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Abstract

One area of medicine that could benefit from personalized
procedures is medication dosing. Mis-dosing medications
may incur additional morbidity, or unnecessarily increase the
length of patient stay. Here we illustrate a novel approach
to personalized medication dosing that is robust to missing
data, a common problem in the clinical care setting. We per-
form dose estimation using a novel take on multinomial lo-
gistic regression where model parameters are continuously
estimated, for each patient, using a weighted combination of
the data from a population of other patients, and a volatile
data stream available from the individual under treatment. We
evaluate our approach on 4,470 patients who received anti-
coagulation therapy during intensive care treatment. Our ap-
proach was 29% more accurate than intensive care staff, and
better able to distinguish outcomes than a non-personalized
baseline (0.11 improvement in model VUS, a multiclass ver-
sion of AUC). The advantages of our approach are its ease of
interpretation, robustness to missing features, and extensibil-
ity to other problems with similar structure.

Introduction

Over the last decade, there have been increasing calls to de-
velop personalized approaches to patient care that better ac-
count for the complex factors influencing health (Reuben
and Tinetti 2012; Mirnezami, Nicholson, and Darzi 2012;
Barry and Edgman-Levitan 2012). In many studies however,
“personalization” is performed at the level of static demo-
graphic features (such as age, gender, weight etc.) that are
known at the start of care, and do not change over the course
of treatment (Ghassemi et al. 2014). Moving forward, per-
sonalization will require on-line approaches that begin with
simple demographic-level assumptions and become more
patient-specific as additional data on the individual, and their
response to treatment, is collected.

One area of medicine that could immediately benefit from
personalized procedures is the dosing of medication with
narrow therapeutic windows. Studies estimate that medica-
tion errors are responsible for up to 400,000 preventable
hospital deaths each year (James 2013), but the potential
complications associated with medication mis-dosing are
usually more nuanced than life or death. Patients who are
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over- or under- dosed can experience unnecessarily com-
plications, extended length of hospital stay, or require ad-
ditional follow-up interventions, thereby driving up costs
and incurring additional morbidity. Hence, even if the con-
sequences of misdosing are limited, procedures should min-
imize the total number of dose-adjustments needed to reach
the therapeutic targets defined by the care provider.

In recent years, a myriad of promising medication dos-
ing models have been proposed (Roswell et al. 2016; El-
Solh 2004; Hohner et al. 2015; Levi et al. 2007; Fleischman,
Shin, and Li 2016). However, most of the proposed ap-
proaches require data streams and/or features to be consis-
tently available and this requirement may be unrealistic in
actual care settings. Even within the same hospital, differ-
ent care providers record different physiological signals, for
different patients, at different times. This practical reality of
clinical data has increased the difficulty of robustly trans-
lating many promising observational models, into practical
applications that improve care at the bedside (Johnson et al.
2016a).

In this work, we propose a simple solution to the problem
of personalized medication dosing when feature informa-
tion is not reliably collected. Our method proposes an initial
dose based on demographic-level features collected at hos-
pital admission, and prescribes subsequent dose recommen-
dations based on an individual patient’s available real-time
data. Our method avoids the problem of missing features
by re-estimating the maximum likelihood model parameters
when feature information disappears. For practical deploy-
ment of such a model, interpretability is essential. For this
reason, we used a linear modeling framework but also com-
pare performance against state-of-the-art techniques (neural
networks).

We tested the performance of our personalized-
medication procedure on unfractionated heparin (UFH) - a
drug with a narrow therapeutic window. UFH is typically
initiated with a weight-based bolus, followed by a continu-
ous infusion and repeated adjustments based on measures
from a therapeutic indicator. Prior studies have shown that
overdosing of UFH is associated with increased risk of
internal bleeding, while under-dosing places patients at
undue risk for embolic events, including pulmonary emboli,
deep venous thrombosis, and ischemic stroke (Levine et al.
2001). Moreover, even when clinicians are adhering to stan-
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dardized dose adjustment protocols, UFH is often misdosed,
placing patients at unnecessary risk (Ghassemi et al. 2014;
Alexander et al. 2005). Due to its sensitivity, risk profile,
and frequency of use, UFH is a useful test-case for our
personalized dosing strategy.

Methods

Data

Raw Data and Outcomes All data in this study was col-
lected from the MIMIC critical care database (Johnson et
al. 2016b). MIMIC is a de-identified, publicly available
Electronic Medical Record archive containing over 40,000
unique Intensive Care Unit (ICU) admissions from the Beth
Israel Deaconess Medical center (BIDMC) in Boston, MA
from 2001 - 2016. We identified 4,470 patients from MIMIC
who received intravenous UFH infusions during their ICU
stay. aPTT was selected as our outcome in adherence with
the guidelines of the BIDMC, where the data was collected.

At the time of an aPTT draw, patients may be categorized
into one of three therapeutic states: Therapeutic, Subther-
apeutic or Supratherapeutic. The continuous aPTT ranges
used to define these states were:⎧⎨

⎩
Subtherapeutic aPTT ≤ l

Therapeutic l < aPTT < u

Supratherapeutic aPTT > u

Where u = 100 and l = 60 describe the upper and lower
bounds of the therapeutic state respectively. The aPTT ther-
apeutic target ranges were defined by BIDMC’s UFH dosing
guidelines during the time of data collection (Appendix, sec-
tion 8).

Feature Selection For the first 48 hours following each
patient’s UFH initiation, we extracted all available aPTT
measures and features that are thought to confound the re-
lationship between UFH and aPTT (Badawi, Oyen, and
Haines 2004). Selected features are shown in Table 1.

Preprocessing We computed the median value of the in-
cluded features in the intervals between recorded aPTT mea-
sures to provide a one-to-one correspondence between fea-
ture values and aPTT measures. Most patients have more
than one dose-adjustment over the course of their ICU stay.
For model development, we considered all UFH doses, and
corresponding aPTT responses across patients as indepen-
dent. Additional information on the pre-processing approach
may be found in section 1 and Tables E2, and E3 of the Ap-
pendix.

High-Level Modeling Approach

We propose a categorical approach to dose estimation using
multinomial logistic regression (MNR) where model fea-
tures and parameters are re-estimated for each patient, at
each aPTT draw, using a weighted combination of the data
from a population of existing patients, and the individual pa-
tient’s real-time data stream. We will refer to our modeling
approach as the individual model. We will refer to a more
classical approach, with features and coefficients that do not
change, as population models.

Features
(N= 9684)

Mean
Standard
Deviation

Missing
Data (%)

Static Features
Age 68.01 14.91 0.00
Gender (%Male) 58 - 0.00
ICU Type (%Surgical) 35 - 0.00
Ethnicity (%White) 69 - 0.00
End Stage Renal Disease (%) 3 - 0.00
Pulmonary Embolism (%) 9 - 0.00
Continuously Measured Features
Heparin Dose (units/kg) 11.79 4.11 6.88
White Blood Cell Count 12.26 6.35 6.23
Creatinine 1.58 1.48 5.18
Carbon Dioxide 24.61 4.67 5.69
Heart Rate (Mean) 84.81 17.12 0.01
Glasgow Coma Score 12.40 3.63 0.02
Hematocrit 31.50 4.65 4.27
Hemoglobin 10.63 1.66 6.45
Platelet Count 226.76 118.29 5.10
Urea 31.72 23.45 6.03
Temperature (F) 98.28 2.71 7.05
International Normalized Ratio 1.50 1.10 7.03
Prothrombin Time 15.22 3.99 0.12
Peripheral Capillary Oxygen Saturation 97.24 2.65 0.01

Table 1: Summary statistics of selected features collapsed
across dosing intervals.

By incorporating patient-specific data, we expect en-
hanced performance of the individual model, compared to
the population model. We also expect the individual model
to be more robust to missing data as it utilizes only the sub-
set of features available for each individual patient. For ex-
ample, if the Creatinine of a patient were not known, the
individual model would exclude this feature, while the pop-
ulation model would exclude the patient.

In Figure 1, we provides an illustrative depiction of the in-
dividual modeling approach. To promote reproducibility and
extensions of this work, we will also include an implementa-

Figure 1: An illustration of our modeling approach for two
patients. The population model is first computed using data
from an existing patient population, before any individual
aPTT draws have been measured. Following an aPTT draw,
an individual model is created using a weighted combina-
tion of data from the existing population, and the individual
patient’s data stream.
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tion of our method in a publicly accessible online repository,
following publication.

Formal Modeling Approach

Individualized Multinomial Regression We use a MNR
model to estimate the probability of each patient, i, being in
state s at a given dosing interval, n. Let Xn

i denote a rni ×cni
feature matrix with corresponding outcomes denoted by yn

i ;
here cni describes the subset of available features for an indi-
vidual patient at dosing interval n and rni represents the n−1
previous dosing interval data for the individual. Next, Let
Xn

p denote a rnp ×cni feature data matrix with corresponding
therapeutic outcomes denoted by yn

p ; here rnp describes the
subset of patients in population with the cni features match-
ing the individual patient. With this data, we estimate an in-
dividualized MNR model for each patient, at each dosing
interval:

p(yni = s|xn
i , θ

n
i ) =

exi
Tθn

i,s

∑3
k=1 e

xi
Tθn

i,k

where θni,s represents the the maximum likelihood param-
eters of the model for state s. To individualize each model,
we define a function, φ(n) that weights the importance of
samples from the individual and population data when com-
puting the maximum likelihood parameters of the MNR. In
our case φ(n) was chosen to be sigmoidal:

φ(n) =
α

1 + e−(γ0+γ1∗n)
Where the α and γ hyper-parameters control the shape

and magnitude of the individual data weighting function. Fi-
nally, the weighted likelihood function is defined as:

L(θni ) =
rni∏
j=1

p(y
(j)
i |x(j)

i , θni )
φ(n) ×

rp∏
k=1

p(y(k)p |x(k)
p , θni )

where x
(j)
i and y

(j)
i represent the individual patient’s j’th

dose interval features and therapeutic outcome and x
(k)
p and

y
(k)
p represent the k’th dose interval features and therapeu-

tic outcome from the population. The likelihood function is
maximized via stochastic gradient descent to yield the opti-
mal parameter values:

argmax
θn
i

L(θni |Xn
i ,y

n
i , X

n
p ,y

n
p )

From Probabilities To Dose Estimates Recall that the
therapeutic state of the patient can fall into one of three
classes: sub-therapeutic, therapeutic, and supra-therapeutic.
After setting the therapeutic state as the reference class
for the MNR and accounting for the effects of covariates,
p(sub − therapeutic) will be a monotonically decreasing
function of the UFH dose while p(supra − therapeutic)
will be a monotonically increasing function of the UFH
dose:

p(Sn
i = supra) =

1

1 + e−(βn
i,od

n
i +κn

i,o)

p(Sn
i = sub) =

1

1 + e−(βn
i,ud

n
i +κn

i,u)

In the above equations, βn
i,o and βn

i,u are the maximum
likelihood parameters from θni that model the effects of an
individual patient’s medication dose, dni , on the probabilities
of supra-therapeutic and sub-therapeutic states respectively.
κn
i,o and κn

i,u are scalars that reflect the cumulative effects
of the other cni − 1 selected features on the probabilities
of supra-therapeutic and sub-therapeutic states respectively.
From these equations, the probability of a therapeutic dose
is simply:

p(Sn
i = therapeutic) = 1−p(Sn

i = supra)−p(Sn
i = sub)

Hence, the optimal dose at each interval, n, then corre-
sponds to the dose value that jointly minimizes the proba-
bility of supra-therapeutic and sub-therapeutic probabilities.
Given that p(Sn

i = supratherapeutic) is monotonically
decreasing with dose, and p(Sn

i = supratherapeutic) is
monotonically increasing with dose, the optimal therapeu-
tic dose will always occur where the curves intersect with
respect to dni :

1

1 + e−(βn
i,od

n
i +κn

i,o)
=

1

1 + e−(βn
i,ud

n
i +κn

i,u)
, find dni

Providing:

dni =
κn
i,u − κn

i,o

βn
i,o − βn

i,u

Which is the dose with the optimal probability of yielding
a therapeutic state.

Performance Characterization

We compared the performance of the individual model
against four alternative population models.

Baselines 1&2: Multinomial Logistic Regression

The first baseline model was a multinomial logistic regres-
sion which utilized all the selected features seen in Table 1.
We will refer to this model as the full population model. The
second baseline was a multinomial logistic regression that
utilized only the continuously measured UFH dose and the
six features listed under the static features heading in Table
1. We will refer to this as static-population model.

We expect the performance of the full population model to
be superior to the static population model. Unfortunately, the
improved performance of the full population model comes
at the cost of the model’s applicability, as individual patients
may be missing one or more of the features required to eval-
uate the model. In our case, the full population model ex-
cludes nearly a quarter (23.6%) of all patients due to missing
features. The static population model only utilizes features
from Table 1 without any missing data, which improves its
general applicability, but may also decrease its performance.
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Baseline 3: Feed-Forward Neural Networks

A densely connected, feed-forward network with two hid-
den layers and a softmax output was also trained. Recti-
fied linear units were used for the activation function of the
hidden layer neurons. Network weights were initialized us-
ing Xavier initialization. The optimal network topology was
identified via grid search (maximum hidden layer size of
20). Network performance was optimized on a validation
set (15%) using scaled conjugant gradient backpropogation,
with a cross-entropy performance metric.

Baseline 4: Reinforcement Learning

The problem of medication dosing may also be cast as as a
partially observable Markov Decision Problem (POMDP),
where the goal is to identify the dosing policy that pre-
scribes optimal dosing actions, given known information on
the state of the patient. To identify the policy, a reward sig-
nal must be specified. The solution for this problem may
be solved via reinforcement learning. More specifically, the
policy may be represented as a deep feed-forward neural
network, whos weights are determined via deep determin-
istic policy gradient descent. For the purpose of policy iden-
tification, we defined the state, action, and rewards as fol-
lows: (1) State: The state of the patient as defined by their
aPTT and laboratory measures (2) Actions: maintain dose,
increase dose, decrease dose. (4) Rewards: a penalty propor-
tional to the aPTT error. Importantly, the penalty of over-
dosing patients was twice the penalty of under-dosing. The
value of actions were always normalized to sum to 1 to allow
their comparison against other methods.

Validation

Models were validated using Leave-One-Out Cross Vali-
dation (LOOCV). That is, for each individual patient we
trained a model where all other patients simulated a exist-
ing population at the hospital, and were used to train the
population-component of the model, while the individual’s
data simulated an incoming data stream.

Model Comparison

To validate the individual model, we compared both its per-
formance and applicability against the baseline models. The
measure of performance we selected for model compari-
son was the Volume Under the Receiver Operator Surface
(VUS), which is analogous to The Area Under The Re-
ceiver Operator Curve (AUC), but is used for evaluating
the performance of classifiers with more than two states
(Ferri, Hernández-Orallo, and Salido 2003). Additional per-
formance metrics described by Cook et al. including AUC,
net reclassification improvement (NRI), and integrated dis-
crimination improvement (INI) were also computed (Cook
and Ridker 2009).

Model-Clinician Comparison We also compared the per-
formance of all models (individual and population) to the
recorded predictive accuracy of the clinical staff. To do this,
we assumed that the clinical staff intended to bring all pa-
tients into the therapeutic state as rapidly as possible when

they administered or adjusted a dose of UFH (that is, clin-
icians did not intentionally over- or under-dose UFH). This
assumption allows us to compare the predictive accuracy of
the clinician, to that of our models.

Sensitivity Analysis There may be circumstances where
the assumption that clinicians are aiming for a therapeu-
tic dosing is invalid, particularly for patients at high risk
for bleeding, where clinicians may intentionally under-dose
UFH. To account for this, we repeated our analysis after ex-
cluding any patient whose final aPTT state after dose adjust-
ment was sub-therapeutic, reflecting that the intention of the
staff was in fact to under-dose the patient.

Figure 2: The aPTT outcome distribution of the patient co-
hort at each dose adjustment, and subsequent aPTT draw.

Results

Data Characteristics

In Figure 2 we show the cohort size at each dose adjustment
interval, partitioned by aPTT therapeutic state. The figure
highlights that UFH misdosing is consistently error-prone
even after multiple aPTT draws (and consequent opportuni-
ties for dose adjustment). We observe that over 80% of our
sample stopped receiving aPTT draws after their fifth adjust-
ment and only 5% of the 3,883 patient with recorded aPTT
values had a sixth dose adjustment. Please see section 4 in
the Appendix for a detailed discussion of recorded dosing
behavior with respect to other features in our data. Our final
cohort for the full-population model, and neural network ap-
proaches included the data from the 2,827 patients without
missing data, while the static population model and the indi-
vidual model utilized all 3,883 patients with recorded aPTT
values.

Main Results

In Table 2 we compare the overall accuracy, VUS and the
percentage of subjects excluded by the models. Table 2 also
evaluate the ability of the models to detect sub- and supra-
therapeutic dosing as measured by AUC. The improvement
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% Subjects Excluded
(overall)

Volume Under Surface
(overall)

Accuracy
(overall)

AUC
(sub- / supra)

Clinician 0% 0.17 31% -
Population Models

MultiNom Regression, static features 0% 0.35 57% 0.66 / 0.67
MultiNom Regression, all features 23.6% 0.41 58% 0.70 / 0.74
Feedforward Network (20x20), all features 23.6% 0.43 56% 0.72 / 0.74
Policy Network (20x20), all features 23.6% 0.44 58% 0.73 / 0.75
Individual Model

MultiNom Regression, with available features 0% 0.46 60% 0.75 / 0.77

Table 2: Overall performance metrics for the models across LOOCV folds, compared to the clinician. VUS: Volume Under
Receiver Operator Surface. AUC: Area Under The Receiver Operator Curve

in the VUS of the individual model compared to the full-
and static-multinomial regression models was 0.05 and 0.11
respectively. The individual model had the highest overall
accuracy of all tested approache and surpassed the best per-
forming neural network by a VUS of 0.02. Compared to
clinicians, the model was nearly twice as accurate.

In Table 3 we provide metrics that compare the overall
improvement in the performance of the individual model,
relative to both the static- and full- multinomial regression
models. The NRI measure indicates that, when compared
to the static-population model, the individual model is 2%
more likely to correctly detect sub-therapeutic doses and
7.3% more likely to detect supratherapeutic doses. The re-
sults of the IDI further validate the utility of the individual
model, relative to the population models. The difference in
the average predicted probability of an overdose, if the dose
was indeed too high, increased by 9% using the individual
model relative to the static-population model. The difference
in the average predicted probability of an underdose, if the
dose was indeed too low, increased by 7% when using the
individual model relative to the static-population model.

In addition to overall comparisons between our models,
we also investigated differences in performance across dose
adjustments. In Figure 3 (A-C), we compare the AUC of the
individual model over time for the prediction of the sub-,
supra- and therapeutic aPTT states at each dosing interval
(solid lines) compared to the full-population model (dashed
lines). Here again we observe improved performance of the
individual model for the classification of all three states up
until the sixth dose adjustment, after which the cohort size is
significantly smaller (n<152) and our performance metrics
become more sensitive to noise. In Figure 3(D), we compare
the accuracy of the individual, and full-population model
over time to the clinician where we also see that the indi-

vs. Population Model
with Static Features

vs. Population Model
With All Features

Individual Model (sub / supra) (sub / supra)
NRI 2% / 7.3% 1% / 2.5%
IDI 7% / 9% 3% / 2.5%

Table 3: Performance metrics to compare performance of
models at the detection of adverse events. NRI: Net reclas-
sification improvement; IDI: Integrated discrimination im-
provement

vidual model consistently outperforms the other approaches
across time. Lastly, in Figure 4 we compare the dose esti-
mation of the clinician, the full-population model, and the
individual model for an exemplary patient.

Sensitivity Analysis

The results of our sensitivity analysis were similar to what
we observed in the main results. The improvement in the
VUS of the individual model compared to the full- and
static-population models was 0.03 and 0.10 respectively.
The differences in accuracy between the clinicians and our
modeling approaches were significantly less pronounced in
our sensitivity analysis. The individual model exhibited a
3% gain in accuracy compared to the clinicians. This result
may be interpreted as evidence that clinicians are intention-
ally underdosing some patients, but without explicit knowl-
edge of clinical intent, we cannot draw firm conclusions.

Discussion

Modeling Approach

Our approach is an on-line multinomial logistic regression
for personalized dose-response estimation with volatile data
streams. The method begins with data from a population of
patients to estimate initial model parameters and sequen-
tially, at each aPTT draw, incorporates weighted patient data
to compute updated model coefficients. Importantly, this ap-
proach does not assume a constant weighting of individual
patient data across dosing stages, but learns the parameters
of an optimal weighting function.

Our method was designed to take an arbitrary therapeu-
tic range, provided by a clinical expert, and to use this def-
inition, and the available data to provide an optimal, per-
sonalized dose recommendation. Hence, it is easy to change
the target of the algorithm to provide dosing recommenda-
tions for any desired therapeutic range (including a lower
target for patients with high bleeding risk). In reality, dos-
ing protocols for UFH can vary by institution, diagnostic
group (e.g., venous thromboembolism vs acute coronary
syndromes) and even monitoring parameters (e.g., target-
ing anti-Xa levels vs activated partial thromboplastin time
(aPTT)). We have attempted to provide evidence that our
method is capable of accounting for these differences.

Utilizing the most stringent form of model validation
(LOOCV), we demonstrated that our approach enabled a
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Figure 3: A comparison of predictive performance over se-
quential dose adjustments. Blue lines represent the perfor-
mance of the individual model. Red dashed lines represent
the performance of the population model. (A), (B), and (C),
compare the AUC of the individual and population model’s
prediction of therapeutic dosing, underdosing and overdos-
ing respectively. (D) compares the accuracy of the popula-
tion model, the individual model and clinicians on patients
after each dose adjustment.

more robust estimation of the dose-response relationship
compared to two population models. According to all com-
puted metrics, the individual model is superior to the popu-
lation models, and recorded performance of clinicians. The
ultimate conclusion we drew from our main analysis is that
the individual model is able to provide improvements in es-
timation of the dose-response relationship, without sacrific-
ing applicability due to missing data, or interpretability due
to model complexity (neural networks).

We believe that modeling approaches with the potential to
be patient-specific are of interest to the medical community,
and beyond. We are hopeful that this work will aid others in
the development or deployment of their own individualized
models for other problems. We stress here that the method-
ological contribution of the present work is in the sequential
weighting of incoming data to inform model parameters, and
not the choice of the model’s form. Indeed, an SVM, Neu-
ral Network, or other technique may be applied using the
same principal. To aid in the ease of replicating the work pre-
sented in this study, we have released a code repository that
includes SQL queries for extracting data from the MIMIC
database and Matlab code that run the individual and popu-
lation models described in this work1.

Heparin

Heparin is the world’s most commonly used anticoagulant.
The precise dosing of heparin however is not as simple as

1https://github.com/deskool/Sequential-Regression-
Heparin.git

Figure 4: A comparison of the doses prescribed by a clin-
ician, the population model, and the individual model for
an exemplary patient. The clinician (purple line) alternates
between over- and under-dosing the patients until 32 hours
into the ICU stay. The population model (red dot) is unable
to provide a therapeutic dose recommendation until 32 hours
due to missing data. The individual model (blue line) identi-
fies a correct dose after a single dose adjustment (hour 13), is
robust to missing data, and continuously improves it’s state
estimates.

once believed. It is now known that many individualized pa-
tient factors including race, gender, age, weight, severity of
illness and ailment all confound the dose-response relation-
ship (Ghassemi et al. 2014). These complications increase
the difficulty of rapidly bringing patients to therapeutic lev-
els of anticoagulation, and may (in the case of over-dose)
increase the risk of bleeding.

Given the challenges of developing a unified dosing pro-
tocol (Hirsh 1991), many recent heparin-dosing studies are
narrowly focused, investigating dosing regiments in the con-
text of specific patient conditions such as renal replacement
therapy, atrial fibrillation (Roswell et al. 2016), obesity (El-
Solh 2004; Hohner et al. 2015), Sepsis (Levi et al. 2007)
among others (Fleischman, Shin, and Li 2016). While it is
clear from the recent literature that a singular approach to
UFH dosing is insufficient, a fragmented set of protocols
across a variety of conditions is also sub-optimal. To solve
this problem, we proposed the use of the individual model
described in this paper.

Limitations

The validity of these results hinge on an assumption that
clinicians were dosing patients with an intention to achieve
the therapeutic aPTT (as defined by the institution). We ac-
knowledge that this could be untrue in some cases. Patients
with a high propensity for bleeding, for instance, may re-
ceive more conservative doses of UFH, leading to deliber-
ate sub-therapeutic aPTT values. Whether the observed mis-
dosings were intentional actions on the part of the clinician,
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mistakes, or simply a lack of adherence to hospital guide-
lines was beyond our ability to investigate with the dataset
at hand and we acknowledge this as a weakness of the study.
We attempted to address this weakness of the study by re-
peating our analysis on a subset of patients whose final state
was not sub-therapeutic where we observed comparable re-
sults in the general performance of the models. Interestingly,
the relative improvement of the individual model when com-
pared to the population models in the sensitivity analysis
was even stronger than what we observed in our main anal-
ysis, providing evidence that our results are reliable.

Deployment Details

A discussion on the challenges and opportunities for deploy-
ment of our algorithm in an actual clinical setting is an im-
portant component of this work. A recent meta-analysis by
Miller et al. identified a host of important practical issues
that have inhibited the proper utilization of computer aided
decision support systems (Miller et al. 2015). The most no-
table of these issues were (1) limited usability and (2) in-
adequate algorithms. Regarding usability, the authors found
that many clinical trials evaluating decision support sys-
tems failed to reliably combine patient-data, system knowl-
edge and clinician experience. The authors also explicitly
highlighted the need for ’better algorithms’, stressing that
many tested systems utilize overly simplistic approaches,
which in turn leads to mistrust of the recommendation by
care providers, and diminished reliance. The authors also
reported that many care providers find the output of statis-
tical models difficult to interpret, preferring algorithms that
utilize categories instead (Russ et al. 2009). The issues of
limited usability and inadequate algorithms represent a ma-
jor barrier to system adoption and meaningful utilization and
our method was designed to address these challenges. Addi-
tional discussion on deployment may be found in section 7
of the Appendix2.

Conclusion

To our knowledge, all existing computer-aided heparin dos-
ing guidelines are based on population models that do not
take advantage of the incoming data streams to improve per-
formance. For these reasons, we believe that the patient-
specific modeling approaches outlined in this study will be
of academic interest to the research community, and of prac-
tical interest to clinicians. We hope that our work will aid
others in the development or deployment of their own in-
dividualized models for this, and other clinically relevant
problems.
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