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Abstract
Extracting event knowledge from open-world survival video 
games is a promising domain to investigate the application 
of Machine Learning techniques to routine human decision 
making. This contrasts with and builds upon typical game-
based decision making work that focuses on optimal behav-
ior. We propose an Interaction Graph data structure that can 
be trained from game play to enable hybrid reasoning and 
statistical estimation about what events can happen in the 
world. This enables an agent to exhibit increasingly more 
reasonable behavior after low numbers of training runs. An 
implementation and initial experimental validation are pre-
sented.

Introduction   
The problem of agents that can make intelligent decisions 
is a long-standing AI challenge, which has seen fruitful 
work with both classic board games and video games. In 
classic board games, the decision making is characterized 
by selecting the optimal move from a deceptively simple 
set of possible moves. There are only a handful of pieces 
and actions in games like Chess or Go, but the interde-
pendency of one move on another creates a combinatorial 
explosion of possible states. Recently, Deep Learning with 
Monte Carlo simulation has proven highly successful in 
surpassing the highest levels of human performance in Go 
(Silver et al. 2016). Machine Learning has also been suc-
cessfully applied to a range of video game playing chal-
lenges (cf. Galway et al., 2008), notably the recent success 
of Deep Reinforcement Learning with Atari games (Minh 
et al. 2015). In most of this work, the decision making also 
selects from a small set of possible actions, with an explo-
sive number of resulting configurations (here due to fine-
grained spatiotemporal state). Considering both cases, Ma-
chine Learning for games has advanced the state-of-the-art 
in both notably deliberative and reactive decision-making.
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And in both cases, the type of decision making strongly 
applies to expert, task-specific performance.

In contrast, routine human decision making is not as 
notable for optimality as it is for robustness in the face of 
irrelevant state, adaptability to different contexts, and 
quick learning. Here too, video games can provide a useful 
domain for investigation. Open-world survival games are 
highly exploratory in nature, and involve a wider range of 
tasks repeated in an ever-evolving context. The goal is less 
to find the optimal behavior to win the game, and more to 
explore the range of behaviors that meet the criteria of sur-
viving to explore further. Players must decide whether and 
how to respond to a variety of opportunities and threats as 
they are discovered. Reasonable behavior in this context is 
not optimal, but should (1) make choices consistent with 
pursuing some set of (possibly changing) goals, (2) not 
choose actions that are clearly detrimental or inferior in the 
short-term to other options, and (3) not require re-learning 
applicable knowledge in a new situation. The broad goal of 
this work is to explore how Machine Learning techniques 
can be applied to learning this reasonable behavior.

We hypothesize that this challenge requires an AI sys-
tem to be able to identify the notable short-term outcomes 
afforded by the current situation, regardless of whether 
those outcomes are relevant to a specific task. The abstrac-
tion of durative events provides a composable structure to 
enable the system to accumulate and generalize operational 
knowledge around. In essence, we want to learn the char-
acteristics of events in the environment, rather than a glob-
al policy to achieve a specific goal in the environment. We 
propose to automatically segment events in terms of unique 
interaction configurations between agents and other enti-
ties. The result is a novel Interaction Graph (IGraph)
where nodes are types of interaction events, and edges are 
transitions between them. We then use each node and edge 
as context for probabilistic models that learn to predict 
features of the events and transitions (e.g. how long will it 
last, will it result in this or that outcome, will it lead to an-
other type of interaction). Extracting and using this 
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knowledge is a specialized type of reinforcement learning 
(Sutton & Barto 1998), where the IGraph fills the role of 
the MDP, enabling algorithms that can predict possible 
paths through the transition space.

In this paper, we present the IGraph concept and imple-
mentation details to explain how it extracts event models 
from game play. We also present a validation experiment 
providing evidence that it is capable of learning how to 
make intelligent decisions about considering choices, out-
comes and how to reach goals in the world.

Related Work
For Machine Learning in modern video games, much prior 
work has focused on optimizing agents’ low-level, real-
time movements and actions using neural networks, evolu-
tionary computing and reinforcement learning (cf. Galway 
et al., 2008). These techniques have also been applied to 
tactical and strategic decision-making, by isolating those 
elements and creating appropriate abstractions of the game 
state for the models to work with.

The most prolific genre for work in tactical and strategic 
decision-making in video games has been the Real-Time 
Strategy (RTS) genre. RTS work is a good analogue for 
decision-making in open-world survival games, since RTS 
popularized the mechanics for gathering, building and 
crafting, as well as the movement, control and combat 
models used in most 2d survival games. The prior work in 
RTS games suggests that learning in a complex game envi-
ronment requires isolating specific abstractions of state and 
action. Several projects have used reinforcement learning 
with neural network q-value approximation to learn com-
bat micro-management (Micic et al., 2011; Shantia et al. 
2011; Wender & Watson, 2012). These approaches suc-
ceed by greatly simplifying the action space to fight or 
retreat scripts, and simplifying the feature space using 
manual abstractions such as the closest enemy or aggregate 
enemy health within range. These abstractions allow the 
learning model to work with relevant, fixed-size input. 
(Jaidee & Munoz-Avlia, 2012) presented a q-learning algo-
rithm capable of playing complete, simple RTS scenarios 
by training on each class of unit and building separately.
The state space and action space could therefore be tailored 
to each class, greatly reducing the size. Again, various use-
ful abstractions were used in the state space and the action 
scripts (e.g. count of units stronger than x, attack all units 
weaker than attacker). (Sharma et al., 2007) used a three-
layered architecture with a scripted planner on top, hybrid 
case-based reasoning and reinforcement learning 
(CBR/RL) for tactical decisions, and reactive planning at 
the bottom to show transfer learning in a simplified RTS 
environment. The CBR/RL component replaces the typical 
MDP by storing the learned transitions in cases and retriev-

ing them in new scenarios. The inputs are global abstrac-
tions of game state (e.g. overall unit count, territories held) 
and the action space is simplified to Attack, Explore, Re-
treat and Conquer goals that are carried out by the reactive 
layer. (Synnaeve & Bessiere, 2012) used Bayesian infer-
ence to predict the outcome of attacks over the abstractions
of regions and army strengths. In this work, we embrace 
the need for modular, local abstractions to learn over, but 
seek to move away from hand-made models towards a 
more general framework of events and outcomes.

The nodes of the IGraph provide context to train, vali-
date and utilize regression and classification models for 
reasoning tasks. These models have become very mature in 
recent years, with a number of stable and accessible librar-
ies providing a wide variety of off-the-shelf implementa-
tions. Many models can be found supporting continuous 
and categorical input and outputs, probabilistic predictions 
and dimensionality reduction. For this project, we are 
working in the Scientific Python1 environment with easy 
access to linear and polynomial regression, as well as a
wide range of trainable classifiers and regressors including 
Naïve Bayes, Decision Tree ensembles, SVM, Gaussian 
Processes and Discriminant Analysis.

Selecting from a pool of models and parameters is a 
fundamental problem in any data analysis field. This work 
follows the established view of model selection as an ex-
haustive search over the quality of results of the available 
models. (Linhart & Zucchini, 1986) formalized this using 
n-fold cross-validation for each model, and (Schaffer, 
1993) applied it specifically to selecting a machine learn-
ing classifier for a given data set. Model parameters can be 
viewed as a recursive extension of that search. Significant 
work has also been done on improving that search by lev-
eraging heuristic knowledge about the models (cf. Brodley,
1993) and better measuring the fit of a model (cf. Browne 
& Cudeck, 1992; Kohavi, 1995). Model parameter tuning 
and feature selection can be broadly viewed as recursive 
extensions of that search, and again, considerable work has 
gone into those areas both for general-purpose and model-
specific techniques (cf. Guyon & Elisseeff, 2003; Yu & 
Liu, 2004; Snoek et al., 2012).

Open-World Survival Games
In an open-world survival game, the player is free to move 
throughout the game world, collecting resources from node 
entities such as trees, ponds and rocks. These resources are
used to craft useful items such as tools and weapons, as 
well as structures that provide benefits such as shelter and 
storage. Roaming enemies (mobs) must be avoided or de-
feated in combat or else they will kill the player. Typically, 

1 https://www.scipy.org/about.html
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there are additional environmental features such as hunger, 
thirst and exposure that can also end the game. While the 
general goal of the genre is to not die, the player experi-
ence is centered around exploration. The open world 
means that the player can go anywhere at any time, and 
more advanced enemies and resources are found together 
in different areas. The craftable items (and structures) are 
arranged in an advancing tree, such that creating later items 
requires creating earlier items, either because they are re-
quired for the crafting, required for gathering more ad-
vanced resources, or because the earlier items are neces-
sary to survive to get to the later items. This gives the 
player an immediate progress system, while still allowing 
freedom to explore different branches, areas and secondary 
goals. These games are often paired with secondary goals 
such as building creative structures, defeating specific en-
emies or following stories laid out in the world.

Open-world survival games can have fast-paced action, 
such as numerous recent AAA “sandbox” shooters, but the 
genre is not specifically based on that interface. This work 
takes place at the level of decision-making about behav-
iors, such as walking to a pond and drinking from it or 
moving to a new region to explore. This maps conveniently 
to 2d survival games using a click-to-move interface, which 
we consider here. Recognizing such behaviors in a contin-
uous control environment is outside the scope of this pro-
ject, but given that actions like gathering and attacking are 
discrete and clearly observable, many of the noise prob-
lems inherent in continuous movement could be factored 
out.

Interaction Graph
The IGraph is a set of nodes and edges where each node 
abstracts an interaction: a set of behaviors being performed 
together over an interval of time that share at least one en-
tity. This does not mean that the behaviors start and end at 
the same time, only that they fully cover the interval of the 
node. The IGraph represents transitions between these in-
teraction states. For example, as shown in Figure 1, the red 
agent begins by performing a gather behavior targeting the 
flower bush in part (a). Both entities are part of the interac-
tion. The green agent then begins to attack the red agent in 
part (b), joining the interaction. This interaction node exists 
for as long as both the green and red agents continue these 
behaviors and no other behaviors are performed involving 
red, green or the bush. From there, the red agent might 
choose to attack the green agent back, as in part (c). This 
transitions to a new interaction node, where the bush is no 
longer part of the interaction. Alternatively, the red agent 
might choose instead to attack innocent passerby blue, who 
is idle, and is part of the interaction node in part (d). Each 
node in the IGraph has a primary agent entity, which is the 

point of view of the transitions. Each node is unique to the
set of behaviors and arguments in the interaction. For ex-
ample, all cases in this world where (gathers e1 e2) 
and (attacks e3 e1) are grouped into one node with 
the agent in role e1 as primary and a second node with the 
agent in role e3 as primary.

Figure 1. Example interaction states.

Transition edges within the IGraph are of four types,
relative to the primary agent:

1) A choice transition involves the primary agent de-
ciding to change the behavior they are performing. A 
choice transition may stochastically lead to more than 
one node, but is initiated as part of the decision pro-
cess. In Figure 1, (b)=>(c) is a choice.

2) An external interrupt transition involves an entity 
not in the interaction starting an overlapping behavior 
to become part of the interaction in the destination
node. In Figure 1, (a)=>(b) is an external interrupt.

3) An internal interrupt transition involves an entity 
in the interaction starting a new behavior. If the green 
agent in (c) ran away, this would be an internal inter-
rupt. A special case of this is the primary agent dying. 

4) A completion transition happens when the primary 
agent behavior completes, either by succeeding or by 
failing. If the red agent in (b) finished gathering from 
the bush, this would be a completion.

The IGraph provides a learnable, inspectable framework 
for generalizing predictions and estimations about what 
can happen in the game world. Formally, each node con-
sists of:

B: the set of behaviors in the interaction. 

L: a set of entity variables generalizing the entities in 
B. 
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C: a set of choices that have been observed, where 
each choice is a behavior type and bindings to L. 

O: a set of outcome effects observed on completion.

T: a set of observed interrupt transitions, with bind-
ings to L and open bindings to external entities.

Predictors (classifiers and regressors) specific to each
node are trained to predict time-to-completion and the 
probabilities for each outcome in O, the probabilities of 
each transition in T (including the notable probability of 
death), and the probabilities of each transition following 
from each choice in C. Both interrupts and outcomes are 
treated as independent probabilities for simplicity, such 
that the posterior probability of an outcome (assuming that 
the agent doesn’t chooses to continue the behavior) is its 
estimated probability multiplied by (1.0 - the probability 
that none of the interrupts happen). 

Fundamental Reasoning Abstractions
Identifying the right state and action abstractions for each 
predictor is critical to good performance. Rather than hand 
making those abstractions, our training system starts with a 
set of reusable fundamental reasoning abstractions. These 
are concept models that abstract details of the world such 
as entities having positions in the world, behaviors taking 
time, behaviors having outcomes, gaining an item being 
when something is in an agent’s inventory that was not 
there before, or the definition of the distance between two 
entities. These abstractions are not linked to any particular 
prediction, but it is up to the learning process to determine 
where and when they are appropriate to use. 

Training the Interaction Graph
The IGraph is built by playing the game and recording 
traces of entity behaviors. It can be easily updated and re-
trained as more data becomes available. A sequence of
exemplar nodes is created from a game trace by starting 
with the sequence of behaviors for the primary agent enti-
ty. In Figure 2, part (a), the green, orange and blue rectan-
gles represent a sequence of primary agent behaviors on a 
timeline. Every other behavior in the trace is then com-
pared to that sequence, such as the purple behavior shown 
in part (a). If it has common entities with the green and 
orange behaviors (which it overlaps), it splits the sequence 
into five nodes, as shown in part (b). The second and third 
nodes in part (b) involve both the primary agent and the 
entities involved in the purple behavior. As shown in parts 
(c) and (d), if the second purple node has overlapping enti-
ties only with blue (and not orange), then there are still 
only five nodes.

Figure 2. Segmenting trace behaviors into exemplar nodes.

Each exemplar sequence is fed into the training IGraph, 
and each exemplar node unifies its behavior signature (the 
behaviors with specific entity bindings) against B(L) from 
the existing graph nodes. If there is a match, the exemplar 
node is added as an exemplar to that node, to be used to 
add choices, outcomes and transitions, and to train the pre-
dictors. Otherwise a new node is created.

The set of Choices C for a node are identified by exem-
plars where the primary agent behavior does not complete, 
but is different in the next node in the exemplar sequence.
Outcomes O are identified for completed behaviors by tak-
ing a state delta between the world state at the start of the 
exemplar node s0 and the end s1. The delta is taken by 
applying a generic set of fundamental abstractions, which 
can be expanded and left for the system to sift through. For 
this experiment, the effect models were:

obtain(entity_id, item_type_id, ct): the 
specified entity has ct more of the specified item type 
in their inventory in s1 than in s0. 

lose(entity_id, item_type_id, ct): the 
specified entity has ct less of the specified item type 
in their inventory in s1 than in s0. 

die(entity_id): the specified entity, which is a 
decision-making entity (player, agent or mob), exists 
in s0 and not in s1. 

remove(entity_id): the specified entity, which is 
not a decision-making entity, exists in s0 and not in 
s1. 

The outcomes are sets of always co-occurring effects 
observed. For example gathering from a bush might always 
give leaves and flowers (one outcome) but only sometimes 
twigs (another, independent outcome). The exemplars 
stored in the node for the completion cases are marked as 
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positive or negative examples for each of the outcomes.
Those exemplars are also used to train the time-to-
completion predictor. 

Internal and external interrupt transitions are identified 
from the sequence of exemplars as all those that are not 
choices or completions. Interrupts are mutually exclusive, 
so each exemplar is stored as a positive example of only 
one interrupt transition. The exemplar behavior signature
for the destination of the transition is compared against the 
source signature to identify open entity bindings in the 
former (e.g. “the entity who attacked”). In generating posi-
tive and negative training data, the open entity bindings are 
bound against each potential entity in the world (with only 
type and range filters). So in the case of an external attack, 
the entity who did attack in the exemplar sequence is a 
positive example, while all the entities who did not attack 
(in that exemplar or any other) are negative. Alternative 
negative exemplar generation strategies are one of many 
settings that the learning process can automatically search 
and validate to find the best predictions and estimates.

Once the available exemplars have been stored in the 
training IGraph, the predictors are trained. For a continu-
ous value such as time-to-completion, a set of regression
models are automatically evaluated, while for categorical 
values a set of classifiers are automatically evaluated. For 
binary categorical values, regression to probability be-
tween 0 and 1 is also considered. The feature vectors used 
as input to each candidate predictor are generated from all 
the fundamental abstractions that apply to the entities in-
volved in the interaction. This includes entity types and 
quantities as well as attributes (both type-level values such 
as the movement speed of a bear, and instance-level values 
such as an entity’s current health). If a behavior binds more 
than one entity, than all the fundamental abstractions of 
relationships between entities are also included. Spatial 
abstractions are particularly useful here, such as distance, 
path distance, distance to a path and topological grouping. 
The training process includes all available relationships 
and uses simple dimensionality reduction and verification 
techniques to figure out what is predictive.

For a given predictor, a set of learning models are tried. 
The training feature vectors are filtered to remove categor-
ical values if they are not supported, and to bin continuous 
values if they are not supported. Each model is wrapped (if 
necessary) to provide normalization of continuous values 
based on the training data and dimensionality reduction if 
possible. N-fold cross-validation is also wrapped around 
each learning model. Based on the output of the validation, 
the predictors can be compared for effectiveness, and/or 
additional volume of exemplars can be generated by the 
system. An accepted learning model is retrained on the 
entire set, subject to dimensionality reduction, then re-
trained on only the applicable features.

In order to support quick evaluations of the threat of 
death, the value of dread is calculated for each node in the 
graph, analogously to reward in standard MDP-based rein-
forcement learning. Instead of reward for a specific goal, 
dread estimates how much death has come from passing 
through that node. This mechanism should be extensible to 
other generally positive or negative concerns.

Finally, the training IGraph exports itself for run-time 
use, removing exemplars and other unnecessary intermedi-
ate data.

Run-Time Interaction Graph Agent
In order to use the information extracted by the IGraph, a 
run-time agent can be assigned to an agent entity in the 
game world and given a set of (possibly changing) goals to 
attempt to reach. Importantly, the IGraph does not have to
be trained on those particular goals (although it should 
speed up training). The goals available are determined by 
the game and the agent must be able to evaluate against the 
game state to determine when they are met.

The agent monitors the game state by generating the 
behavior signature for itself each frame. Whenever the 
signature changes, it retrieves the corresponding node from 
the IGraph. When in an idle state, the agent retrieves all 
choice transitions from that state, gets the destination 
IGraph nodes, generates valid bindings to the entities in the 
world, and evaluates the resulting candidate states. The 
evaluation calculates three values: expected reward, ex-
pected cost and what we refer to as concern. The expected 
reward is a straightforward utility calculation of the esti-
mated probability of each outcome, given completion, by 
its value to the agent's goals and the estimated probability 
of completion. Likewise, the expected cost is simply the 
estimated time to reach completion. In considering each 
candidate choice, the agent uses the value ratio, which is 
the expected reward over the expected cost. Concern is an 
estimate of the risk of death (losing) for each choice. The 
destination node has its own predictor for the probability of 
a death outcome in the absence of any transition to another 
node. This is added to the sum of dread for each possible 
interrupt transition out of that state, multiplied by the prob-
ability of that transition.

The candidate choices are sorted according to their value 
ratio and concern. Choices with no value are discarded, as 
a random movement would be preferable. The remaining 
choices are separated into low, medium and high concern 
bins and sorted by value ratio. The highest valued choice in 
the lowest non-empty bin is chosen for execution.

For non-idle states, the only difference is that the current 
state is also evaluated and sorted with the rest to see if the 
agent should stick with the current behavior. 
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Experimental Setup

Game Setup
As an initial validation of the IGraph to extract useful 
knowledge about events and outcomes, we have created a 
testbed 2d open-world survival game. This experimental 
game simplifies the out-of-scope behavior recognition 
problem as click-to-move behaviors are directly identifia-
ble as the commands given by the experimental agent. The 
mobs in the game use the same behavioral system, so their 
behaviors are easily traced as well. The game uses a stand-
ard Component-Entity-System architecture (Boreal Games, 
2013), where all state data is contained in plain data arrays. 
Every agent decision creates a behavior component which 
uses Behavior Tree semantics (Simpson, 2014) including 
status codes RUNNING, SUCCESS and FAILURE. In this 
way, standard game architecture enables data collection, 
with minimal extra effort in the game engine itself. Entity 
attributes and relationships are likewise observable, but for 
this work we have simplified the process by making those 
values directly available from the components. This is sim-
ilar to data that is made available through systems like the 
Brood War API2 for StarCraft AI work. Also for experi-
mental convenience, we have a non-interactive Python 
build of the game that runs agents either headless or with a 
minimalist visualization for debugging.

To generate initial data, the game is played by an Explo-
ration Agent that chooses random behaviors to execute. At 
any time that no behavior is in progress, the agent binds all 
possible behaviors and randomly selects one. Due to the 
very high branching factor, movement to all possible emp-
ty locations is not included. Instead, movement to a single, 
random location is included as a possibility. During execu-
tion of a behavior, the agent may randomly interrupt with a 
certain probability, and select a different behavior. A run 
ends when goals set for the agent are fulfilled, the agent 
dies, or a time limit is reached. The attributes used for 
training predictors are determined by the game engine (e.g. 
hp, attack speed, awareness distance) while all relationship
abstractions and effect models that can be evaluated 
against the game state are included.

Experimental Design and Results
The initial testing is focused on its ability to quickly learn 
to play the basic game by playing. For each test, 100 sce-
narios were played by the run-time agent and scored for 
success rate and time to win. Each scenario involves meet-
ing a set of random gathering goals from randomly placed 
resource nodes while avoiding or defeating randomly 
placed mobs. The first test was performed with an empty 
IGraph (0 training games). After each test, the IGraph was 

2 https://bwapi.github.io/

trained with 50 more training games and tested again, up to 
500. The success rates are shown in Figure 3, and the aver-
age time to success (among the successful runs only) are 
shown in Figure 4. 
  

Figure 3. Success rate over 100 testing runs after training on 0-
500 random sample runs.

Figure 3. Average time spent completing the successful runs after 
training on 0-500 random sample runs.

As shown in Figure 3, the untrained success rate (ran-
dom behavior) is around 15%. The system very quickly 
improves, although it also flattens out rather quickly. Be-
cause of the transparency of the extracted events, we can 
see that the improvement is due to learning to predict 1) 
which types of resources nodes give which types of items, 
2) the time cost to gather from a given node, and 3) which 
behaviors will directly (i.e. attack) or indirectly (i.e. mov-
ing to close to a patrolling mob) lead into unwinnable 
fights. The stochastic nature of resource drops and fights 
does mean that the system could never be right all the time, 
and the simplicity of these initial scenarios does limit the 
creative responses available to the agent.

The average time spent completing the goals is roughly 
stable, although it does increase with more training. To 
clarify, this has nothing to do with processing time, as the 
times are in world clock, which runs on a fixed tick. It is 
possible that since the more trained agents win more often, 
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they are winning harder/longer scenarios. The scenarios are 
all short gathering cycles, as we saw no real difference in 
longer or more spread out scenarios except that they took 
longer to process.

Conclusion and Future Work
We have proposed a novel knowledge structure, the Inter-
action Graph, which generalizes over interactions between 
entities, presented the implementation details, and done 
initial testing to verify that it can learn the basic game set 
up. The IGraph learns from playing, enables reasoning 
about all known possibilities in the state space and pro-
vides context for task-specific predictors to perform hybrid 
symbolic/statistical reasoning. We have shown that as the 
IGraph is trained, the agent behavior becomes more rea-
sonable in going after the right resource nodes and avoid-
ing detrimental combat.

We are continuing to add more features to the game and 
expand the model to handle them, including planning 
ahead (crafting), memory for exploring, more complex 
combat, environmental threats and multi-agent interactions 
(cooperation and antagonism). Along with this incremental 
development will be additional fundamental abstractions. 
A key question we are exploring is how the IGraph will 
scale, particularly at run-time, with the increase in com-
plexity of the game.

We have also implemented a real-time Monte-Carlo 
Tree Search component for focused training, allowing the 
system to "rewind" and try alternative paths to quickly 
refine its predictors. At this time we do not have experi-
mental validation of that system. We also ran a compara-
tive Convolutional Neural Network solution to the basic 
game runs, but performance was so poor that we believe 
there must be an implementation error to fix.
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