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Abstract

In this position paper we discuss the benefits of combin-
ing knowledge technologies and deep learning (DL) for au-
dio analytics: knowledge can enable high-level reasoning,
helping to scale up intelligent systems from sound recogni-
tion to event analysis. We will also argue that a knowledge-
integrated DL framework is key to enable smart environ-
ments.

1 Introduction

Of declarative or procedural form (Newell, Shaw, and Si-
mon 1959), knowledge plays a crucial part in the archi-
tecture of the human mind (Anderson and Lebiere 2014;
Laird, Newell, and Rosenbloom 1987): we first interact with
our surroundings by reacting to perceptual stimuli, but we
learn how to interpret our experiences only by reflecting on
cumulated knowledge. Knowledge is also considered a fun-
damental part of artificial minds, or at least it used to un-
til increasingly complex ‘deep’ neural networks started to
perform close to human-level – and in many instances out-
performing humans – in all sort of perception-based tasks:
thanks to the use of high performance GPUs for machine
learning, groundbreaking improvements have been recently
made across a variety of applications, including image clas-
sification, video analytics, speech and sound recognition,
etc. (Krizhevsky, Sutskever, and Hinton 2012).
Despite the astounding results that Deep Learning (DL) has
been achieving in the last years, perception only accounts
for knowledge-agnostic forms of intelligence, which com-
mon sense, logical reasoning, and semantic abstraction are
not reducible to. DL frameworks can be trained to effectively
recognize and reliably distinguish between sounds like door
unlocking, door opening, and door closing (figure 3b), but
are not suited to perform high-level inferences, e.g. to un-
derstand that a sequence of door unlocking/opening/closing
may entail that somebody (most likely, a family member) en-
tered the house from the front door (e.g., the only one with
a lock), or to set a rule according to which, if any event-
sequence of that type is recognized, the house alarm can
be disarmed and the temperature increased in all rooms. In
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this regard, knowledge can still serve as ‘propellant’ of ad-
vanced machine intelligence (Sheth et al. 2017), and it’s ac-
tually required to enable high-level reasoning mechanisms,
improve learning algorithms, make real-time data analy-
sis more efficient and robust. For instance, a knowledge-
integrated framework would be particularly useful to design
smart environments: regardless of the level of granularity,
what can make cars, houses, and whole cities ‘smart’ is cer-
tainly learning from a variety of sensor-based data streams1,
but also the capability of aggregating and processing het-
erogeneous data sources according to context (Francis et al.
2017): we call the latter sense-making.

2 Approach

Historically, computer vision (CV) algorithms tasked with
classification relied largely on domain knowledge (hand-
crafted features) and often exhibited poor performance when
compared to human accuracy. However, over the last decade
due to advancements in DL frameworks, CV algorithms
have seen large improvements in performance which often
surpass that of human accuracy in classification tasks (figure
1). Advances in automatic speech recognition (ASR) sys-
tems have mirrored those in CV (figure 2), for many of the
same reasons. Indeed, over the past few years, many voice
assistants and chatbots have been able to exploit these large
gains in ASR systems to provide a richer user experience in
terms of understanding and interaction.

Although DL for audio applications has primarily been on
ASR, recent attention has focused more on audio event de-
tection and classification (AEDC). AEDC is typically more
challenging than ASR, even though both are acoustic based,
as audio events are more random in nature, may require a
greater understanding over longer time intervals, and must
simultaneously perform detection and classification on con-
tinuous streams of data. However, even with these chal-
lenges AEDC has seen similar increases in performance
much like CV and ASR systems. The increase in AEDC can
be attributed but not limited to several key factors:

First, the adaption of similar CV and ASR DL frame-
works, which are centered around convolutional neural net-

1Audio-video signals from surveillance cameras and ambient
microphones, occupancy and motion-based information, real-time
traffic monitoring, gunshot detection systems, etc.
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Figure 1: Comparison of the accuracy of computer vision
algorithms over the years. Notice the inflection point once
DL algorithms were applied. Source: (Goodfellow, Bengio,
and Courville 2016)

works (CNN). To exploit the power of CNNs, the audio sig-
nal is first segmented into small, sometimes overlapping,
temporal frames and converted to a time-frequency repre-
sentation, or spectrogram. This spectrogram can then be
viewed in a similar fashion to a natural image, where each
event has a specific geometric structure. These geometric
structures can then be exploited by the CNNs and used to
classify trained events.

Second, recent advances in MEMS (Micro-Electro Me-
chanical Systems) technology have drastically decreased the
size of digital microphones while at the same time improv-
ing their performance, e.g., low noise floor, near flat fre-
quency responses, etc. This allows for the MEMS micro-
phones to be deployed unobtrusively in essentially any en-
vironment. By exploiting these type of microphone deploy-
ments, we can slowly begin to understand what exactly the
devices are hearing.

Third, the recent availability of large audio scene datasets
(Stowell et al. 2015; Gemmeke et al. 2017) has aided in the
rapid increase in AEDC accuracy. Indeed, much of the in-
creases in CV and ASR can be directly attributed to the
availability of large high quality image datasets and lan-
guage corpora respectively.

However, much like how a single classified frame, im-
age from a video, may not be represent an entire clip, a sin-
gle classified audio event does not necessarily capture the
overall semantics of an audio scene. For example, in figure
3b, three different events are classified but a larger body of
knowledge is needed to understand that the audio scene cor-
responds to someone with a key unlocking the door with a
possible entry or exit event.
An ‘audio scene’ can be defined as a meaningful sequence
of atomic ‘audio events’, where meaningful implies that in-
dividual events are aggregated according to semantic crite-
ria, such as spatio-temporal relations (e.g., precedence) or
conceptual properties (e.g., a door opening event is symmet-
rical to a door closing event), and atomic entails that individ-
ual sounds are not further decomposable (i.e., they denote
minimal semantic units). Studies in Psychology show that
human cognitive processing adopts high-level abstractions,
also known as schemas, to carve perceptual contents accord-
ing to principles of mental organization, optimizing the in-
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Figure 2: Comparison of the accuracy of speech and sound
recognition algorithms over the years. Notice a rapid in-
crease in accuracy once DL algorithms were introduced
similarly to Figure 1. Source: (Goodfellow, Bengio, and
Courville 2016)

formation processing effort and minimizing the cognitive
overload (Albertazzi, Van Tonder, and Vishwanath 2010).
For instance, human vision performs segmentation of com-
plex scenes into action-object couplets (Tversky, Zachs, and
Martin 2008): “to reduce the amount of input information
into manageable chunks” (p. 457). In this regards ‘visual in-
telligence’ can be conceived as the human capability to un-
derstand a scene by means of recognizing the core interac-
tions holding between the most salient entities detected from
the environment. In this sense, perceptual data, conceptual
representations and reasoning are combined together by hu-
mans to make sense of a scene: for instance, when we see a
dog chasing a flying stick thrown by a person, we identify
the type of entities into play (dog, person, stick) and then we
break the complex event into smaller components (e.g., the
person extending the arm from the back, the dog jumping
and running, the stick falling on the ground, etc.), inferring
its teleological features (make the dog play and bring back
the stick) and causal nexus (when the persons hand releases
the stick, it starts moving on air with a curved trajectory
whose range depends on the exerted force). Reproducing
this capability at the machine level requires a comprehen-
sive infrastructure where low-level visual detectors and al-
gorithms are coupled with high-level knowledge representa-
tions and processing: this was the main topic of the DARPA
Minds Eye program2, whose goal was to design artificial
systems capable of analyzing the content of a video footage
in real time, focusing on identification of human action
types. In our previous work in the Mind’s Eye program, we
applied knowledge representation and reasoning to improve
machine vision algorithms (Oltramari and Lebiere 2012):
analogously, we claim that human-level audio scene un-
derstanding requires DL-based sound classification to be
complemented by knowledge representation and reason-
ing (KRR) methods.
Consider the following scenario. Standard video analysis

2https://phys.org/news/2012-10-surveillance-tech-carnegie-
mellon.html
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can only detect severe failures of industrial equipment, e.g.,
associated with fire events or explosions, but is generally in-
adequate to recognize fine-grained anomalies: for this rea-
son, sound monitoring systems are increasingly deployed in
power plants to assess the status of operating machines and
detect anomalies in real-time. But sound recognition sys-
tems are typically bound to individual machines, and thus
can commonly target only individual audio events. By using
DL-based frameworks, audio signatures of multiple anoma-
lous events could be learned at scale, and a knowledge-based
representation system could be adopted to represent multiple
audio events in context (e.g., recognizing event sequences as
specific patterns of malfunction), eliciting implicit knowl-
edge (e.g., which stages of production are impacted by the
anomalies, which recovery actions can be executed to re-
pair the impacted machines, etc.). Moreover, a KRR system
could infer the cause(s) of anomalies if previously encoun-
tered and documented in a suitable machine processable for-
mat, or even support the discovery of a new class of mal-
functions, by generalizing from correlated properties learned
through DL algorithms. Similar approaches, which combine
DL and KRR frameworks, have been successfully tested for
improving cancer detection, gene identification, prediction
of proteins function (Danaee, Ghaeini, and Hendrix 2017;
Cohen et al. 2017; Hong et al. 2017; Rifaioglu et al. 2017).
By aggregating video and audio signals3, alongside with
other sensor-based information, the scenario outlined above
can be further expanded: more generally, making sense of a
variety of data patterns using DL and KRR methods can be
considered a key solution for any knowledge-intensive IoT
application.

3 Roadmap and Conclusions

To the best of our knowledge, we are the first to propose
a combination of DL and KRR methods to enhance audio
analytics with artificial intelligence. In future work we plan
to test our approach and implement prototype systems ac-
cordingly, relying on distributed computing solutions, which
are computationally more sustainable than monolithic soft-
ware architectures, and typical of IoT deployments in smart
environments. We plan to adopt distributed DL algorithms,
where individual devices only have partial observations, and
therefore knowledge, of an environment: by exchanging in-
formation at a local level (device-to-device), thereby con-
serving both communication power and computational re-
sources, these devices can still learn a global representa-
tion of the general context. With the ubiquity of microphone
equipped devices, e.g. mobile phones, this type of distribut-
ing sensing is already a possibility. Furthermore, with the
introduction of such frameworks as Core ML and Tensor-
Flow Lite, many DL algorithms are readily executable on
millions of mobile platforms. Aggregating this information
– while ensuring user privacy – will allow for audio scene
knowledge representations and high-level inferences to span

3In this context, it’s worth mentioning SoundNet, the MIT’s
project of exploiting massive audio data available from online
videos to train sound recognition algorithms: http://soundnet.csail.
mit.edu/
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(a) Raw samples of an audio event consisting of a door un-
locking, opening, and closing.
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(b) Spectrogram of an audio event consisting of a door un-
locking, opening, and closing.

Figure 3

an immense expanse, and will ultimately be a key enabler
for smart environments.
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