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Abstract

Decentralized (PO)MDPs provide a rigorous framework for
sequential multiagent decision making under uncertainty.
However, their high computational complexity limits the
practical impact. To address scalability and real-world im-
pact, we focus on settings where a large number of agents
primarily interact through complex joint-rewards that depend
on their entire histories of states and actions. Such history-
based rewards encapsulate the notion of events or tasks such
that the team reward is given only when the joint-task is
completed. Algorithmically, we contribute — 1) A nonlinear
programming (NLP) formulation for such event-based plan-
ning model; 2) A probabilistic inference based approach that
scales much better than NLP solvers for a large number of
agents; 3) A policy gradient based multiagent reinforcement
learning approach that scales well even for exponential state-
spaces.

1 Inference Model for TIDec-MDP

Figure 1 shows the mixture of BNs for TIDec-MDPs. In EM,
optimizing the expected log-likelihood (or the M-step) be-
comes decoupled resulting in a separate optimization prob-
lem for each agent regardless of the number of joint rewards
or the number of agents in a joint-reward. This is a sig-
nificant scalability boost as NLP solvers directly optimize
the monolithic program which quickly becomes unscalable
due to a large number of variables/nonlinear terms, whereas
EM’s solves an independent convex program for each agent.
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Figure 1: Mixture model for TIDec-MDP; M is mixture variable
with discrete domain from 1 through n+|ρ|; there is one BN (left)
for each agent i=1:n; one BN (right) for each joint-reward k∈ρ
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2 RL for Event-Based Rewards

The previous section presented a scalable EM approach for
TIDec-MDPs. However, the scalability still suffers when
the state-space of each agent i is exponential, which is of-
ten the case for several patrolling and coverage problems.
To address such settings, we develop a reinforcement learn-
ing (RL) approach that uses function approximators such as
deep neural nets (NN) to represent agent policies and opti-
mizes them using the policy gradient approach.

3 Experimental Results

The y-axis of Figure 2a shows the ratio (in %) of total aver-
age rewards obtained by NLP w.r.t. the EM within the cutoff
time on the x-axis. Figure 2b shows that EM has a much
lower runtime on an average. Figure 2c shows the quality
achieved by Multi-Agent RL (MARL) for different settings
of the reset time k. Figure 2d shows quality improvements
by MARL over independent policy optimization (I-RL) for
reset time of k = 0.5 hours.
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Figure 2: Experimental Results

The longer version of the paper can be found at
http://www.mysmu.edu/faculty/akshatkumar/pub.html
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