoking (Sofean
and Smith 2012), suicide risks (Jashinsky et al. 2014), mi-
graine headaches (Nascimento et al. 2014), pharmaceutical
product safety (Freifeld et al. 2014; Coloma et al. 2015;
Jiang and Zheng 2013; Sarker et al. 2015), disease out-
breaks during festivals (Yom-Tov et al. 2014), detection of
Schizophrenia (McManus et al. 2015), foodborne illness
(Harris et al. 2014), dietary supplements side effects (Jiang
et al. 2017), and even dental pains (Heaivilin et al. 2011).
Many of these health surveillance studies involve using the
information reported by patients who shared their personal
health experiences on social media.

Personal health experiences are of unique importance in
health surveillance activities, because they provide the first-
hand encounters of changes in health conditions. However, it
is challenging to extract personal experiences from the vast
amount of social media posts. General purpose social me-
dia data are known for their noisiness, and the data gath-
ered can have significant amount of posts irrelevant to the
health issues to be monitored, and unrelated to any personal
health experiences. A common challenge identified in health
surveillance studies using social media is the difficulty in
separating the useful or “on-topic” posts from the majority
of the irrelevant posts.

Processing and analyzing Twitter data with natural lan-
guage processing (NLP) and machine-learning algorithms
pose unique challenges. As a micro-blogging service, Twit-
ter limits each post to 140 characters, making it difficult to
extract features from the text. Besides, Twitter users do not
follow the grammatical and spelling rules, rendering poor
performance in analyzing the tokens and semantics. There-
fore, many conventional machine-learning methods are in-
adequate if applied to Twitter data. With the flexibility of-
fered to Twitter textual data, significant efforts and human



intelligence are needed to identify useful and important fea-
tures for classification. It is observed that the conventional
methods are based on statistics of features without consider-
ing the semantics of tweet textual data, leading to low accu-
racy in classification.

Traditionally, feature extraction has been a laborious task
performed by domain knowledge experts usually referred to
as feature engineering. In the past, these methods have in-
volved lexical or syntactic approaches that extract frequency
based statistics about tokens in a text. Extracting the higher
level semantics from the text has been a much more chal-
lenging issue that can be very labor intensive. As a result,
the difficulty in extracting semantic data can lead to low ac-
curacy in classification.

In recent years, there has been a shift from feature en-
gineering to more automated ways of extracting features;
especially, in the text processing domain. In particular, dis-
tributed vector representations (or word embeddings) are
useful to perform the feature extraction from text.

The methodology presented in this work uses word em-
beddings to perform feature extraction from twitter texts.
The word embeddings are further processed using a convo-
lutional neural network layer which helps to compress the
data and to help discover feature representations. After the
convolutional layer, the resulting vector representations per
tweet are used for supervised learning classification using
a Long Short-Term Memory (LSTM) recurrent neural net-
work. In this study, we tested three different word embed-
ding models (word2vec, fastText, and WordRank) to repre-
sent the words in the tweets.

The results of our experiments show that our method-
ology, using a deep neural network with convolutional
and LSTM-RNN layers, performs better than conventional
methods. The methodology achieves a 123% increase in pre-
cision and significant improvements in all other performance
metrics.

Method

In this work we propose the use of a deep neural network to
perform classification and detection of personal health expe-
rience tweets. We use an annotated data set of tweets to train
and test the model. The deep neural network consists of both
convolutional and recurrent neural network layers. The use
of a recurrent neural network layer, in particular, is impor-
tant because it helps to capture the sequential semantics of
the words in each tweet. The convolutional layer serves as
a preprocessing step to the recurrent neural network layer
which helps to further compress the inputs and to possibly
learn additional salient features in each text. The data pro-
cessing pipeline is illustrated in Figure 1.

The inputs to the deep neural network are vectors repre-
senting each tweet. Word embedding methods were used to
convert the tweet texts into dense vector representations. In
this case, each word in the text is converted into a 200 di-
mensional dense vector. The word embedding step requires
the construction of a vector space where every word in a
corpus can be represented. These vector spaces are created
based on word co-occurrence in the corpus using efficient

426

neural network methods such as word2vec (Mikolov et al.
2013).

An unlabeled corpus of 22 million tweets was used to cre-
ate the word vector space. This 22 million tweet corpus was
constructed by retrieving medicine-related tweets from Au-
gust 25, 2015 through December 7, 2016 (using the Twitter
Streaming APIs). It is important to note that this word em-
bedding corpus is not the same corpus used to train and test
the model. This corpus of 22 million tweets is unlabeled and
was used for the word embedding step only.

Word embedding approaches benefit from using large
amounts of data (Mikolov et al. 2013) and, as such, this
was the rationale for collecting the 22 million medicine
related tweets. Given that twitter data is very noisy, we
should note that some pre-processing of this unlabeled data
set was needed to arrive at the 22 million tweets used.
Pre-processing included: removing re-tweets, non-English
tweets, URLs, and punctuations.

Each tweet was converted into its vector space represen-
tation using the unlabeled word vector space. In this case,
each tweet can be thought of as a variable length sequence
of 200 dimensional vectors where each word is a vector (of
size 200). These input vector sequences are then passed to
the convolutional layer of our deep neural network. Convo-
lutional network are usually used in the context of images of
fixed or consistent size. To address this issue, we decided to
treat each tweet as a matrix (image) of 48x200 dimensions.
In this case, the number 48 represents the number of words
that we allow per tweet and 200 is the vector size of each
word. We use padding for tweets with less than 48 words
and truncation for tweets with more than 48 words.

Personal Experience Tweets

For the purpose of this work, a personal experience tweet
(PET) is defined as a tweet that describes a persons en-
counters, observations, and events related to his or her life
(Jiang, Calix, and Gupta 2016). The PETs are important for
health surveillance because they can reflect the changes in a
persons physical conditions. These can include experiences
with an illness, a disease or a medical treatment. The
following are examples of personal experience tweets that
address health related issues.

“accidentally took way too much ibuprofen for my cold
& now i’'m at work drowsy..... best of luck to me”

“my headache going away. this ibuprofen really worked
for me”

“Ibuprofen did the trick and my shoulder is back to
normal this morning. Just one of those stupid ‘I am ancient’
things, I guess.”

Word embedding

To investigate the importance of the word embedding tech-
niques, we performed the analysis using 3 well known
word embedding techniques. The three methods used were:
word2vec, fastText and WordRank.

Word embeddings have become an active area of research
in recent years and are widely used now for natural lan-
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Figure 1: Flow chart of identifying the personal experience
tweets

guage processing. In general they are preferred over human
based feature engineering tasks because they are less time
consuming and can achieve good results. Word embedding
techniques have been used in many fields such as in generic
text classification (Lev, Klein, and Wolf 2015), and Twitter
sentiment analysis (Severyn and Moschitti 2015). The qual-
ity of the word embedding method can influence the perfor-
mance of the classifier. Therefore, to address this issue we
have run the proposed method using three word embedding
techniques which are word2vec, fastText, and WordRank .
Word2vec (Mikolov et al. 2013) and fastText (Bojanowski
etal. 2016) are similar embedding approaches. The main dif-
ference is that word2vec treats each word as an atomic unit
whereas fastText treats each word as a composite of smaller
atomic units such as character n-grams. Each vector in fast-
Text is therefore a sum of the individual character n-gram
vectors. Intuitively, this can be helpful for rare words that
consist of several meaningful units. For example, the word
“superstructure”, which is a compound word, may not be
in the vocabulary. In word2vec, this word may be missed.
With fastText, some semantics of this word may be recov-
ered if the word is represented by its smaller atomic units
that may be present in other words in the vocabulary such as

427

“struc” and “ture”, for instance. Finally, WordRank sets up
the word embedding optimization as a ranking problem (Ji
et al. 2015). That is, given a word “w”, WordRank tries to
predict an ordered list of words c1, c2, , cn where the words
are ordered by frequency of co-occurrence with “w”. One
advantage of WordRank is that it can achieve similar results
to the other methods while using fewer examples.

Convolutional Long Short-term Memory Classifier

Figure 2 presents the architecture of the proposed deep
neural network. As previously indicated the proposed deep
neural network consists of a convolutional layer for fea-
ture discovery and an RNN layer for sequential classifi-
cation. RNNs have been used extensively in natural lan-
guage processing tasks such as in (Mikolov et al. 2010;
Lai et al. 2015) and can be traced back to early work such as
(Elman 1990). Essentially, they are sequential based tech-
niques that look at the current input to the model plus the
results from the processing of previous inputs.

The most common and best performing RNN approach is
the long short-term memory (LSTM) based RNN network
(Gers, Schmidhuber, and Cummins 1999). LSTM networks
perform better than RNN networks because they are RNN
networks with more optimized components (LSTM units).
In essence they have LSTM units that can better retain pre-
vious information (without modifying it during the training
process). They have been proven to perform really well in
many studies.

The convolutional layer used in our model was used to
discover better representations of the features. Convolu-
tional neural networks have been used in text processing task
such as character-level feature extraction (Zhang, Zhao, and
LeCun 2015), and sentences classification (Wu, Yin, and Liu
2017).

As previously indicated, in our convolutional LSTM
model, we transformed each tweet into matrices of 48x200
dimensions. Tweets with less than 48 words were padded by
an all Os vector and unknown tokens used an all 1s vector.
We use 1 CNN layer with slide window of size 5 and 1 max-
pool layer. After convolution, the tweets are represented as
matrices of size 44x128.

The analysis was performed using Keras' and genism?.
Keras is a front-end library which contains Googles Tensor-
Flow? interface, and Genism is a free python package which
contains the word2vec model and the interface to implement
the fastText and WordRank model. In the LSTM model, we
used L2 regularization and class-weight setting to adjust the
parameters, and we trained the model for over 200 epochs to
observe which epoch had the best performance. Finally, we
chose 4 epochs to train the model.

Datasets

Vector space models were constructed from a corpus of 22
million tweets. To train LSTM model and test the model,
12,331 tweets were randomly selected from the corpus and

"https://keras.io
Zhttps://radimrehurek.com/gensim
*https://www.tensorflow.org
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Figure 2: The architecture of convolutional LSTM neural network.
annotated. A set of 8,612 tweets were chosen as the training

dataset and 3,719 tweets as the test dataset* . The informa-
tion of the datasets is shown as Table 1.

Table 2: Performance comparison of classifying PETs be-
tween conventional classifiers with 22 engineered features
and the convolutional LSTM with word index vectors

Input classifier Acc Prec Recall| F1 ROC
Table 1: Training and test data sets Logisti
g T | e 0.660 | 0.341 | 0452 | 0.389 | 0.574
Training Set Test Set g g g. .
£ 2 Decision
#of | #of | #of | #of | #of | #of @ 5 Tree 0.620 | 0.305 | 0.463 | 0368 | 0.551
Mo
Tweets | PETs | Non- | Tweets | PETs | Non- Q KNN 0.640 | 0337 | 0.511 | 0406 | 0.575
PETs PETs SVM 0.660 | 0.338 | 0441 | 0.383 | 0571
Count 8612 | 2065 | 6547 | 3719 | 897 | 2,822 ~ | Conv. LSTM
g 0.824 | 0.645 | 0.601 | 0.622 | 0.748
] (normal)
5 Conv. LSTM
g ) 0.814 | 0.600 | 0.746 | 0.665 | 0.778
R l t d D. . g (class weight)
estlts and scussion g | g | ComISTM o8| 062 | 0695 | 0726 | 0.826
To understand how well our approach performs, four con- = | & | (mormal ) ) T )
. . . @
ventional classifiers were chosen to generate the baseline | S C‘l’“V- LS.TII:: 0843 | 0687 | 0641 | 0663 | 0772
classification results, and they are logistic regression, deci- ] (class weight)
. . . 5 i Conv. LSTM
sion tree, kNN and support vector machine. In our experi- E E | D 0.828 | 0.645 | 0.643 | 0.644 | 0.765
. . . norma
ment, these classifiers were fed with 22 features engineered =] Conv LSTM
. = .
5 0.853 | 0.667 | 0.796 | 0.726 | 0.832
by researchers of our group. These features include POS £ | (class weight)

tags, count of URLSs, user counts, gramulator features, and
screen name based features. For a detailed description of
these features see (Jiang, Calix, and Gupta 2016). On the

- Table 3: Improvement of the best performance measures.
other hand, we fed the output of the convolutional network

to our LSTM classifier. To investigate the performance of Conventional classifiers Comv. LSTM %
. . . . with with

d}fferent word embedd'lng models, we expenmeqted with 3 engineered features word embeddings | CP2"8¢
different word embeddlng mode'ls dlscuss'ed previously. Ao 0,660 0874 32

The result of our experiment is shown in Table 2. The ta- Prec 0301 076 D)
ble shows a comparison of the performance of the baseline Recall o 079 %
classifiers with human engineered features versus the perfor- - 0’406 0'726 -
mance of the LSTM based deep neural network with word . .
embedding features. ROC 057 0832 hal

Results (Table 2) demonstrate that our approach to de-
tect the PETs with LSTM based deep neural network with
word embedding features outperforms, in all aspects, base-
line classifiers that used human engineered features. In other

words, unsupervised learned features seem to represent the
semantics embedded in the tweet text better than engineered
features. This can significantly reduce the efforts needed to

“The annotated data set named Medicine Corpus are available
at: https://github.com/medeffects/tweet_corpora
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engineer features.
Considering the best performances in each approach, one



can see that accuracy has improved from 0.660 to 0.874, pre-
cision from 0.341 to 0.762, recall from 0.511 to 0.796, F1
from 0.406 to 0.726, and ROC from 0.575 to 0.832 (see Ta-
ble 3). The biggest improved measure is the precision. This
is of significant importance to this work, because a high pre-
cision implies a high true positive rate and low false positive
rate—that is, more actual PETs (true positives) will be cor-
rectly identified in the predicted PETs (true positives + false
positives). Achieving high precision has always been a goal
in detecting PETs.

Another intriguing observation from the results in Table 2
is that in all performance measures, the most popular word
embedding model, word2vec, does not perform the best.
This may be a surprise, but it may confirm with the test-
ing results by Rare Technology (Sethi 2017): fastText and
WordRank have higher semantic accuracy.

Conclusion

We investigated an approach to combine word embedding
techniques with convolutional and LSTM deep neural net-
works to detect PETs from Twitter data. We treated tweets
as matrices of size 48x200, and used them with a CNN for
salient feature detection. After CNN processing, better qual-
ity feature representations were fed in sequence to an LSTM
based classifier. The results show that the proposed method
outperforms the conventional classifiers which use human
engineered features. The fastText and WordRank word vec-
tor space models have shown their advantages in providing
a CNN with an excellent word vector space representation.

Compared with conventional classifiers, the combination
of word embedding techniques and convolutional LSTM
neural networks is not only a more accurate method to de-
tect PETs, but can also accelerate the development process
by not using human engineered features. For health surveil-
lance, an efficient methodology such as the one proposed
in this paper is crucial to deal with large scale social media
data.
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