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Abstract

Machine Learning (ML) algorithms are now used in a wide
range of application domains in society. Naturally, software
implementations of these algorithms have become ubiqui-
tous. Faults in ML software can cause substantial losses in
these application domains. Thus, it is very critical to con-
duct effective testing of ML software to detect and eliminate
its faults. However, testing ML software is difficult, partly
because producing test oracles used for checking behavior
correctness (such as using expected properties or expected
test outputs) is challenging. In this paper, we propose an ap-
proach of multiple-implementation testing to test supervised
learning software, a major type of ML software. In particu-
lar, our approach derives a test input’s proxy oracle from the
majority-voted output running the test input of multiple im-
plementations of the same algorithm (based on a pre-defined
percentage threshold). Our approach reports likely those test
inputs whose outputs (produced by an implementation under
test) are different from the majority-voted outputs as failing
tests. We evaluate our approach on two highly popular su-
pervised learning algorithms: k-Nearest Neighbor (kNN) and
Naive Bayes (NB). Our results show that our approach is
highly effective in detecting faults in real-world supervised
learning software. In particular, our approach detects 13 real
faults and 1 potential fault from 19 kNN implementations and
16 real faults from 7 NB implementations. Our approach can
even detect 7 real faults and 1 potential fault among the three
popularly used open-source ML projects (Weka, RapidMiner,
and KNIME).

Introduction

Machine Learning (ML) algorithms are now used in a wide
range of application domains in society, such as marketing,
stock trading, heart-failure identification, and fraud identifi-
cation. Given such growing applications, faults in ML soft-
ware can cause substantial losses in these application do-
mains. However, faults in ML software commonly exist. An
empirical study (Thung et al. 2012) of faults in ML software
shows that a non-trivial percentage (22.6%) of faults are due
to the implementations that do not follow the expected be-
havior.

To detect faults in ML software, software testing remains
the most widely used mechanism, focusing on two major is-
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sues: test generation (i.e., generating sufficient test inputs)
and test oracle (i.e., determining whether executing the pro-
gram under test with the generated input produces the ex-
pected behavior). Generally, when the output of ML soft-
ware is not as expected, there can be multiple likely reasons:
(1) the training data is not sufficient; (2) the configuration
of the algorithm is not desirable; (3) the implementation of
the algorithm is faulty; (4) the design of the algorithm is
undesirable. Our work in this paper focuses on test oracles
for testing the implementation of ML software to detect the
third preceding cause.

ML software is known to suffer from the “no oracle prob-
lem” (Murphy and Kaiser 2008). Supervised learning con-
structs a classification model from training data (i.e., labeled
data) and then applies the classification model to predict the
label for a future instance of unlabeled data. In the context
of supervised learning, a test oracle is not easily obtainable.
A future instance of data can be labeled (manually or auto-
matically); however, using such label as the test oracle is not
effective. One reason is that there exists some inaccuracy
(i.e., predicting a wrong label) in the learned classification
model. This inaccuracy is inherent and sometimes desirable
to avoid the overfitting problem (i.e., the classification model
performs perfectly on the training data but undesirably on a
future instance of unlabeled data).

To tackle the test-oracle problem for ML software,
we present a novel black-box approach of multiple-
implementation testing (Li, Hwang, and Xie 2008; Taneja et
al. 2010; Choudhary, Versee, and Orso 2010) for supervised
learning software. The insight underlying our approach is
that there are multiple implementations available for a super-
vised learning algorithm, and the majority of them produce
the expected output for a test input even if none of these im-
plementations are fault-free. In particular, our approach de-
rives a proxy oracle for a test input by running the test input
on n implementations of the same supervised learning algo-
rithm, and then using the common test output produced by
a majority (determined by a predefined percentage thresh-
old) of these n implementations. Our empirical investigation
shows that using majority voting effectively approximates a
test oracle.

This paper makes the following main contributions:

e A novel approach of multiple-implementation testing for
supervised learning software.



e Empirical evaluations showing that our approach detects
faults in real-world ML software. In particular, our ap-
proach detects 13 real faults and 1 potential fault from 19
k-Nearest Neighbor (kNN) implementations and 16 real
faults from 7 Naive Bayes (NB) implementations. Our ap-
proach can detect 7 real faults and 1 potential fault even
among the three popularly used open-source ML projects
(Weka, RapidMiner, and KNIME).

e Empirical comparison between the majority-voted oracle
produced by our approach and the benchmark-listed or-
acle (i.e., using the labels from benchmark data sets as
expected outputs).

Testing Fundamentals for Supervised learning
Software

In this section, we first define terminology used to explain
testing of supervised learning software. Then, we present
an example to illustrate our multiple-implementation testing
approach.

Terminology

Multiple-implementation testing. Multiple-
implementation testing (Li, Hwang, and Xie 2008;
Taneja et al. 2010) is a technique for addressing the “no
oracle problem” (Murphy and Kaiser 2008). It is based
on the insight that multiple implementations of the same
functionality may be available to leverage. Some of these
implementations can contain different faults leading to un-
expected behaviors for particular inputs. However, the same
output across a majority of the executed implementations
is likely to be correct. Such a majority can be determined
by a predefined percentage threshold denoted as pt. For a
given input, when the percentage of the implementations
sharing the same output is greater than pt, the result is
considered the majority output. It can be used as a proxy for
the expected output. More details are discussed later in this
section.

Test Input. For testing supervised learning algorithms,
we define a test input as (1) a tuple of values of parame-
ters denoted as P, (2) a training data set denoted as D, and
(3) an “unlabeled” testing instance denoted as z’, which has
not been classified. The training data set D consists of mul-
tiple instances, each of which has an assigned class label
(D = {(z1,¢1),-..,(zn,cn)}). An instance z; or 2’ is a
tuple of ¢ attributes: (a1, as,...,a;). In summary, a test in-
put is:

ip=(P,D:{(x1,c1),...,(xn,cn)}, 2)

For the kNN algorithm, P contains only one parameter, k.
The NB algorithm has no parameter, so P is empty.
Usually, either existing or automatically generated data
sets (e.g., UCI benchmark data sets (Lichman 2013)) can be
used to form test inputs. A data set can be randomly split
into sets of training data denoted as D and test data. Then
each instance in the test data set forms a testing instance z’.
For some machine learning algorithms that require tuning
parameters (e.g., the learning rate) of the learned model in
the training phase, a validation data set may be needed. For
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simplicity, we omit the use of a validation data set in our
setting. Neither KNN nor NB requires a validation data set.

Test Oracle and Proxy Oracle. A test oracle (Baresi and
Young 2001) is a mechanism for determining whether the
result of executing an implementation passes or fails. For
a given test input and an implementation under test (IUT),
we compare the output of executing the IUT against the
expected output, which is determined by the oracle. Test-
ing supervised learning software faces the “no oracle prob-
lem” (Murphy and Kaiser 2008). In other words, it is chal-
lenging to come up with an algorithm-expected output with
100% confidence. Thus, in practice, one can use a proxy or-
acle, a mechanism that determines the algorithm-expected
output with a certain confidence level of but not equal 100%.

There exist other alternatives that can be used as a proxy
oracle. In particular, one can create test inputs from the exist-
ing benchmark data sets as discussed earlier when defining
test inputs. The benchmark-listed class label for each testing
instance z’ in a test input can be used as the expected output.
In this case, the proxy oracle is named as Benchmark-listed
Oracle (in short as Bench-Oracle).

In multiple-implementation testing of supervised learning
software, the majority output, selected among all the out-
puts from multiple implementations, is considered as the ex-
pected output. In this case, the proxy oracle is named the
Majority-voted Oracle (Major-Oracle for short). Formally,
let imp; (ip) denote the output from running imp; on the in-
put ip, and M ajority is a function that takes a list of outputs
and returns the majority output according to the predefined
percentage threshold. Therefore, Major-Oracle is defined as
below:

MajorOracle(ip) = Majority(impy (ip), . .., impy(ip))

Test Case. A test case (Ammann and Offutt 2008) con-
sists of a test input and the expected output determined by
the test oracle (or proxy oracle). For example, for multiple-
implementation testing, a test case is defined as below:

tc={P,D,2', MajorOracle(P,D,z"))}

Failing Test and Deviating Test. A failing test case (fail-
ing test for short) of the implementation under test is a test
case whose actual output of the implementation is different
from the algorithm-expected output, which is determined by
the test oracle.

We also define a deviating test case (deviating test for
short) of the implementation under test as a test case whose
actual output of the implementation is different from the ex-
pected output determined by a proxy oracle (e.g., Bench-
Oracle and Major-Oracle). Note that when the expected
output determined by a proxy oracle is different from the
algorithm-expected output determined by a test oracle, a de-
viating test may not necessarily be a failing test. Similarly,
a failing test may not necessarily be a deviating test if the
proxy and test oracles are in agreement.

In some cases of multiple-implementation testing, there
may not exist a proxy oracle. Such cases occur when the
number of votes for each distinct label (e.g,. output of the
implementation under test) do not surpass the predefined
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Figure 1: Test Case for Multiple-Implementation Testing

threshold. Therefore, a majority-voted label cannot be de-
rived. In such cases, we assign a special value “undecided”
as the majority-voted label. Then a particular test case is a
deviating test on an implementation if the actual output la-
bel of this test case is different from the majority-voted label,
and the majority-voted label is not “undecided”.

Example. Figure 1 shows an example test case used in our
multiple-implementation testing. There are n implementa-
tions of the same algorithm. Implementation 1 is the IUT.
There are three test cases where each testing instance is
listed as one of the three data entries at the bottom of the
column. We use the same training data, testing instances,
and parameter values for all implementations, including the
IUT when applying our approach. The three majority-voted
labels for all the three test inputs are determined by compar-
ing outputs from these n implementations with the prede-
fined percentage threshold of 50%.

Approach

Our multiple-implementation testing approach runs n imple-
mentations of the same supervised-learning algorithm with
the same test input and algorithm configurations. Then, it
derives and uses the majority-voted output of these n im-
plementations as the expected output. In particular, our ap-
proach includes four main steps:

e Step 1: Determine parameters for the Implementation Un-
der Test (IUT)

e Step 2: Collect multiple implementations
e Step 3: Collect data sets and create test inputs

e Step 4: Run test inputs on the multiple implementations
to detect deviation

Overall, there are two scenarios of performing multiple-
implementation testing: testing an implementation under test
(IUT) and testing all the collected implementations. Both
scenarios share these four steps with some small variations
in details. We next discuss these four steps in the first sce-
nario, and then discuss variations on these steps in the sec-
ond scenario.

Scenario 1: Testing an Implementation Under Test
auT)
In this scenario, we perform multiple-implementation test-

ing on the given IUT of an algorithm in order to detect faults
in the IUT.

386

Step 1. The algorithm that the IUT implements may have
user-defined parameters, and thus the IUT must have an API
that allows to set the values for these parameters. Moreover,
the IUT may have additional required parameters (beyond
the algorithm parameters) that are needed in order to be run.
We have to consider those parameters as well. The IUT doc-
umentation may specify the ranges of those parameters. If
not, we can inspect the algorithm pseudocode and figure out
the ranges.

For example, according to the Wikipedia (Wikipedia
2017), parameter k in KNN usually starts from 1; however,
there is no clear definition on the upper bound of k. With
deep understanding of the kNN algorithm, one can assume
that the upper bound of k is the number of training instances,
since we want to find the k nearest instances in the algo-
rithm. Considering Weka’s kNN implementation as the IUT,
we find no additional required parameters for the IUT in or-
der to run it, since the documentation of Weka indicates an
kNN object constructor that takes only k as the parameter
(i.e., new IBk (int k)).

Step 2. We collect multiple implementations of the same al-
gorithm by searching for implementations on well-known
project repositories (e.g., GitHub). For the kNN algorithm,
we can use the name of the algorithm as the keywords for
searching, such as “kNN” and “k nearest neighbor”. Then
we can filter out and collect only the implementations whose
set of parameters (in their API or setter methods) is the su-
perset of the set of the IUT parameters found in Step 1. For
an implementation with required parameters that cannot be
set to equivalent values as in the IUT (there are no setter
methods for them or the documentation does not state that
they are already hard-coded), we discard this implementa-
tion, since we cannot run the IUT with different parameter
values.

Step 3. Collect a number of data sets from existing online
repositories. Usually a data set’s documentation states what
types of machine learning tasks the data set is suitable for.
For example, in our evaluations, we collect data sets that
are made for classification algorithms from the UCI reposi-
tory (Lichman 2013) to test KNN and NB, which are classi-
fication algorithms. After that, there are two tasks that may
be needed as shown below:

e Data Transformation. Some implementations may have
different input formats because they were independently-
written. In order to run them with our collected data sets,
we may need to transform the data-set format. Some com-
monly used formats are arff, csv, and libsvm. In addition,
some implementations may still require minor changes to
the data set file, e.g., moving the column containing class
labels to the first (or last) column in a csv file or renaming
class labels.

e Generating Test Inputs. We can randomly split a bench-
mark data set into two sets of instances: the training data
set and test data set. In our approach, the ratio of the num-
ber of training instances to the number of testing instances
is 4 : 1. Then, each instance in the test data set is a test in-
put. In our evaluations, neither kNN nor NB needs valida-
tion data sets. Note that we can also employ an automatic



test generation tool to generate testing instances without
labels.

Step 4. Run all the implementations on our data sets. For
each test input, we determine its majority-voted output. If
the multiple implementations’ outputs vary a lot, we may
need to add more implementations or decrease the percent-
age threshold so that we do not have too many “undecided”
labels. In our evaluations, we set the percentage threshold
to be 50%. This heuristic threshold is adapted from previ-
ous work of multiple-implementation testing (Choudhary,
Versee, and Orso 2010; Li, Hwang, and Xie 2008). Next, we
determine the deviating tests for the IUT, and debug each
deviating test by tracing the execution to find faults in a sim-
ilar way as how we usually do when debugging a faulty pro-
gram. Note that a test input can contain parameters that we
have to supply parameter values. Thus, we use the informa-
tion about the ranges of parameters (from Step 1) for both
functional testing and robustness testing. For example, in
kNN, we may set the parameter &k to be 1, n (the number
of training instances), or -1 (out of range).

Scenario 2: Testing all implementations

In this scenario, given a set of implementations of the same
algorithm, we test each of them. The approach is still quite
similar to the first scenario. The differences are listed below:

e In Step 1, we have to determine the required parameters
of each implementation.

e In Step 2, using the results from Step 1, we can partition
the implementations into several partitions so that each
partition contains all the implementations that have the
same set of required parameters. Then we perform Step 3
and Step 4 on each partition separately.

Evaluations

To assess the effectiveness of our multiple-implementation
testing in detecting faults in supervised learning software,
we conduct evaluations on 23 open-source projects. In these
projects, 3 are among the most popularly used open-source
ML projects: Weka, RapidMiner, and KNIME. From these
23 open-source projects, we test 19 implementations of the
k-nearest neighbor (kNN) algorithm and 7 implementations
of the Naive Bayes (NB) algorithm. In our evaluations, we
investigate the following research questions:

e RQ1: How effectively can Majority-voted Oracle (Major-
Oracle) help detect faults?

e RQ2: How more effectively can Major-Oracle help de-
tect faults compared to Benchmark-listed Oracle (Bench-
Oracle)?

e RQ3: How does the choice of data sets impact fault-
detection effectiveness when using Major-Oracle or
Bench-Oracle?

Note that although we empirically compare our approach
(i.e., Major-Oracle) and Bench-Oracle, Bench-Oracle is not
applicable when testing instances are automatically gener-
ated instead of being drawn from benchmark data whereas
our approach is applicable in such setting.
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Evaluation Setup

Evaluation Subjects We select the kNN algorithm and the
NB algorithm because these two algorithms are among the
most popular supervised learning algorithms and they are
well documented. We conduct the evaluations by following
Scenario 2. To select the implementations for our evalua-
tions, we search for implementations of the kNN and NB
algorithm on the well-known project repository service -
GitHub (2016). Keywords “K Nearest”, “kNN”, and “Naive
Bayes” are used as search queries on GitHub. From our kNN
queries, most of the implementations use the Euclidean-
distance metric. After partitioning all the implementations
according to the distance metric, we decide to evaluate only
the implementations that use the Euclidean-distance metric,
since other partitions contain only few implementations. It
turns out that there are 5 C# and 11 Java kNN implemen-
tations that use the Euclidean distance and that we are able
to run. For NB, there are 4 Java implementations that we
are able to run and work with a training data set contain-
ing more than two class labels. Furthermore, we add imple-
mentations from the three popular open-source ML projects:
Weka, RapidMiner, and KNIME since they are likely well
maintained and likely fault-free. Thus, there are 19 kNN and
7 NB implementations in total that we use as our evaluation
subjects.

To perform multiple-implementation testing for KNN im-
plementations, we run our evaluations by setting the value
of the parameter k to 1. For NB, we do not identify any pa-
rameters so those implementations are run as they are.

Data-set generation We obtain our benchmark data from
the UCI machine learning repository (Lichman 2013). This
repository is used by the ML community for empirical anal-
ysis of ML algorithms. Furthermore, the data in this repos-
itory are representative of real-world situations. Our ap-
proach creates partitions from the benchmark data. In the
evaluations, we treat each implementation in our evaluation
subjects as the implementation under test (IUT) one at a
time. For testing kNN implementations, we apply our ap-
proach on each IUT using 3 data sets from the UCI data
sets: Iris (1988), Breast Cancer Wisconsin (BCW) (1992),
Glass Identification (Glass) (1987). For testing NB imple-
mentations, we also use 3 data sets from the UCI data sets:
Breast Cancer Wisconsin (BCW) (1992), Haberman’s Sur-
vival Data (Haberman) (1999), Hayes-Roth (Hayes) (1989).
These data sets are used for testing classification algorithms.
We do not use the same three data sets for both algorithms
since the Glass and Iris data sets contain some attributes that
are floating numbers, so the values in those attributes are
unique, not suitable for testing the NB algorithm. The class
labels in the data sets are used as benchmark-listed labels.
To make the ratio between the numbers of training and test
instances 4:1, we randomly choose one fifth of all instances
in a data set to form a test data set. The remaining instances
are used to form a training data set. In the Iris data set, 30 out
of 150 instances are randomly chosen to form a test data set.
In the BCW data set, 137 out of 676 instances are randomly
chosen to form a test data set. In the Glass data set, 44 out of
211 instances are randomly chosen to form a test data set. In



the Haberman data set, 61 out of 306 instances are randomly
chosen to form a test data set. In the Hayes data set, 27 out
of 132 instances are randomly chosen to form a test data set.

Fault Detection To assess the effectiveness of our ap-
proach in detecting faults in ML applications, we measure
the number of deviating tests for each IUT (i.e., the actual
output is different from the expected output) according to
Major-Oracle and Bench-Oracle, respectively. Furthermore,
we count the number of deviating tests that lead to a real
fault. We also report the number of real faults in these IUTs.
These real faults are determined by us by tracing the exe-
cution and manually debugging each deviating test to find
unexpected behaviors in the IUT. Then we attempt to fix the
identified faults and rerun the deviating test and confirm that
it becomes a passing test while previously passing tests still
pass.

Evaluation Results

Table 1 shows the fault detection results on each implemen-
tation for both algorithms. Column #Faults indicates the
number of real faults revealed from the deviating tests for
each implementation under test. We also create a bug re-
port for each implementation involved. The report includes
a solution as to how to fix the reported faults. More detailed
results can be found on our project website (Srisakaokul et
al. 2017).

RQ1: Effectiveness of Major-Oracle in Fault Detection
We intend to investigate the effectiveness of Major-Oracle
in detecting faults. We investigate all the deviating tests and
see how many of them actually reveal a real fault. Table 1
shows that 20.5% of the tests are deviating tests, and almost
all the deviating tests (97.5%) based on Major-Oracle reveal
a fault. According to both proxy oracles, 10 out of 26 imple-
mentations do not have any deviating tests.

Table 2 shows the distribution of faults in the kNN algo-
rithm. Column #FaultRevealingTests indicates how many
tests reveal the corresponding faults in the kNN implemen-
tations. 41% of all the fault-revealing tests reveal that nor-
malization is the main cause of the deviations/failures. For
example, the normalize method in kNN13 returns NaN on
some tests. The implementation kNN8 has a fault due to
distance sorting: when k = 1, it returns the class label of
the first instance in the training data set without sorting all
the instances by distance first. One fault that our approach
detects in Weka is that Weka does some preprocessing on
instances before running its KNN. Although we do not clas-
sify this fault as a real fault, we classify it as a potential fault
because Weka developers make an “unpopular” design de-
cision, different from most of other implementations for the
same algorithm. Such behavior shall draw the attention of
Weka developers or even users to assess whether such de-
sign decision is a desirable one.

We also categorize the types of faults detected by our ap-
proach in the NB implementations into three categories as
shown in Table 3. The main fault is that different imple-
mentations calculate the probability differently: we find that
only NB1 and RapidMiner calculate the probability in the
standard NB algorithm. The second fault is the case that all

388

classes have zero probability to contain the given instance.
The NB algorithm does not clearly define how to handle this
case. Different implementations seem to handle this case
differently. For example, NB1 sets the probability to con-
tain the given instance for a class ¢; to be 1/(#training
instances with class label ¢;) for the case that it
is actually zero. Doing so is incorrect because different
classes may have different values. Setting the zero con-
ditional probability to 1/(#training instances with
class label ¢;), instead of a constant, is inconsistent
across multiple classes (c;). The third fault is the case that
some classes have zero probability to contain the given in-
stance. For this case, the implementations should still output
the classes that have the highest probability. Only NB2 and
RapidMiner handle this case correctly. The other implemen-
tations output an arbitrary class label instead.

RQ2: Effectiveness of Major-Oracle compared to Bench-
Oracle Table 1 shows the comparison result between
Major-Oracle and Bench-Oracle with respect to effective-
ness of detecting real faults. The result shows that both
proxy oracles reveal the same number of real faults in KNN
implementations, but Major-Oracle reveals two more faults
in NB implementations (one fault is in Weka and the other is
in KNIME). Moreover, Major-Oracle has lower false pos-
itive (the percentage of deviating tests that do not reveal
faults) being (100% - 97.5%) = 2.5%, whereas Bench-Oracle
has higher false positive being (100% - 48.4%) = 51.6%. So
Major-Oracle is a lot more effective than Bench-Oracle. One
possible reason is that Bench-Oracle may not reflect the ex-
pected behaviors of the algorithm (which is often designed
to avoid overfitting and thus has < 100% prediction accu-
racy), whereas Major-Oracle often captures the expected be-
haviors of the algorithm.

RQ3: Impact of Data-Set Choices on Fault-Detection
Effectiveness One may wonder how many data sets are
needed to test supervised learning software, and whether us-
ing only one data set is sufficient to reveal all the faults re-
vealed when all the data sets are used. Therefore, we next in-
vestigate how the choice of data sets impacts fault-detection
effectiveness when using Major-Oracle or Bench-Oracle.
Due to the page limit, we create a table showing the num-
ber of faults revealed by each data set on our project web-
site (Srisakaokul et al. 2017). The result shows that a single
data set does not reveal all the real faults in some implemen-
tations. For example, kNN11 has three real faults in total, but
none of the data sets reveals all the three real faults. More-
over, only Data Set 3 (Glass) reveals a real fault in Weka.
When comparing the effectiveness of the two proxy oracles,
we can see that Major-Oracle reveals more real faults than
Bench-Oracle when using only the Iris data set or the BCW
data set. In addition, Bench-Oracle has false negatives as it
does not reveal a real fault in KNN1 and kKNN14, when the
Iris data set is used, and some real faults in NB implementa-
tions are detected by Major-Oracle, but are not detected by
Bench-Oracle.

In summary, Bench-Oracle is not effective in detecting
faults compared to Major-Oracle, when we do not have suf-
ficient data sets to use for testing. One implication is that



Table 1: Fault Detection Effectiveness of Major-Oracle and Bench-Oracle for kNN and NB Algorithms

Major-Oracle Bench-Oracle

Impl DeglatmgTes‘;: Fa;ltRevealTes‘;: #Faults De#;ﬂatmgTes‘;: Fa;ltRevealTesl;: #Faults
kKNN1 18 8.5% 18 100.0% 1 32 15.2% 11 34.4% 1
kNN2 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kKNN3 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kNN4 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kNNS5 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kNN6 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kKNN7 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kKNN8 100 47.4% | 100 100.0% 2 98 46.4% 88 89.8% 2
kNN9 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kKNN10 28 13.3% 28 100.0% 1 39 18.5% 22 56.4% 1
kKNNI11 15 7.1% 15 100.0% 3 34 16.1% 14 41.2% 3
kNN12 6 2.8% 6 100.0% 1 34 16.1% 6 17.6% 1
kNN13 211 100.0% | 211 100.0% 1] 211 100.0% | 211 100.0% 1
kNN14 39 18.5% 39 100.0% 2 39 18.5% 26 66.7% 2
kNN15 26 12.3% 26 100.0% 2 36 17.1% 19 52.8% 2
kNN16 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kNN17 (Weka) 10 4.7% 10 100.0% *] 30 14.2% 8 26.7% *]
kNN18 (RapidMiner) 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
kNN19 (KNIME) 0 0.0% 0 N/A 0 30 14.2% 0 0.0% 0
NB1 23 10.3% 23 100.0% 2 42 18.8% 19 45.2% 2
NB2 27 12.1% 23 85.2% 2 50 22.3% 23 46.0% 2
NB3 160 71.4% | 160 100.0% 3] 154 68.8% | 152 98.7% 3
NB4 14 6.3% 14 100.0% 2 27 12.1% 7 25.9% 2
NB5 (Weka) 6 2.7% 6 100.0% 3 29 12.9% 4 13.8% 2
NB6 (RapidMiner) 4 1.8% 3 75.0% 1 29 12.9% 3 10.3% 1
NB7 (KNIME) 21 9.4% 21 100.0% 3 39 17.4% 19 48.7% 2
Average 20.5% 97.5% 21.9% 48.4 %

Bench-Oracle does not reflect how the algorithm is expected
to work. Also, using more data sets usually helps reveal
more real faults.

Threats to Validity

The threats to external validity primarily include the degree
to which the subject programs, faults, or test cases are repre-
sentative of true practice. Our evaluations use only two algo-
rithms, their open-source implementations, and three bench-
mark data sets. These threats could be reduced by more ex-
periments on wider types of subjects in future work. The
threats to internal validity are instrumentation effects that
can bias our results. Faults in our prototype and human in-
vestigation might cause such effects. To reduce these threats,
we manually inspect the execution traces and provide fix to
confirm real faults.

Discussion

Multiple-implementation testing assumes that a “majority”
of the implementations is correct for a given test input but
there is no guarantee that they are indeed correct. This
problem is inherent to the general approach of multiple-
implementation testing.
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We notice that in some ML algorithms, there are some
unspecified behaviors when dealing with some corner cases.
The developers for these ML algorithms should pay enough
attention to these situations to make it clear what result their
implementation should produce. For example, we can find
from Table 1 that compared to the KNN implementations,
the NB implementations all have a non-trivial number of de-
viating tests, even among the three popular implementations.
The reason for such result is that, for the NB algorithm, we
need to calculate the conditional probability p(xz;|C;) for
each attribute x; under the condition that the result label
is C; for one test data entry z. And for the specific label
C;, if for some attribute x;, p(x;|C;) = 0, the probability
p(Cilz) = p(Ci)/p(x) = [ p(z;|C;) will also be 0. Thus,
if all labels have the probability p(C;|z) = 0, the NB al-
gorithm cannot determine a proper label for the data entry.
The Haberman dataset contains some attributes that never
appear in the training data, making the conditional proba-
bilities for all labels to be 0. The NB algorithm can output
any arbitrary label. Different implementations handle this
case differently. Such factor causes these implementations
to have a non-trivial number of deviating tests. However, for
the implementation N B4, there is a real fault in dealing with
0 probability. The implementation /N B4 uses a smoothing



Table 2: Fault Categorization for kNN Algorithm

# Fault
Fault Types RevealTest %
Normalization 220 | 41.0%
Support fixed # of attributes 97 | 18.1%
Sorting distance 95 | 17.7%
Euclidean-distance calculation 65 | 12.1%
Preprocessing data 43 8.0%
Loop iteration 14| 2.6%
Arithmetic computation overflow 2| 0.4%

Table 3: Fault Categorization for NB Algorithm

# Fault
Fault Types RevealTest %
Probability calculation 107 | 42.1%
Some classes with probability O 97 | 38.2%
All classes with probability 0 50 | 19.7%

function designed to adjust the probability to be larger than
a small threshold such as 0.01 so that the probability will
not get too close to 0. But the function implementation is
incorrect, so that the adjusted probability would be much
larger than 0 and exceed some non-zero probabilities (how-
ever, testing with the three data sets does not reveal this fault;
we find this fault during code inspection when investigating
what cause the deviating tests in N B4).

One may wonder about the effectiveness of multiple im-
plementation testing when there are no deviation-free im-
plementations, i.e., those whose results are the same as the
majority output across all test cases. Due to the page limit,
we discuss this aspect with empirical results on our project
website (Srisakaokul et al. 2017).

Related Work

Differential testing (Xie et al. 2007) is a testing approach
closely related to multiple-implementation testing. During
differential testing, developers would like to generate tests
that exhibit the behavioral differences between two versions
of a program, if any differences exist, e.g., regression test-
ing. As such, if developers choose a specific implementa-
tion as a reference implementation, then they are not do-
ing multiple-implementation testing but just doing differen-
tial testing or testing against the reference implementation.
In multiple-implementation testing, all implementations are
treated equally and each places an equal vote to the test out-
put.

Murphy and Kaiser (2008) proposed an approach for test-
ing ML applications based on metamorphic testing, parame-
terized random testing, and niche oracle based testing. Their
approach conducts a set of analyses on the problem domain,
the algorithm as defined, and runtime options. From the
analyses, they derive equivalence classes to guide the afore-
mentioned testing techniques. In addition, metamorphic test-
ing has been investigated on specific ML algorithms such as
kNN and NB (Xie et al. 2009). Metamorphic testing adopted
in the preceding previous work requires high human cost and
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skill to formally specify metamorphic properties; in contrast,
our approach of multiple-implementation testing does not
require any formal specifications.

Tian et al. (2017) proposed an approach for creating a
test oracle for automated testing of Deep-Neural-Networks
(DNN) driven autonomous cars. Their idea is to leverage
metamorphic relations between the car behaviors across dif-
ferent input images to the DNN model. However, defining
the relations over-strictly may result in a large number of
false positives. Their approach addresses this issue by allow-
ing variations within some error ranges. Their approach can-
not be used for a supervised learning algorithm (e.g., kKNN)
that outputs only one expected value for a given input.

Pei et al. (2017) proposed an approach for automatically
testing deep learning systems. Their approach leverages
multiple deep learning systems with similar functionalities
as cross-referencing oracles. The goal is to find new inputs
from the seed inputs that cause different behaviors of those
deep learning systems; such different behaviors may reveal
incorrect behaviors. Their approach requires those systems
to behave differently (since they are trained independently)
so that the approach can find new inputs that cause different
behaviors. However, our approach expects multiple imple-
mentations to behave consistently by training them with the
same data set. If an implementation behaves differently from
the majority, it is likely to contain a fault.

Multiple-implementation testing has been used for non-
ML application domains, e.g., in detecting faults in XACML
implementations (Li, Hwang, and Xie 2008), web in-
put validators (Taneja et al. 2010), and cross-browser is-
sues (Choudhary, Versee, and Orso 2010). In this paper, we
show that by using multiple-implementation testing, we de-
tect real faults in ML software with high effectiveness.

Conclusion

In this paper, we have proposed an approach of multiple-
implementation testing for supervised learning software.
Our evaluations on two popular ML algorithms, k-Nearest
Neighbor (kNN) and Naive Bayes (NB), have shown
that our majority-voted oracle, produced by multiple-
implementation testing, is an effective proxy of a test oracle.
The majority-voted oracle has low false positives and can
detect more real faults than the benchmark-listed oracle. In
particular, our approach detects 13 real faults and 1 potential
fault from 19 kNN implementations and 16 real faults from
7 NB implementations. Our approach can even detect 7 real
faults and 1 potential fault among the three popularly used
open-source ML projects (Weka, RapidMiner, and KNIME).
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