
Thematic Distillation and Point of View Extraction
for Enterprise-level Documents

Elham Khabiri, Wesley M. Gifford, Pietro Mazzoleni, Dharmesh Vadgama
IBM Research

1101 Kitchawan Rd.
Yorktown Heights, NY 10598

Abstract

An “elevator pitch” is a brief, persuasive speech that an ex-
perience seller can use to attain the attention of a prospec-
tive client. Unfortunately, when selling complex enterprise
products and solutions, there is no one pitch that works for
all customers. To craft a good pitch, a seller must study a
large amount of documentation, including product descrip-
tions, client references, and use cases. Leveraging experience
developed over the years, sellers then determine which mar-
keting message will work best with a client. The goal of our
research is to automatically create knowledge snippets from
a large set of enterprise documents that can be used in ele-
vator pitches. We refer to these snippets of text as points of
view (POVs). Our method is based on natural language un-
derstanding (NLU), clustering and ranking techniques where
the most relevant and informative content are selected as
POVs for a given product. In addition, our approach is tai-
lored to create POVs for a given aspect of the product, like
the business challenges or the benefits of deploying the prod-
uct. In this paper, we present our initial results in analyzing
thousands of client references and programmatically creating
POVs for hundreds of IBM solutions. Our tool has been de-
ployed and is being tested by a group of IBM sellers. While
specifically built for IBM sellers and business partners, our
solution has broad applicability in the delivery of marketing
messages for complex enterprise solutions.

1 Introduction

Business to business (B2B) companies, especially ones
working with medium-to-large enterprises, still rely heavily
on in-person communication to drive marketing and sales.
When a sales person begins the conversation with a prospec-
tive client, a critical task is crafting a personalized market-
ing message which would resonate with the client. We re-
fer to such personalized marketing messages as an “elevator
pitch”. In other words, an “elevator pitch” is a brief, persua-
sive speech that an experienced seller can use to attain the
attention of a prospective client. Typical components of an
effective elevator pitch comprise answers to questions like
“why is this product relevant to my organization”, “where
have you deployed it before”, or “which business benefits
will I obtain from using it”. Unfortunately, creating an “ele-
vator pitch” is complex as it can vary by customer or seller

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

selling style, and it has to constantly evolve along with the
product. To craft a good pitch, a seller must study a large
amount of documentation, including product descriptions,
client references, and use cases. Leveraging experience de-
veloped over the years, sellers will then learn the most ef-
fective marketing messages for a client. Unfortunately, most
sellers do not have the experience, capacity, or time to distill
such a large amount of data to create personalized marketing
messages. This creates sub-optimal communication with the
client and has a direct impact on revenue.

The goal of our research is to help sellers in creating effec-
tive “elevator pitches”. Note that our objective is not helping
sellers find the right document, but rather to automatically
create knowledge snippets to be used in an elevator pitch
from a large collection (possibly hundreds of thousands) of
documents. We refer to these knowledge snippets as points
of view (POVs). Operating in the broad research area of
knowledge summarization, our method is based on natural
language understanding (NLU), clustering and ranking tech-
niques where the most relevant and informative content are
selected as POVs for a given product. A key capability of
our approach is the ability create POVs for a given aspect of
the product, like business challenges or business benefits in
adopting the product, or competitor-analysis insights.

In this paper we present our initial results in analyzing
thousands of client references and programmatically creat-
ing POVs for hundreds of IBM products and solutions. Our
tool has been deployed and is currently being evaluated by a
group of IBM sellers. While specifically built for IBM sell-
ers and business partners, our solution has broad applicabil-
ity in the delivery of marketing messages for complex enter-
prise solutions.

The rest of the paper is structured as follows. In section 2,
we compare our method with the existing state-of-the-art al-
gorithms. Section 3 explains the motivational use-case as
well as the data we used for our analysis. In section 4, we
describe the end-to-end procedure to extract POVs. In sec-
tion 5, we explain different modeling approaches and how
we use those with our data. In section 6 we briefly describe
the tool we created for IBM sellers and initial user feedback.
Section 7 concludes the paper and discusses future efforts.

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

65



Figure 1: POV extraction consists of clustering similar sen-
tences, ranking sentences, ranking clusters, and linking sen-
tences to corresponding documents.

2 Related Work

This work is by its nature closely related to the general topic
of summarization. Although our application is specific to an
enterprise, the objective is identical to many summarization
tasks; to produce a dense, informative summary which we
refer to as point of view (POV). There are many works in
the area of extractive and abstractive summarization. Ex-
tractive models generate summaries by extracting important
sentences from the original text and combining them to form
a summary. On the other hand, abstractive models create
summaries from scratch without being constrained to reuse
phrases from the original text. Abstractive summarization,
e.g. (Ganesan, Zhai, and Han 2010) and (Ganesan, Zhai,
and Viegas 2012) is less common than extractive approaches
and more difficult since significant amounts of training data
are required. Thus, most research on summarization focuses
on extractive methods. Many of the extractive methods are
based on graph algorithms, including (Khabiri, Caverlee,
and Hsu 2011), TextRank (Mihalcea 2005) and LexRank
(Erkan and Radev 2004) for document summarization. Sim-
ilar to Google’s PageRank algorithm (Page et al. 1999) or
Kleinberg’s HITS algorithm (Kleinberg 1999), these meth-
ods first build a graph based on the similarity relationships
among the sentences in a document. Then the importance of
a sentence is determined by taking into account the global
information on the graph recursively.

Recently, there have been several papers on using neural
networks to generate abstractive summaries. (Rush, Chopra,
and Weston 2015) adapted the feed-forward neural network
language model which was originally described by (Ben-
gio et al. 2003). They applied a local attention-based model
so that each word of the summary is generated when con-
ditioned on the input sentence. Also, (Chopra, Auli, and
Rush 2016) proposed a conditional recurrent neural network
which acts as a decoder to generate the summary of an input
sentence. Both of the above works are inspired by the pro-
posed architectures for machine translation (Bahdanau, Cho,
and Bengio 2014). They have extended an encoder-decoder
architecture, allowing a model to automatically search for

parts of a source sentence that are relevant to predicting a
target word. More recently, (See, Liu, and Manning 2017)
proposed a pointer generator model with coverage mecha-
nism that is built on top of a sequence-to-sequence attention
model (Nallapati et al. 2016). It is shown to prevent undesir-
able behaviors such as inaccurate factual details, inability to
deal with out of vocabulary words, and provides summaries
with non-repeating concepts.

The above works have used large input-summary pairs
to train their models. Unfortunately for specific domains
such as marketing, there are no standard training sets, mak-
ing development and application of abstractive models diffi-
cult. Therefore, in this paper we explore different techniques
of extractive summarization. We have leveraged some of
the neural network based techniques for word embeddings
as were suggested in (Mikolov et al. 2013b) and (Le and
Mikolov 2014).

3 Motivating Scenario and Data

The dataset we used for our work consisted of 115 IBM in-
dustry solutions and approximately 10,000 client reference
and case study documents.

IBM industry solutions represent IBM offerings specifi-
cally tailored to one industry, such as healthcare, retail or
financial services. As an example, the “Health system per-
formance & optimization” solution for the healthcare indus-
try aims to optimize business operations to meet changing
industry demands. Creating POVs for industry solutions is
particularly challenging for sellers as they need to include
both business and technical aspects of the offering. For each
of the 115 industry solutions, we used the title and descrip-
tion to semantically categorize the offering.

The body of knowledge used to extract POVs consists
of approximately 10,000 client reference and case studies.
Client references and case studies describe success stories
of how clients teamed up with IBM to address specific chal-
lenges. The content includes fields such as the client name,
client description, business needs, solution benefits, and in-
dustry. The business needs and solution benefits fields are
free text fields, and contain a few sentences up to several
paragraphs of content. Note that these documents do not in-
clude a specific tag for industry solution as the success sto-
ries might have elements which are relevant to multiple so-
lutions. Determining which client references are relevant to
each industry solution was one of the challenges we had to
address.

4 Extracting POVs

The process of extracting POVs from a large set of doc-
uments is depicted in Fig. 1. It begins with mapping the
solutions to documents, since there is no explicit mapping
available. Second, all the documents pertaining to each so-
lution are integrated into a group for further processing. For
these groups of documents the business needs and solution
benefits sections are kept separate. Then, from each group,
similar sentences are clustered together based on their vec-
tor representations. The ranking of the clusters, as well as
the sentences within each cluster, are done according to sev-

66



�������	

�����	
���
��
������

����	����
��
����	���


�����	
���
���

������
�������	���

������	


������ 


����	����
�������
 ������	


Figure 2: Process to map solutions to documents

eral metrics described later in this section. Finally, the POVs
are extracted from the sentences with the highest combined
score in each cluster. Many of the above steps are based
on the vector representation of the sentences. Approaches
to creating the vector model are described in Sec. 5.

Mapping Solutions to Documents

Frequently in enterprise environments documents will not
be properly tagged, or will be tagged in a different way
than is needed. In our case we first need to associate the
source documents with solutions. While source documents
are tagged with some product names, these names have
evolved over time and hence they do not exactly match our
solution names.

Our approach to handle this is to determine which source
documents are most relevant to a particular solution by con-
sidering the concepts and keywords expressed in both sets
of documents. We begin this process by extracting concepts
and keywords from solutions using IBM Watson Natural
Language Understanding1. This tool has the capability to an-
alyze text in a variety of ways, including extracting concepts,
entities, keywords, sentiment, etc. We found that concepts
alone did not capture significant information about the so-
lutions given the typically short length of their descriptions,
but adding the keywords improved the quality of the results.

Once we have a set of concepts and keywords we need
to identify the most relevant source documents. To facilitate
searching over documents and extracting keywords and con-
cepts en masse, we loaded the source documents into IBM
Watson Discovery2. Now, we use a query constructed from
the top keywords and concepts of each solution description
to return a ranked list of matching documents. This process
is carried out across all solutions, saving the top 200 doc-
uments that resulted from the concept and keyword based
query. The process of mapping solutions to documents is
depicted in Fig. 2.

Identify Target Sentences

For our use case, we need to focus on sentences that pertain
to the business needs and solution benefits for a particular
solution. To this end, we perform a preprocessing step to
retain only the sentences specifically addressing needs and
benefits for use in the final summary. However, in training

1https://www.ibm.com/watson/services/natural-language-
understanding/

2https://www.ibm.com/watson/services/discovery/

our models, we are not constrained to such sentences. This
step is only needed when choosing the POV sentences.

For all the sentences in the needs and benefits sections,
the subject-verb-objects (SVOs) and later the subject-verb-
adjective-objects (SVJOs) with their occurrence frequen-
cies are extracted. As an example, we see that a SVO
such as “bank-gain-platform” and its related SVJO “bank-
gain-scalable-platform” has a relatively high frequency. This
serves as a signal that the verb “gain” and its synonyms
should be among the terms that reflect the needs and ben-
efits.

In order to extract the synonyms of these terms, we use
a word2vec model that is trained on GoogleNews (Mikolov
et al. 2013a) (Mikolov et al. 2013b). As a result verbs in-
cluding “necessitate”, “demand”, “support”, “facilitate” and
“accommodate” are considered as relevant terms that reflect
a need or benefit concept. After filtering, we only consider
the sentences with such verbs as candidates for POVs.

Clustering

In order to group the references with the same objective into
a common POV, a clustering algorithm is applied on all the
needs and benefits across all the documents associated with
a single solution. We refer to the most representative sen-
tence of a cluster as the POV and the rest of the sentences in
the same cluster as the “evidence” of that POV. We want our
algorithms to produce sentences that are distinguishable and
represent distinct knowledge that should be consumed by the
sellers. The primary purpose of POV extraction is to iden-
tify the best content that reflects the diverse set of benefits
and needs for each solution, while eliminating conceptually
similar pieces of content. From the previous mapping step
this part of the process receives all the benefits and needs
sentences from the selected subset of documents which are
most relevant to the target solution. In order to cluster simi-
lar sentences, we use k-means clustering, a standard method
to group relevant content. Here each sentence is converted to
its vector representation with size M . We discuss different
ways of modeling the vector representations for each sen-
tence in Sec. 5. Given the number of clusters and a set of
sentences as input, the k-means algorithm assigns each sen-
tence to the cluster whose center is the nearest. The cluster
center is the average of all the vector representations of the
sentences in that cluster.

One challenge is to identify the right number of clusters
for each solution. This is a parameter that should be deter-
mined beforehand. One way to estimate the number of clus-
ters is to use silhouette analysis (Rousseeuw 1987) which
reflects how similar an object is to its own cluster (cohesion)
compared to other clusters (separation). To perform the anal-
ysis, for each candidate number of clusters, ki, the average
silhouette score of all the sentences in all the clusters are cal-
culated. The ki with highest silhouette score gets selected as
the parameter value.

Using silhouette analysis comes with challenges. In our
case, some clusters for solutions contain similar sentences
about the same repeating themes, while others contain very
diverse sets of content. The silhouette score appears to be
low for all candidate values of the number of clusters. In

67



Figure 3: A vector model is used for clustering similar sen-
tences, measuring similarity between each sentence and the
solution description, measuring similarity between each sen-
tence to the centroid of its cluster, and measuring the impor-
tance of each sentence, using TF-IDF.

such cases we rely on a fixed number of clusters that we de-
termined beforehand, which by experimentation is the total
number of sentences divided by 15.

Ranking

Two types of ranking take place in the POV extraction pro-
cess. One is ranking the clusters to find the best POVs for a
given solution, and the other is ranking the sentences within
each cluster to find the best sentence to represent that cluster.

Ranking Clusters Cluster ranking is used to find the most
relevant POVs for a given solution. There are several po-
tential metrics which can be used to rank the clusters, in-
cluding cosine similarity, term frequency-inverse document
frequency (TF-IDF) related metrics, cluster size, and clus-
ter silhouette. We performed manual investigation of these
metrics to determine which is most effective. We found that
cosine similarity of the centroid of the cluster with the solu-
tion description provided the most meaningful ranking. The
rationale behind the centroid method is as follows. First, the
centroid of a cluster should contain information that is close
or central among the sentences in that cluster. Similarly, the
description of the related solution contains terms specific to
the solution. Thus, the similarity between the two should re-
veal a more relevant cluster. The cluster score is defined as
follows:

cluster score =
cluster centroid · solution desc

‖cluster centroid‖2‖solution desc‖2
(1)

where cluster centroid and solution desc are the vector
representations of the cluster centroid and solution descrip-
tion, respectively.

Ranking Sentences Now that we have the clusters ranked,
we are interested in ranking the sentences within each clus-
ter. This is done to elect the best, most relevant sentence to
serve as POV and represent the information in the cluster.
The first approach to ranking the sentences in a cluster is by
awarding more points to sentences containing “important”
terms. The intuition is that sentences containing more sig-
nificant terms are themselves more significant. This metric is
explained more in detail in the Sec. 5. Another metric is the
similarity between a sentence and the centroid of the cluster
containing that sentence. Yet another metric is the similarity
of the sentence to the solution description.

The main challenge is to figure out which metric is best
among these possible options. Identifying the effectiveness
of each metric is subjective and needs careful manual evalu-
ation. Based on the intuition behind the metrics we selected
the weighted average of the following two metrics: normal-
ized average of the TF-IDF scores of the terms in a sentence
and the normalized similarity of the sentence to the centroid
of its cluster. Therefore the sentence score is given by:
sent score =

norm tfidf(sent) + norm sim centroid(sent)

2
(2)

where

norm tfidf(sent) =

∑
ti∈sent

tfidf(ti)/len(sent)

max tfidf
(3)

and

norm sim centroid(sent) =
sim centroid(sent)

max sim centroid
(4)

The normalization plays an important role to bring dif-
ferent metrics such as tfidf and sim centroid into compa-
rable ranges. Since they are all considered relative to their
maximum values in their containing solution, the averaging
operation of the metrics becomes possible. The max tfidf
is the maximum TF-IDF score of the all the terms which
appear in a solution. The max sim centroid is the highest
similarity between a sentence and the solution description
among all the sentences in a solution.

5 Modeling
We use two types of modeling algorithms to create vector
representations for our input sentences. One is based on a
TF-IDF model with size equal to the size of the dictionary.
The other is based on the skip-gram model with 300-600
dimensions.

TF-IDF Model

The TF-IDF model is based on numerical statistics that re-
flect how important a word is to a document in a corpus
(Leskovec, Rajaraman, and Ullman 2014). Each term and
consequently each sentence is mapped to a vector with the
size of the corpus dictionary. Each element of this vector is
the TF-IDF score of the term used in the sentence. Our dic-
tionary size is 200,000 terms including unigrams, bigrams
and trigrams. The importance of each sentence is the aver-
age of the TF-IDF of terms used in that sentence.

68



Figure 4: Screenshot of the seller expertise advisor tool

Feature Selection The process of selecting a subset of the
terms occurring in the training set and using only this sub-
set as features in text classification is called feature selec-
tion. Here the main purpose behind feature selection is to de-
crease the size of the effective vocabulary and choose terms
that are more discriminative among solutions of an industry.
In our case, as a result of feature selection, the feature size
is reduced from 200K to 20K.

As a reminder, our goal is to extract POVs for each so-
lution in an industry. Feature selection results in identifying
terms and phrases that are important for distinguishing one
solution from the rest of the solutions so that the POVs re-
flect unique concepts to that solution. Sometimes though,
there are many similarities among the solutions themselves.
For example, “Customer and Risk Insight” vs “Customer
and Risk Engagement” are two separate solutions, but have
many similar terms. For these cases even feature selection
may not be useful. We need to rely on other metrics such
as similarity of a sentence to its description in the sentence
ranking process.

Skip-gram Modeling

A disadvantage of TF-IDF model is that it is unable to cap-
ture the similarities between the words. We use the skip-
gram model proposed by (Mikolov et al. 2013a) and trained
it on 115 Industry Solutions, 448 Marketplace Solutions
and 168 Software Solutions to obtain domain-specific, 300-
dimensional word embeddings. A sentence is then repre-
sented by the mean of its word embeddings.

In general, larger corpora yield more accurate word em-
beddings. It is also beneficial to leverage the pre-trained

Google News model (Mikolov et al. 2013a) with 3 million
300-dimensional English word vectors that is publicly avail-
able3. Using this pre-trained model alone will not be suffi-
cient, since it lacks many of the domain specific words for
our application.

We propose a method that concatenates the two 300-
dimensional vectors. One is the vector resulting from do-
main specific training, while the other is from the pre-trained
model. In the case where a word is not found in one model,
the other model can provide the word representation.

One additional improvement is to weight the vector rep-
resentation with the TF-IDF score of the terms. In this way,
we consider the importance of a term other than the word
embedding that reflects the relevance between the similar
terms. The weighting is done as follows:

vect(sent) =
∑

ti∈sent

vect(ti) ∗ tfidf(ti) (5)

where vect(ti) is the embedding for term ti, the output of
the skip-gram model that is trained on both the global and
domain specific corpora.

6 Seller Expertise Advisor Tool

As part of our work, we created both Rest APIs and a tool,
called “Seller Expertise Advisor” (SEA) for sellers to access
our dynamically generated POVs for all 115 industry solu-
tions. IBM sellers use SEA when they need to prepare for a
customer meeting or they need to get up to speed (or refresh
their knowledge) on a given offering.

3https://code.google.com/archive/p/word2vec/

69



A sample screenshot of our tool in presented in Fig. 44.
The figure shows three sample POVs created for “Customer
Insights”, an IBM industry solution for the financial sector.
Sellers can drill down into each POV and access all the doc-
uments, referred to as evidence, which are relevant to each
POV. For each piece of evidence, SEA highlights the part of
the document semantically relevant to the POV. The original
client reference or case study is also accessible from the tool.
In a sense, SEA recommends the marketing message for the
solution and gives sellers the opportunity to explore content
and learn more about such POV. In the tool, sellers can pro-
vide feedback by voting if they like or dislike the POVs. We
use such information to continually improve the quality of
the results.

The tool has been deployed to thousands of IBM sellers
and initial feedback has been extremely positive. Sellers are
excited about the solution as it drastically reduces the time
needed to prepare for a meeting and helps make them more
effective in learning about a product.

7 Conclusion

In this paper we proposed and applied information retrieval
and machine learning based techniques to extract POVs
from a large collection of documents. The solution allows
identification of key snippets of information which we be-
lieve help facilitate positioning of solutions by sellers as
they engage with clients. This approach will help less expe-
rienced sellers more quickly gain the knowledge necessary
to be successful.

We have currently deployed our initial solution in an en-
terprise environment for 115 solutions across 17 industries.
As there is currently no ground truth to evaluate the quality
of the POVs, and hence the overall performance of the solu-
tion, we have instrumented our deployment to capture feed-
back from sellers. We envision using this feedback to better
evaluate the performance of the various design choices de-
scribed in this paper, as well as improve the algorithms in
the future. Our future efforts are focused on moving towards
abstractive summarization by applying neural sequence-to-
sequence models to our domain-specific corpus. We are also
interested in considering options to create suitable training
datasets.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Bengio, Y.; Ducharme, R.; Vincent, P.; and Jauvin, C. 2003.
A neural probabilistic language model. Journal of machine
learning research 3(Feb):1137–1155.
Chopra, S.; Auli, M.; and Rush, A. M. 2016. Abstrac-
tive sentence summarization with attentive recurrent neural
networks. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 93–98.

4Note that black boxes have been applied to the figure to hide
confidential information.

Erkan, G., and Radev, D. R. 2004. Lexrank: Graph-based
lexical centrality as salience in text summarization. J. Artif.
Intell. Res. (JAIR) 22:457–479.
Ganesan, K.; Zhai, C.; and Han, J. 2010. Opinosis: a graph-
based approach to abstractive summarization of highly re-
dundant opinions. In Proceedings of the 23rd International
Conference on Computational Linguistics, 340–348. Asso-
ciation for Computational Linguistics.
Ganesan, K.; Zhai, C.; and Viegas, E. 2012. Micropinion
generation: An unsupervised approach to generating ultra-
concise summaries of opinions. In Proceedings of the 21st
International Conference on World Wide Web, 869–878.
ACM.
Khabiri, E.; Caverlee, J.; and Hsu, C.-F. 2011. Summariz-
ing user-contributed comments. In Proceedings of the 2011
International Conference on Web and Social Media.
Kleinberg, J. M. 1999. Hubs, authorities, and communities.
ACM Computing Surveys (CSUR) 31(4es):5.
Le, Q., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14),
1188–1196.
Leskovec, J.; Rajaraman, A.; and Ullman, J. D. 2014. Min-
ing of massive datasets. Cambridge University Press.
Mihalcea, R. 2005. Language independent extractive sum-
marization. In Proceedings of the ACL 2005 on Interactive
poster and demonstration sessions, 49–52. Association for
Computational Linguistics.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems, 3111–3119.
Nallapati, R.; Zhou, B.; Gulcehre, C.; Xiang, B.; et al. 2016.
Abstractive text summarization using sequence-to-sequence
rnns and beyond. arXiv preprint arXiv:1602.06023.
Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999.
The pagerank citation ranking: bringing order to the web.
Technical report, Stanford InfoLab.
Rousseeuw, P. J. 1987. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal of
Computational and Applied Mathematics 20:53–65.
Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neural at-
tention model for abstractive sentence summarization. arXiv
preprint arXiv:1509.00685.
See, A.; Liu, P. J.; and Manning, C. D. 2017. Get to
the point: Summarization with pointer-generator networks.
arXiv preprint arXiv:1704.04368.

70


