
Making Personalized Recommendation through Conversation:
Architecture Design and Recommendation Methods

Sunhwan Lee, Robert Moore, Guang-Jie Ren, Raphael Arar, Shun Jiang
IBM Almaden Research Center

650 Harry Rd
San Jose, California 95120

Abstract

Due to popularity in texting and messaging, a recent advance-
ment of deep learning technologies, a conversation-based in-
teraction becomes an emerging user interface. While todays
conversation platforms offer basic conversation capabilities
such as natural language understanding, entity extraction and
simple dialogue management , there are still challenges in de-
veloping practical applications to support complex use cases
using a dialogue system. In this paper, we highlight such chal-
lenges and share practical knowledge learned from our expe-
riences on developing a leisure travel shopping application
that combines a personalized recommendation system and a
conversation system. Such efforts include a conversation de-
sign, extraction of user intents, communication of variables
between a dialogue system and analytics engines, and dy-
namic user interface designs. In particular, we introduce our
approach to overcome the unique challenges, understanding
user’s intent, when dialogue system met personalized recom-
mendation system. Furthermore, we propose a semantic map-
ping as a novel method to utilize undefined user’s preferences
when producing recommended items.
Finally, examples of recommendations based on natural lan-
guage conversations are provided in order to exhibit how
components in the overall architecture are seamlessly orches-
trated. In general, our framework provides guiding principles
and best practices on the implementation of task-oriented dia-
logue system connected with other components in the overall
architecture.

Introduction

In the past few years, we have seen a resurgence of in-
terest in conversational user interfaces as the major com-
puter and Internet companies have released virtual agents
and platforms including Siri, Alexa, Cortana, Google As-
sistant, Watson and more. While chatbots have been around
since the ELIZA system in the 1960s, the current platforms
for building conversational interfaces, Api.ai, Wit.ai, Luis,
IBM Watson Conversation, etc., combine powerful natural
language classification techniques with authoring tools that
are accessible to non-programmers. The result has been a
proliferation of chatbots and virtual assistants on the web
and on mobile devices. In addition, with advances in far-field
microphone arrays, voice interfaces, which enable a system

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to hear the user even from across the room, have entered the
living room.

On the other hand, recommender systems emerged as an
independent and active research area in the mid-90’s, when
explicit user rating was the main resource to build the sys-
tem (Hill et al. 1995), (Resnick et al. 1994). Depending
on how users and items are modeled, there are two main
approaches to building recommender systems: collabora-
tive filtering (Koren, Bell, and Volinsky 2009) and content-
based approach (Adomavicius and Tuzhilin 2005). Recom-
mender systems can also be differentiated based on the type
of source data on which the system is built - explicit or
implicit user feedback. Because different approaches have
their own limitations, a hybrid recommender system (Burke
2002), which not only uses observations from implicit feed-
back but also utilizes various contextual information, was
also proposed.

Motivated by an emergence of this new user interface, we
would like to share our experiences on building a personal-
ized recommender system whose inputs are provided from
the conversation interface. There are previous attempts to
integrate a personalized recommendation in a dialogue sys-
tem, but we find very few literatures describing the over-
all procedure and providing practical guidances to generate
recommendations according to users’ interaction with a dia-
logue system. One such implementation is introduced in (At-
zori, Boratto, and Spano 2017) but the main focus is limited
on the interaction between a recommender system and chat-
bots in the front end. Our paper aims to share the following
aspects of building and designing the overall architecture for
realizing a personalized recommender system using a dia-
logue system. First, we introduce the design of architecture
as well as individual components and their work flows. Sec-
ond, the method to extract user’s intent and preferences from
a dialogue system and how they are matched with the fea-
tures of destinations for recommending destinations is ex-
plained followed by web-conversation user interface design.

Travel Advisor in Dialog System

Todays travel shopping sites and applications have almost
universally adopted the design of search forms where users
provide travel dates, locations and a limited set of search cri-
teria and in turn get a generic list of flight, hotel, car rental
and tour package options. The user engagement is limited

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

727



Figure 1: Overall architecture of Travel Advisor

and travel companies know little beyond user search. To ad-
dress the issues, we have developed a web-based conver-
sation application that provides personalized travel recom-
mendations. A dialogue system is a primary interface for
user’s interaction and recommendations of destinations are
provided at the right time by understanding user’s utterances
and intents. However, users can also interact with the web
interface to modify their preferences captured in the con-
versation or to interact with the results of recommendations.
The expectation is to increase the level of user engagement
by providing more flexible and personalized shopping expe-
riences by enabling the interaction with a natural language.
Furthermore, the conversation logs are stored in the back end
for further analytics such as deriving a personal insights or
quantitative measure of user’s level of satisfaction through
the conversation.

Architecture

In this section, we introduce the architecture and its com-
ponents required to develop a personalized recommendation
system in a dialogue system. Figure 1 shows a main platform
and components in the middle box, and input data sources
and the front end components, such as user interface design,
in bottom and top box respectively. Since the processing of
input data sources will be covered in later section, the details
of components related with a dialogue system, service inte-
gration engine, and conversation-web user interface design
are provided in this section.

Conversation services and templates

Conversation services is a main framework for developing
chatbots by understanding the user’s utterance. In order for
the development of a recommendation system on top of a
dialogue system, we learned three important aspects that
must be considered thoroughly. Context variables must be
set by the dialogue service to accommodate variations of en-
tities. Once context variables are set up, then entities or key
words can be detected from the conversation. For the de-
velopment of destination recommendations, the preferences
of users like nightlife, restaurants, beaches, are created and
captured as entities in the dialogue system based on context
variations. Table 1 shows some examples from entities used
as features to describe the destinations, and some examples
of context variables. In fact, coming up with the compre-
hensive set of entities and their variations requires a lot of
domain knowledge and manual efforts. Even though we re-
ferred to many travel related popular websites for a list of

entities, we would like to reserve further improvements on
the quality of destination description as future works.

Recognizing not only a user’s preferences using entities
but also the intent (Allen and Perrault 1980) is essential to
determine a right time to invoke the recommendation engine.
While current major chatbots and virtual assistant platforms
vary, most use the same general paradigm, what we might
call the intent-entity-context-response (IECR) paradigm. In
this paradigm, 1) the user’s intent, or conversational action,
is determined largely through natural language classifica-
tion, 2) the entities in the user’s utterances are extracted
through keyword matching, 3) the context of the current and
prior turns in the conversation are preserved in variables
and all of these are used by a dialogue manager to deter-
mine 4) the system’s response back to the user, in text or
voice. While IECR platforms provide powerful natural lan-
guage processing tools, they provide little or no guidance on
how to create an interaction that is like a natural conversa-
tion (Moore et al. 2017). From a natural language perspec-
tive, English works the same way no matter the context in
which it is used, whether a poem, document, song or con-
versation. However, there is an organization to natural con-
versation that is not provided for by natural language pro-
cessing tools. To fill this gap, we draw on the field of Con-
versation Analysis, which provides a model of sequence or-
ganization (Schegloff 2007) in natural human conversation,
as well as empirically derived patterns of conversational ac-
tivities (Moore and Arora 2016).

In our conversational system, we use natural language
classification to determine the type of action the user is
taking, for example, “I want to go someplace with historic
buildings” is classified as a destination request, while “show
me flights from Chicago to Paris” as a flight request. The
intent or action type determines the form of the appropriate
response: a set of destinations vs. a set of flights. We then use
keyword matching to extract entities from these phrases such
as historic buildings, Chicago, and Paris. When the dialogue
manager collects all of the preferences required for a partic-
ular request type, for example, origin, destination, departure
date and return date for a flight request, it signals to the back
end to look up information or make recommendations based
on the current set of preferences. The conversation service
essentially translates what the user says into a query that is
actionable by the back end.

Conversation-Web user interface

One of the unique aspect of our application is to build a di-
alogue system in conjunction with a web-based user inter-
face. It provides more flexible and intuitive way of inter-
actions such as a visualization of list of recommendations

Table 1: Examples of entities and context variables

Entity Context variables
local attractions local hangouts, local hot spot
nightlife party city, night clubs, jazz clubs
landmarks manmade towers, statues, monuments
landmarks natural rainforests, fall leaves
art museums exhibit, gallery, painting

728



Figure 2: Conversation-Web user interface

on a map, showing detailed information about the destina-
tion when clicking the destinations, and modifying the list
of preferences through a web interface. However, it requires
more sophisticated orchestration in the back end because
two user interfaces should function in a synchronized way.

The user interface shown in figure 2 has multiple com-
ponents requiring such synchronizations. The top portion
has sections for user’s name, location, and the list of pref-
erences. These components are updated as the conversation
captures relevant information or users can manually update
the fields. The right pane is reserved for showing the results
of analytics, the outputs from a recommendation engine in
this case. There are multiple sections to display recommen-
dations based on different categories such as weather, user’s
preference. These sections are also adaptive to the conversa-
tion between a user and the dialogue system. For example,
if a user mentions a particular month, then the recommen-
dations based on the weather condition are updated with a
user specified month. A map is displaying geographic lo-
cations of recommended destinations and users can inter-
act with destination cards below the map using conventional
ways of interacting with web user interface. The contents
are refreshed when a dialogue system detects the intent to
request new recommendations.

Service integration engine

In addition to physically hosting modules in the cloud envi-
ronment, the role of service integration engine is to orches-
trate the functions among conversation services, recommen-
dation engine, and web-conversation user interface. Because
our application is not a stand-alone dialogue system, the
communication between components in the architecture is
very important to implement desired features in the applica-
tion. As a result, many factors like scalability, resiliency, and
communication bandwidth must be considered thoroughly
when designing and building the service integration engine.

Personalized Recommendation

Various types of personalized recommendation have been
developed and proposed as new kinds of data sources
emerges. We believe that a dialogue system is a new plat-
form which generates another new type of data source, and

thus practical experiences that we share in this paper will
be helpful for further research and practical developments.
Although other platforms like natural language search take
user’s intents and preferences in a natural language and re-
turn the recommended items, building a recommendation
system with a dialogue system requires the support of con-
tinuous interactions between a dialogue system and users.
The continuous interactions stem from the flexibility of a
dialogue system and the conventional way of capturing a
user’s preference tends to create a discontinued results of
recommendation. In most of natural language based recom-
mender system, recommendations are returned with a sin-
gle turn interaction between a user and the system. In a
dialogue system, however, users can continuously indicate
preferences in as many turns as they want. Also modifica-
tion, addition, and removal of preferences are expected in a
dialogue system and thus a recommender system needs to
manage such cases in flexible manner as well.

In this section, we provide the precise steps to process
unstructured data for constructing features of destinations,
to understand the user’s preferences, and finally to generate
personalized content-based recommendation system.

Content-based recommendation and semantic
mapping

Content-based recommendation leverages attributes of items
to be recommended. We used the entities, some of which are
listed in table 1, as attributes to embed text descriptions of
destinations in our catalog. Entities are identified in raw text
descriptions from Wikipedia and Wikitravel, and the number
of occurrence of entities are used to embed each destination
into the vector of n-dimension, where n is the number of
entities. Wikipedia has a general information while the con-
tents of Wikitravel are more geared toward travel-specific
information. Both services crowdsource the contents, which
can be programmatically accessed via MediaWiki action
API with the name of destination as a parameter.

One challenge of building a natural language based rec-
ommendation systems is to handle undefined preferences
from users. Although context variables capture variations of
attributes but it is impossible to extend the number of con-
text variables to capture all possible variations. These chal-
lenges exist in all platforms whose main interactions happen
in the format of natural languages, including a dialogue sys-
tem. To overcome this challenge, we adapted a novel method
of leveraging semantic distances between user’s preferences
and predefined entities. For example, if the word family is
captured as a keyword in the conversation, then the seman-
tic distance between family and existing entities are com-
puted using WordNet corpus in NLTK python module (Bird,
Klein, and Loper 2009). Then a vector, whose elements are
a semantic distance between family and entities, represents
a user’s preference. Examples of semantically similar and
dissimilar entities given undefined preferences are shown in
table 2. Content-based recommender system uses a cosine
similarity between two vectors, one from user’s preferences
and another from attributes of destinations, to recommend
destinations in response to user’s taste.

729



Table 2: Examples of semantically similar and dissimilar en-
tities with undefined preferences

Preference Similar entities Dissimilar entities
family sports, beaches wineries, spas
bachelor party bars, events relaxing, aquarium
anniversary romantic, nightlife adventurous

Examples

Two examples of recommended destinations given a conver-
sation flow are shown in Example 1 and Example 2.

Example 1

SYS: Hi, I’m your Travel Advisor. What’s your name?
USR: I’m Amy
SYS: Hi Amy! Tell me about your trip.
USR: I’m planning a family vacation in the USA
SYS: What kinds of things do you like to do?
USR: can you give an example?
SYS: Tourist attractions, museums, nightlife?
USR: oh, tourist stuff and local cuisine
SYS: One moment, please.
SYS: Okay. Here are some destinations you might like.
Recommendation: Honolulu, Orlando, Boston,
Charleston, Sacramento, Santa Barbara, Fort Laud-
erdale, Columbus, Omaha, Richmond

Example 2

SYS: Hi, I’m your Travel Advisor. What’s your name?
USR: I’d like destinations in December
SYS: What kinds of things do you like to do?
USR: hiking and relaxing
SYS: One moment, please.
SYS: Okay. Here are some destinations you might like.
USR: great weather too
SYS: One moment, please.
SYS: Okay. Here are some destinations you might like.
Recommendation: Colorado Springs, Denver, Tuc-
son, Chattanooga, Santiago, Tegucigalpa, San Fran-
cisco, Knoxville, Santa Barbara, Branson

In the conversation, inputs to the recommendation system
are underlined and highlighted in bold fonts. Two examples
attempt to demonstrate different types of entities related with
things to do, location, time, and weather of preferred travel,
and how they are reflected in the results of recommended
destinations. More rigorous evaluation of the performance
of proposed recommendation method will be done by de-
ploying the recommendation in the production and monitor-
ing the performance. But we tried to demonstrate working
examples which were generated by the integration of a dia-
logue system and the recommendation engines.

Future Works

We presented the overall architecture for developing the rec-
ommendation system interacting with a dialogue system,
and introduced the role of individual components in the ar-
chitecture for sharing practical experiences and unique chal-
lenges. There are still several enhancements as future works.

As a new type of data sources, conversation logs can be
interesting data points to the recommendation system. When
web interface became popular, data from user’s interactions,
such as click and scroll, contributed to improve the perfor-
mance of recommendations. We foresee similar trends as
more real-world applications are adapting a dialogue sys-
tem as their platform. It will certainly help understanding
the users from multiple angles. Further analytics on the cor-
relation between conversation logs and user’s action to the
recommended items through click or like can be used as
a learning process to create attributes and their associated
weights to items. The flexibility of a dialogue system can
enrich the set of attributes and alleviate a lot of manual ef-
forts to define features or attributes representing items.

References

Adomavicius, G., and Tuzhilin, A. 2005. Toward the next gen-
eration of recommender systems: A survey of the state-of-the-
art and possible extensions. IEEE Trans. on Knowl. and Data
Eng. 17(6):734–749.
Allen, J. F., and Perrault, C. 1980. Analyzing intention in ut-
terances. Artificial Intelligence 15(3):143 – 178.
Atzori, M.; Boratto, L.; and Spano, L. D. 2017. Towards chat-
bots as recommendation interfaces.
Bird, S.; Klein, E.; and Loper, E. 2009. Natural Language
Processing with Python. O’Reilly Media, Inc., 1st edition.
Burke, R. 2002. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted Interaction
12(4):331–370.
Hill, W.; Stead, L.; Rosenstein, M.; and Furnas, G. 1995. Rec-
ommending and evaluating choices in a virtual community of
use. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, 194–201.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization
techniques for recommender systems. Computer 42(8):30–37.
Moore, Robert J., R. H., and Arora, A. 2016. The machinery of
natural conversation and the design of conversational machines:
Applying models from conversation analysis to conversational
ux design. In American Sociological Association annual meet-
ing.
Moore, R. J.; Arar, R.; Ren, G.-J.; and Szymanski, M. H. 2017.
Conversational UX design. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Comput-
ing Systems, 492–497.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and Riedl,
J. 1994. Grouplens: An open architecture for collaborative
filtering of netnews. In Proceedings of ACM Conference on
Computer Supported Cooperative Work, 175–186.
Schegloff, E. 2007. Sequence Organization in Interaction: Vol-
ume 1: A Primer in Conversation Analysis. Primer in conversa-
tion analysis. Cambridge University Press.

730


