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Abstract

The ability of an autonomous system to understand some-
thing about a human’s intent is important to the success of
many systems that involve both humans and autonomous
agents. In this work, we consider the specific setting of a hu-
man passenger riding in an autonomous vehicle, where the
passenger intends to go to or learn about a specific point
of interest along the vehicle’s route. In this setting, we seek
to provide the vehicle with the ability to infer this point of
interest using real-time gaze information. This is a difficult
problem in that the inference must be designed in the con-
text of the moving vehicle, i.e., in a dynamic environment
with dynamic interest points. We propose here a solution to
this problem via a novel methodology called Dynamic Inter-
est Point Detection (DIPD) for inferring the point of interest
corresponding to the human’s intent using gaze tracking data
and a dynamic Markov Random Field (MRF) model. The en-
ergy function we develop allows the algorithm to successfully
filter out noise from the eye tracker, such as eye blinks, high-
speed tracking misalignment, and other sources of error. We
demonstrate the success of this DIPD technique experimen-
tally and show that it achieves up to a 28% increase in infer-
ence success compared to a nearest-neighbor approach.

Introduction
The ability of an autonomous system to understand some-
thing about a human’s intent is important to the success of
many systems that involve both humans and agents. Mak-
ing inferences about human intent, for example, a robot can
collaborate with a human more safely and efficiently (Main-
price, Hayne, and Berenson 2015); an intelligent human-
computer interface can provide assistance to a user without
an explicit user request (Yu, Ballard, and Zhu 2002); and a
Driver Assistance System (DAS) can compensate for dan-
gerous circumstances or cooperate with the driver (Doshi
and Trivedi 2011; Bengler et al. 2014). While there are many
forms of human intent, we choose here to focus on those
that can be associated with a certain spatial location. For in-
stance, in human-robot collaboration tasks, it is sometimes
assumed that the human intends to interact with particular
objects on the table (Ravichandar, Kumar, and Dani 2016).
In this paper, we will assume that the human’s intent is of
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this form and, therefore, that the intent inference problem is
simply that of inferring the correct spatial location associ-
ated with the intent.

As a means to perform this inference, we focus on the
human’s eye gaze. Neurophsychology studies have sug-
gested that, by observing a partner’s gaze, humans can in-
fer their partner’s intention or goal towards a particular ob-
ject (Calder et al. 2002). Therefore, we expect that enabling
automated agents with a similar ability will provide a bet-
ter user experience in human-machine interaction. Indeed,
several examples in the literature have demonstrated that
an autonomous agent utilizing human gaze cues can bet-
ter interpret the human’s intent and thus make for a better
partner (Fletcher et al. 2005; Choi, Hong, and Kim 2016;
Tall et al. 2009; Matsumotot, Ino, and Ogsawara 2001;
Razin and Feigh 2017; Min et al. 2017).

We are particularly concerned with the setting in which
a human passenger rides in an autonomous vehicle, and we
assume that the passenger’s intent is to go to or learn about a
specific point of interest along the vehicle’s route. Although
a human’s point of interest may not fully align with their in-
tention, previous studies on Theory of Mind (Asteriadis et
al. 2009) have shown it to be highly correlated. We envi-
sion a two-camera system that is able to capture views of
both the interior and exterior of the vehicle, where we refer
to the interior-facing camera as a driver-monitoring cam-
era (DMC) that captures images of the human’s head and
face and the exterior-facing camera as a road camera that
captures images of the surrounding environment. By corre-
lating the information about the human’s gaze captured by
the DMC with the information about the exterior environ-
ment captured by the exterior-facing camera, we aim to infer
which point of interest is associated with the human’s intent,
i.e., the intended point of interest. A representative figure of
such a system is shown in Figure 1.

Inferring the driver’s intended point of interest in this set-
ting is challenging for many reasons. First, as in the case of
shopping centers, many potential points of interest may be
clustered together in a relatively small area, causing confu-
sion regarding which one the driver is concerned with. Sec-
ond, the vehicle’s motion changes the location of the points
of interest relative to the human within the vehicle, which
causes ambiguity in the meaning of shifts in the driver’s
gaze. These challenges are made more difficult due to mul-
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Figure 1: A use case of intention inference: In the setting
of a human driver riding in a vehicle, a Driver Monitoring
Camera captures the head-pose/eyes of the driver and a road
camera captures the street view. Based on the captured im-
ages, an automated agent infers which point of interest in
the street view that the driver is interested in going toward
or obtaining more information about.

tiple sources of noise in the gaze information coming from
the DMC, e.g., eye blinks and vehicle shaking. Therefore,
we seek here a systematic and robust way to address these
challenges and determine the driver’s intended point of in-
terest.

As in previous work (Takemura et al. 2003), we make ob-
servations of gaze in the form of points in the environments.
However, we do not necessarily assume that the raw gaze
point aligns perfectly with the human’s intended point of in-
terest, as is done in a nearest-neighbor (NN) approach where
the point of interest with nearest distance to the gaze point
is considered to be the inferred point of interest. Such tech-
niques are highly susceptible to the noise described above.
Therefore, in our Dynamic Interest Point Detection (DIPD)
algorithm we instead treat the observed gaze points as prob-
abilistic inputs into a more-robust dynamic Markov Random
Field (MRF) model that seeks to estimate the correct point
of interest.

We evaluate our technique in a challenging driving scene
as shown in Figures 2 and 3, where the points of inter-
est in the road camera view are densely located and move
non-linearly due to vehicle turning. The experimental results
show that the success rate of our DIPD method may be im-
proved by 28% compared to using NN method.

The contributions of our work are:
1. We formulate a dynamic MRF model with an energy

function designed to be robust to noise for the problem
of intention inference in dynamic environment.

2. We provide a solution to the above problem and quantify
its benefit over a simpler, NN-based approach.

To the best of our knowledge, this is the first work that uses
both gaze and a dynamic MRF model in inferring human
intent.

Related Work
In this section we review prior work in two specific related
areas. First, since the problem of inferring the driver’s in-

Figure 2: A snapshot of clustered points of interest in a chal-
lenging driving scene: The potential points of interest are
shop signs highlighted in magenta. These interest points are
hard to distinguish as they are clustered in a small region,
causing confusion regarding which one the driver is con-
cerned with. Our goal is to infer which one is the driver’s
intended point of interest.

tended point of interest using gaze information is very simi-
lar to the problem of identifying fixations, we review the lit-
erature in which fixation detection has been previously stud-
ied. Second, since our overall goal is to infer the passenger’s
intent, we also review the field of intent recognition. While
there has been much work done in both areas, our work has
considered a unique situation and proposes a unique solu-
tion.

Identifying Fixations in Eye Movement Data
Human visual perception involves six types of eye move-
ments: fixations, saccades, smooth pursuits, optokinetic re-
flex, vestibulo-ocular reflex, and vergence (Leigh and Zee
2015). Algorithms to identify the two most important types
of eye movements, fixations and saccades, are usually based
on velocity, acceleration, or area-based thresholding of the
eye tracking data (Salvucci and Goldberg 2000). A com-
mon algorithm for fixation and saccade detection is the I-
DT (dispersion-threshold identification) algorithm, which
assumes that fixation points tend to cluster closely together
as they have low velocity, and identifies fixations as groups
of consecutive points within a particular dispersion. Re-
cent research identified another type of event called glis-
sades when analyzing the gaze tracking data (Nyström and
Holmqvist 2010). Glissades are the undershoot/overshoot
events between the transitions from saccades to fixations.
An adaptive algorithm that detects glissades along with fix-
ations and saccades can obtain more reasonable results in
fixation and saccade durations compared to velocity-based
or I-DT algorithms.

In prior literature, fixation detection is usually performed
by determining whether a person’s eyes are fixating at a
static object from eye movement data. Detecting gaze fix-
ation on a moving object is called smooth pursuit. Many
works are concerned with modeling the smooth pursuit eye
movement (SPEM) of the human visual system. An example
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Figure 3: In a challenging driving scene, the vehicle’s motion changes the location and dimensions of the points of interest
relative to the human within the vehicle: As the vehicle moves along the street and takes a left turn, the size and position of
points of interest change dynamically and non-linearly in the road camera view. This causes ambiguity in the meaning of shifts
in the driver’s gaze. Our DIPD method can infer the driver’s point of interest under such dynamic and noisy environments.

of the smooth pursuit eye movement model was designed
based on optimal control theory (Shibata et al. 2005). The
model includes a recurrent neural network (RNN), which
predicts the current or future target velocity, and a forward
model of the target motion by online learning. Such biolog-
ically inspired SPEM models can match the human visual
system quite well. Only a few recent works specifically ad-
dress the problem of detecting smooth pursuit eye move-
ment from eye tracking data. Examples of existing meth-
ods include using a three stage algorithm (Larsson et al.
2014), a threshold-based algorithm, or a probabilistic-based
algorithm (Santini et al. 2016) to detect smooth pursuit eye
movement for moving dot stimuli.

Importantly, the aforementioned work assumes the back-
ground is static, and the dynamic stimulus is a moving dot in
the field of view. In this work, we instead propose a method
for detecting object fixations in the presence of multiple
moving objects and a moving background scene, where the
object sizes are time-varying.

Intention Inference
An important aspect of a successful system which involves
coexistence of both human and autonomous agents is the
autonomous agent’s ability to infer human agent’s intent. A
line of intention inference work relies on knowledge-based
models which allow the autonomous agent to reason about
human’s actions and goals from current state information
(Yordanova et al. 2017; Hiatt, Harrison, and Trafton 2011;
Ramırez and Geffner 2011). Since our work focuses on uti-
lizing bio-sensing data to infer a human’s intent, we now
review the literature related to these data-driven approaches.

A human’s physical status (e.g., pose, action, and other
physiological signals) and their interaction with the sur-
rounding environment can sometimes reveal their intent.
Therefore, intention inference can be partially achieved by
analyzing one or more of these physical statuses. For exam-
ple, some works have shown that modeling the relationship
between human poses and objects in an image can be used to
infer the person’s next activity (Koppula and Saxena 2013;
Delaitre, Sivic, and Laptev 2011). In a driving application,
head motion has been used as an important cue for pre-
dicting a driver’s intent to change lanes (Doshi and Trivedi
2008). Further, employing multi-modal data including GPS,

speed, street maps, and driver’s head movement can allow
ADASs (advanced driver assistance system) to anticipate the
driver’s future maneuvers (Jain et al. 2015).

Gaze cues, which implicitly include head pose informa-
tion, can help to infer human intent as it pertains to finer-
grained points of interest (e.g., shop signs far away from a
driver). A deep learning based method was proposed for do-
ing so from a single image that combines gaze and saliency
maps predicted using convolutional neural networks (CNNs)
in order to form a predicted gaze direction (Recasens et al.
2015). The method was shown to be useful in both surveil-
lance and human-robot teaming as a means by which to
understand a person’s intention from a third party perspec-
tive. In cases where the person’s face and gaze targets were
captured by different cameras, one needs to correlate the
gaze tracking data from the face camera with the objects
from the scene camera. Prior work on DAS has shown how
to correlate a diver’s gaze with road signs in the environ-
ment (Fletcher et al. 2005). The system calculates the dis-
parity between the scene camera and gaze angles for the
sign, and then uses this disparity to determine whether or
not the driver sees the road sign. Another approach is to
divide the scene into several regions and train a classifier
on a dataset which contains the face images with annotated
regions to predict the region of user attention. For exam-
ple, nine gaze zones in the vehicle such as driver’s front,
rear view mirror, passenger’s front, etc., were defined and a
CNN classifier was trained to categorize the face images into
the predefined fixed nine gaze zones so as to recognize the
point of driver’s attention (Choi, Hong, and Kim 2016). In
other application areas such as hand-eye coordination tasks
and player-adaptive digital games, machine learning-based
methods (e.g., SVM, kNN, LSTM, ...) have been shown to
be effective in predicting user intent from gaze observations
(Razin and Feigh 2017; Min et al. 2017).

These methods assume that the gaze observations are
noise-free. In contrast, our method treats the observed gaze
points as probabilistic inputs and infers user intent among
finer-grain objects in a dynamic environment.
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Figure 4: A system diagram of the intention inference system that infers a human driver’s point of interest in a driving scene:
The system obtains the gaze point of the human driver (from the DMC) and the object bounding boxes in the driving scene
(from the Road Cam) to infer the user intent among finer-grain objects in a dynamic environment.

System Overview
Figure 4 shows the system diagram for our DIPD algo-
rithm to infer a human’s intended gaze point. The system
receives gaze data points from the eye tracker and object
bounding boxes from an object-detection algorithm applied
to the images from the road camera. The bounding boxes
provide the position and dimension information for the pos-
sible gaze points in the scene. The observed gaze point is
treated as a probabilistic input into a dynamic MRF model,
which is constructed in temporal space to take into account
gaze points in previous frames. An energy function asso-
ciated with the dynamic MRF model is then minimized to
infer the driver’s intended point of interest.

Methodology
Our DIPD method performs inference using an MRF model.
For each frame, we build a new MRF model as in Figure 5.
This model takes into account the observed gaze location at
the current time T and its location in a window of previous
frames. The top layer nodes are denoted as {bt = (bxt , b

y
t ) :

t ∈ Z, T − w + 1 ≤ t ≤ T} to represent the observed gaze
pixel coordinates during this window. The window size w
may be adapted to the camera frame rate and the speed of
the moving objects. The bottom layer nodes are denoted as
{ct,i : t ∈ Z, T − w + 1 ≤ t ≤ T ; i = na, 1, 2, ..., N} to
represent the points of interest in the scene, where N is the
number of interest points in the scene, and where i = na
represents the case that the human is not attending to any of
the points of interest. Each gaze point node bt is connected
to all the interest point nodes ct,i in every time frame. The
array of ct,i=na,1,..,N under a gaze point node bt is a one-hot
vector, which consists of 0s in all elements with the excep-
tion of a single 1 used uniquely to identify the attended inter-
est point. To infer ct,i from bt, nodes bt and nodes ct,i are
related by an energy potential that represents the likelihood
of bt given ct,i. The nodes in the model are dynamically
changed based on the number of available interest points in
the dynamic environment.

We assume that the likelihood of the gaze point bt given

a point of interest ct,i is attended follows a Gaussian func-
tion centered at the interest point’s bounding box center ut,i

with a covariance matrix Σ related to the bounding box di-
mensions (i.e., width and height). Therefore, the likelihood
of bt given ct,i = 1 can be written as

P (bt|ct,i = 1) ∝ exp[−1

2
(bt − ut,i)

TΣ−1(bt − ut,i)] .

(1)

Next, we formulate an energy function that can remove
the undesirable effects caused from eye blinks and mov-
ing/shaking environment, and use this energy function to
derive the most probable point of interest that is attended
by the user (i.e., the user’s point of interest). Assuming the
inference results ct will be highly correlated with the prob-
ability value P (bt|ct,i), we form a “tracking” energy term
as −∑N

i=1 ct,i · P (bt|ct,i = 1). This energy term will be
lower when the likelihood of the gaze point bt given a point
of interest ct,i is attended is higher. Therefore, the location
of the high (1) bit in the one-hot vector ct will have the ten-
dency to align the point of interest i which corresponds to
the highest probability value P (bt|ct,i = 1). In addition, we
assume that the likelihood of a gaze point not attending any
of the interest points is uniformly distributed in the space of
all possible gaze point locations. We denote the probability
value of this case as a constant k, and form an additional
energy term −k · ct,i=na. Finally, we assume that people
typically fixate their eye gaze at their point of interest for a
while when they perceive it, and so the inferred point of in-
terest should be fairly steady during this time period. There-
fore, we form a “time-consistency” energy term that con-
tains

∑T
t′=T−w+1 |ct,i − ct′,i| so that the energy is lower if

the inference results are consistent over the window w. The
complete energy function for the dynamic MRF model then
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Figure 5: The dynamic MRF model in our intention inference system for increasing the inference success rate: Nodes b repre-
sent the observed gaze pixel coordinates, nodes ci=1..N represent the points of interest in the scene, and nodes ci=na represent
the cases that the human is not attending to any of the points of interest. Nodes b and nodes c are related by an energy potential
that represents the likelihood of bt given ct,i = 1. The nodes in the model are dynamically changed based on the number of
available points of interest in the dynamic environment.

takes the form

E(ct;bt, ct′=T−w+1..T,i) = −
N∑

i=1

ct,i · P (bt|ct,i = 1)

−k · ct,i=na + α
∑

i

T∑

t′=T−w+1

1

w
|ct,i − ct′,i|

(2)
where α is a positive constant. The first two terms essentially
act as a high-pass filter that tracks moving location of the
interest points, and the last term essentially acts as a low-
pass filter that removes spikes and outliers due to eye blinks
and moving/shaking effects.

The inference results ct can be found by optimizing the
energy function. That is, we would like to solve

c∗t = argmin
ct

E(ct;bt, ct′=T−w+1...T,i)

s.t. ct,i ∈ {0, 1},
∑

i

ct,i = 1
(3)

We use Iterated Conditional Modes (ICM) (Kittler and
Föglein 1984) to find the c∗t that minimizes the total energy
in the MRF model. The inference results c∗t are typically
obtained after a few iterations. The node with ct,i = 1 cor-
responds to the inferred user’s point of interest, denoted by
yt.

In practice, the number of available interest points may
change dynamically among different frames. For example,
the number of available interest points usually differs as the

vehicle is moving along the street. Some interest points may
be occluded by objects such as other vehicles in the scene so
that they disappear in a few frames during the window w. In
some cases, the number of available interest points varies be-
cause the object recognition system fails to identify all inter-
est points in the scene. As such, our system will build up the
dynamic MRF nodes for all interest points that appear in any
frame within the window w and then compute the likelihood
for all of them. If an interest point was missing in a frame,
we may simply assign zero probability to its corresponding
node in the dynamic MRF model. The energy function will
correct such outliers when we compute the inference results
c∗t .

Experimental Results
We performed an experiment to verify the accuracy of our
system for inferring a human’s intended point of interest in
a dynamic and challenging setting. In this section, we will
explain our experiment setup and results.

Experiment Setup
We evaluated our DIPD algorithm in a challenging driving
scene, where the possible points of interest are densely lo-
cated and they move non-linearly in the exterior-facing cam-
era view due to vehicle turning. We set up a 15-inch laptop
showing a street view video of the environment recorded
by a road camera. For gaze observations, we used a Tobii
Eye Tracker 4C (Tobii 2017) mounted at the bottom of the
screen. The eye tracker captured the eye images of the user

618



and calculated the location of the user’s gaze point on the
screen. Based on the gaze point and the bounding boxes of
each of the interest points, we infer the user’s intended point
of interest using both a baseline and our proposed method.

The street view video used in our experiment is about 13
seconds long (404 frames)1. We identify 3-5 interest points
and their bounding boxes in each frame. An ID ranges from
0 to 4 is assigned to each of the interest points (i.e., Han-
cock, HEB, Fitness, Petco, and Sears). Due to occlusion by
other vehicles, some objects do not exist for all frames in
the video. We collected 70 experiment trials from 4 sub-
jects, where in each trial we asked the user to find a specific
point of interest in the street view video and fixate their gaze
onto the point. The specified point of interest is the ground
truth intended point of interest, denoted by zt. For each time
frame, the inferred point of interest is correct if yt = zt. The
success rate of inferring user intention is defined as the ratio
of the total number of correct inferences to the total num-
ber of frames. We drop the data of the first 60 frames when
calculating the success rate since typically the participant is
searching for the specific point of interest at the beginning
of a trial.

Experiment Results
Table 1 shows the results of our experiment using our inten-
tion inference method (DIPD) versus an NN method (i.e.,
the baseline). Each row contains the results of an experi-
ment in which the user’s point of interest is specified in
the first column (i.e., ground truth point of interest). Our
DIPD method is computed based on the above methodol-
ogy, whereas in the NN method we calculate the distance
from the gaze point to the center of each interest point, and
select the interest point with the shortest distance as the
inferred point of interest. The improvement percentages of
DIPD compared to the NN baseline are shown in parenthe-
ses.

The hyperparameter k of our method, which represents
the probability value of a gaze point not attending any point

1The video is available at http://www.cs.utexas.edu/∼larg/
index.php/Gaze and Intent

Table 1: A comparison of the success rates of inferring
user’s point of interest using our intention inference method
(DIPD) and an NN approach (i.e., baseline): The results of
our method for two different window size settings w = 30
and w = 60 (equivalent to 1 sec and 2 sec, respectively) are
shown. The improvement percentages of DIPD compared
to the NN baseline are shown in parentheses. Our intention
inference method achieves a much better inference success
rate.

ID Baseline DIPD @w = 30 DIPD @w = 60
0 0.97 1.00 (3.20%) 1.00 (3.20%)
1 0.91 1.00 (8.72%) 0.97 (6.10%)
2 0.71 0.89 (17.44%) 0.99 (27.91%)
3 0.86 0.91 (5.23%) 1.00 (14.24%)
4 0.83 0.88 (4.94%) 1.00 (16.86%)

Figure 6: Success rate versus window size setting: In gen-
eral, the success rate increases with the window size of the
dynamic MRF filter.

of interest, is selected as 1/(N + 1). The hyperparameter α
represents the assumed relative importance of each term. We
select α = 1 for optimizing the energy function so that the
tracking energy term and the time-consistency energy term
are equally weighted. By using ICM, we vary the value of
each node individually subject to the constraint in Equation
(3) to find the values c∗t that minimize the local potentials.
Experimental results for our DIPD method using two differ-
ent window size settings w = 30 and w = 60 (equivalent
to 1 sec and 2 sec, respectively) in the dynamic MRF model
are shown in Table 1.

We calculate the inference success rate for each method
evaluated on each ground truth point of interest as described
in Experiment Setup. The improvement of our method over
the NN baseline is also reported. We can see that DIPD im-
proves the inference success rate up to 28% over the baseline
NN approach.

Since the typical mean fixation duration of human gaze is
260-330 ms for scene perception and 180-275 ms for visual
search (Rayner and Castelhano 2007) and the fps (frame-
per-second) of our system is 30, we sweep the window size
w from 6 to 60 in our experiment. Figure 6 plots the success
rate of our method for different window size settings w. The
success rate is in general higher when setting the hyperpa-
rameter w to be 60 (i.e., 2 sec).

Discussion and Future Work
Our experiment shows that our dynamic MRF model and en-
ergy function can help to tolerate poor eye-tracking accuracy
or stability and cancel the glitches due to blinks, moving
background, and vehicle shaking. Figure 7a shows a shift-
ing gaze point and intended object bounding box in a trial.
The glitches and outliers are mainly caused by eye blinks,
high-speed tracking misalignment, and the eyes searching
for the specified point of interest at the beginning of the
video, which can be observed in all trials. Our method can
eliminate those glitches and outliers so as to achieve a bet-
ter success rate (Figure 7b). In our experiment, ID #2 (Fit-
ness) is the most difficult one since it is the smallest inter-
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(a)

(b)

Figure 7: Selected experiment data: (a) Traces of gaze points
(in cyan) and intended object bounding boxes (in yellow) in
a trial. The figure compacts the moving sequence of the gaze
point and the object bounding box during the whole trial into
one image. (b) Inferred point of interest for different meth-
ods. The ground truth point of interest ID is 2 for this case.
The results of our DIPD method for two different window
size settings w = 30 and w = 60 (in frames) are shown.
Our method can eliminate most of the glitches and outliers
for better inference success.

est point located in the middle of the interest point clusters.
Our experimental results show that the improvement for in-
ference success rate is especially significant for such chal-
lenging objects (For DIPD with w = 60, ID #2: Mean =
16.45, S.D. = 8.45, Others: Mean = 7.11, S.D. = 7.46;
z = 4.85, p < 0.00001).

In general, setting a larger window size results in a better
success rate. The results make sense because enlarging the
window in the dynamic MRF model is like making the cutoff
frequency of the low-pass filter lower to filter out more high
frequency glitches. We also observe that setting higher win-
dow size (e.g., w = 90) can result in even better improve-
ment in our experiment; however, it requires more comput-
ing time for inference. In practice, an upper bound on win-
dow size is desirable due to increased computation time.

The hyperparameter k is an assumed probability when the
driver gazes none of the interest points. The inference result
is not sensitive to the selection of k given a reasonable value
is set. If k is set to 0, the inference result always “snap” to

one of the interest points. As k increases, such behavior will
be relaxed. This term is left for future work where it may
adapt to fixation/saccade probability.

We have considered computing gaze fixations as a sub-
category of the intention inference problem. Most previous
research in gaze fixation detection has focused on analyz-
ing still images, whereas our work considers this problem
in the context of object and background motion. In our ex-
periment, we demonstrated our technique on shop signs in a
dynamic and noisy environment, though it can be applied to
other inference applications as well, such as other vehicles
on the road, third party objects in a human-robot interaction
task, and the holograms in a mixed-reality world. Interesting
directions for future work include deploying our system in a
real vehicle and investigating ways to improve the proposed
energy function.

Conclusion
In this paper, we presented a DIPD method for inferring a
user’s intended point of interest from eye-tracking data in a
dynamic environment. The DIPD method utilizes a dynamic
MRF model with an energy function designed to be robust
to noise caused by eye blinks, vehicle shaking, and eyes and
gaze tracker inaccuracy. We evaluated our technique experi-
mentally and quantified its benefit over a simpler, NN-based
approach. In general, our technique outperforms the NN ap-
proach. The improvement is especially significant for small,
challenging objects in congested scenarios.
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