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Abstract

In the world of online gaming, not all actions are created
equal. For example, when a player’s character is confronted
with a closed door, it would not make much sense to bran-
dish a weapon, apply a healing potion, or attempt to barter. A
more reasonable response would be to either open or unlock
the door. The term interaction mode embodies the idea that
many potential actions are neither useful nor applicable in a
given situation. This paper presents a AEGIM, an algorithm
for the automated extraction of game interaction modes via a
semantic embedding space. AEGIM uses an image caption-
ing system in conjunction with a semantic vector space model
to create a gestalt representation of in-game screenshots, thus
enabling it to detect the interaction mode evoked by the game.

1 Introduction and Related Work

Video and computer games are a valuable resource for AI
researchers. They serve as test domains for novel algorithms
(Mnih et al. 2015) (Kaplan, Sauer, and Sosa 2017), provide
sensory-rich virtual learning environments (Vinyals et al.
2017) and encourage innovation as researchers strive to im-
prove in-game characters (Laird and van Lent 2001). In ad-
dition, the emerging field of automated game design learning
(Osborn, Summerville, and Mateas 2017) uses the structure
of the games themselves to extract properties that can be
used to (a) improve human play, (b) facilitate virtual char-
acter development, (c) create novel tools for developers, and
(d) verify that human-specified design properties hold on the
model.

In the spirit of this emerging field, we present AEGIM, an
algorithm that uses language-based common sense reason-
ing to distinguish between interaction modes. Game output
in the form of pixels or text (or both) is encoded within a
4800-dimensional semantic embedding space trained based
on local context1. A set of linear classifiers is then used
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1In other words, the vector representation of each sentence is
influenced by the sentences that tend to appear before or after it in
the input corpus. Word-level semantic spaces trained in this way
have been shown to encode common-sense knowledge about the
physical and sociological properties of our world (Mikolov, Yih,
and Zweig 2013) (Nematzadeh, Meylan, and Griffiths 2017).

to determine which of several possible interaction modes is
evoked by the current situation.

‘Interaction modes’, in the context of this paper, refer to
the set of player actions that would be reasonable to exe-
cute in the current situation. For example, when confronted
with a locked door, it would be reasonable for the player
to attempt to unlock it with a key or lockpick. It would be
less reasonable to brandish a sword, apply a healing potion,
or attempt to barter with the closed door. Similarly, when
confronted with an aggressive enemy, one would expect the
player to either attack or flee. Under those circumstances, it
would not make sense to engage in casual conversation or
examine an ornate rug on the floor.

In other words, not all actions are equally preferable in
every situation.

Given that the relative value of an action is context-
dependent, we wish to identify a set of contexts (i.e. ‘in-
teraction modes’) in which certain actions best apply. In the-
ory, a system capable of identifying such modes could map
a game based on behavioral contexts rather than on world
geography, a potentially useful diagnostic tool.

Our research utilizes recent work in computer vision
(Tran et al. 2016) (Clarifai 2017) to convert pixels into
text descriptions of a scene, but goes beyond simple object
recognition (Krizhevsky, Sutskever, and Hinton 2012) or se-
mantic segmentation (Long, Shelhamer, and Darrell 2015)
in order to acquire a common-sense representation of the
observed items. To do this, we use the skip-thought embed-
ding space (Kiros et al. 2015). Related semantic embedding
spaces include word vectors (Mikolov et al. 2013) (Penning-
ton, Socher, and Manning 2014), sentence embeddings us-
ing a simple or weighted average of word vectors (Faruqui
et al. 2014) (De Boom et al. 2016), fixed-length and LSTM-
based sentence embeddings (Saha et al. 2016) (dos Santos
and Gatti 2014), and document-level embeddings (Le and
Mikolov 2014).

This work touches tangentially on the field of affordance
detection2 (Zhu, Fathi, and Fei-Fei 2014) (Song et al. 2015)

2Affordances (Gibson 1977) refer to the set of actions that are
made possible by an object or situation. For example, a ladder af-
fords the possibility of climbing, while level terrain affords the pos-
sibility of running. Gibson asserts that an affordance is neither a
property of the environment nor of the actor, but of the comple-
mentarity of the two.
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(Navarro et al. 2012), particularly as explored by (Fulda et
al. 2017) in their work with text-based adventure games.
Fulda et al. used analogical operations performed in vector
space to detect the behaviors afforded by a specific game
item. Our work takes this idea one step farther by detecting
the current interaction mode of the game (and by extension
the subset of actions afforded by the situation) rather than
the affordances of a single object.

2 Methodology

Our algorithm for the Automated Extraction of Game Inter-
action Modes (AEGIM) begins with screenshots extracted
during game play, which are then converted to a plain text
representation using an online caption generation tool. We
do not require the caption generator to provide a coherent
sentence; a simple string of objects or adjectives is sufficient
for our purposes.

Once we have a plain text description of an image, we
encode the description as a geometric point in a semantic
embedding space. For this step, we rely on the skip-thought
embedding model (Kiros et al. 2015), which is trained by
requiring a neural network to predict both the sentence that
directly precedes and the sentence that directly follows each
sentence in the training corpus. This is, of course, a mostly
futile task: The number of possible antecedents and succes-
sors for any given sentence is enormous. However, during
the training process the network creates an internal represen-
tation that roughly corresponds to each sentence’s seman-
tic meaning. It is this internal representation - the semantic
meaning of a sentence - that interests us. We use it to encode
each input string as a 4800-dimensional vector that repre-
sents the location of the text in skip-thought space.

Conversion into a semantic embedding space is essential
in order to create a gestalt representation of the items in a
scene: A hammer alone does not indicate an imminent phys-
ical threat, nor does an angry man. But an angry man holding
a hammer is cause for immediate concern.

Next, the AEGIM algorithm determines which of sev-
eral possible interaction modes are indicated by the origi-
nal screenshot. This is done by comparing the skip-thought
vector that represents the image description with the vector
embeddings of a set of hand-coded example texts that exem-
plify each mode. To determine whether an image evokes the
interaction mode of ‘Threat’, for example, we would enter
sentences like those shown in Fig. 1.

We note with interest that these example sentences do
not necessarily have to be hand-coded. It is not difficult to
imagine scenarios where example text is extracted algorith-
mically by observing which subset of actions produces rea-
sonable results under specific game conditions.

Once the example texts have been provided, each text is
encoded as a skip-thought embedding and an average rep-
resentative vector is calculated for each example set. New
sentences are then classified based on their proximity to
these cluster centers. More formally, let M = m1, ...,mk

be the set of interaction modes to be detected and let Si =
{s1i , ...sni } be the example strings associated with the ith in-
teraction mode (see Fig. 1). Then Vi = {v1i , ...vni } is the

Interaction Mode: Threat

‘You see a soldier holding a sword’
‘You are badly wounded’
‘A massive troll bars the path’
‘The bull paws the ground, then charges toward you’
‘The poisonous spider advances, ready with its deadly bite’
‘You are in danger’
‘If you fall from this height, you will die’
‘The battle rages around you’
‘The angry man begins to attack you’
‘You are plummeting to your death, with only a few seconds

before you hit the ground’

Figure 1: Example texts used to define the ‘Threat’ mode,
meaning that an immediate physical danger is present.

set of 4800-dimensional vector encodings of S in the skip-
thought embedding space, where k is the number of interac-
tion modes to be classified and n is the number of examples
used to define each interaction mode. For each incoming
text t to be classified, AEGIM determines which interaction
modes apply according to the following algorithm:

1: vt = the vector encoding of text t
2: for i in 1...k do
3: di = vt − 1/n

∑n
0 v

n
i

4: dq = vt − 1/(k − 1)
∑

q 1/n
∑n

0 v
n
q , q �= i

5: if |di| < |dq| then
6: return True
7: else
8: return False
9: end if

10: end for

In other words, AEGIM returns True for the ith interac-
tion mode if and only if vt is closer to the ith cluster center
than it is to the average of the cluster centers of all other in-
teraction modes. Note that it is possible for AEGIM to out-
put more than one interaction mode for a given image, or no
interaction modes at all.

Because skip-thought representations encode the meaning
of a sentence rather than the text or syntax of the sentence,
this simple linear classifier is sufficient to detect the correct
interaction mode in many instances. Accordingly, one could
imagine that a more sophisticated classifier might improve
performance beyond that reported in this paper.

3 Results

As a proof of concept for this idea, we collected images
from the popular Bethesda game Skyrim (Bethesda Soft-
works LLC 2013). The dataset consists of 65 images col-
lected during game play, including peaceful encounters with
shopkeepers, wandering animals, and local architecture as
well as high-risk encounters with monsters and magic-
wielders3. Images were then passed through one of three
text-generators:

3No player-controlled characters were harmed during the col-
lection of this dataset.
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AEGIM keyword baseline constant

Clarifai 72.3% 8.6% 74.2%
CaptionBot 73.3% 13.3% 74.2%

AEGIM keyword baseline constant

Clarifai 21.9% 14% 43.8%
CaptionBot 31.3% 18.8% 43.8%

Figure 2: Left: Classification accuracy, counting each image/category pair individually. Right: Exact matches, meaning the
percentage of images where all four categories were classified correctly. Human captions were not available for the full dataset.

1. Clarifai (Clarifai 2017), an online object recognition sys-
tem that returns a list of identified elements within a scene

2. CaptionBot (Tran et al. 2016), an online caption gener-
ator that creates a complete sentence describing the con-
tents of an image

3. Human-generated captions

The human-generated captions were provided by an 11-
year-old girl who has never played Skyrim, is not famil-
iar with our algorithm, and was unaware of how the cap-
tions would be used. She was instructed only to ‘give a one-
sentence description of what’s in the picture’. Her descrip-
tion was used exactly as given, without prompting, hints, or
post-processing. The automatically-generated captions were
post-processed as follows: Clarifai returns a list of 20 iden-
tified elements for each scene, along with their estimated
likelihood. In our experiments, we concatenated the 10 el-
ements with the highest likelihoods into a single text string
which was then encoded as a skip-thought vector. Caption-
Bot prefaces each sentence with a qualifier indicating its cer-
tainty about the given description, and sometimes appends a
description of whether people in the image appear happy or
sad. This supplementary information was omitted; only the
core image description was passed through the skip-thought
encoder.

The purpose of including human-generated captions was
to test the soundness of our algorithm when provided with
high-quality text descriptions. This was motivated by the ob-
servation that online caption generation systems, which are
optimized for photorealistic images of real world objects,
perform poorly when presented with game images.

We focused on four interaction modes for this experiment:
Threat (as depicted in Fig. 1); Explore, indicating an op-
portunity to traverse the landscape and discover items of
interest; Barter, indicating an opportunity for exchange of
goods; and Puzzle, indicating that a manual manipulation
task is required or available. The values of k and n were set
to 4 and 10 respectively.

To create reasonable baseline comparisons, we created
two naive classifiers. The keyword method compiles a list of
keywords extracted from the AEGIM example texts provded
for each interaction mode. During naive classification, an in-
teraction mode was marked as True if any of the keywords
appeared within the text to be classified. The constant base-
line simply returned the most common classification (‘ex-
plore’) in all cases. Results are shown in Figure 2. Remark-
ably, the AEGIM algorithm was able to match or exceed
both baselines with only 10 example texts per category and
no online training.

Figures 3-6 show screenshots from the game along with

Generated Text
AEGIM
Output

Clarifai:

‘no person’, ‘travel’,
‘landscape’, ‘outdoors’,
‘snow’, ‘sky’, ‘mountain’,
‘daylight’, ‘winter’, ‘water’

Explore

CaptionBot: ‘A tower with a mountain in
the background’ Explore

Human text: ‘A windmill near rocky
mountains’ Explore

Figure 3: Overall AEGIM correctly identifies exploration
scenes regardless of captioning method, perhaps because
Clarifai and CaptionBot both detect landscape elements like
hills, clouds, and buildings.

interaction modes identified by AEGIM. Correct classifica-
tions are highlighted using boldface text. Overall (and unsur-
prisingly), the human-generated captions produce far better
results than automated captions. This suggests that it would
be worthwhile to either train a caption-generation system on
images that more directly align with the task, or to use in-
game annotations as an alternative to caption generation.

4 Conclusions and Future Work

AEGIM is a novel and potentially powerful tool for identify-
ing the interaction modes evoked by an image. Preliminary
experiments show that it is able to produce correct classifi-
cations in a variety of situations.

AEGIM offers the following key advantages over meth-
ods that predict interaction modes directly from images:
(1) AEGIM’s semantic embedding space can be customized
via the selection of input corpus: Skip-thought embeddings
trained using game manuals, genre-relevant articles, or in-
game dialogue may prove to be particularly effective. (2)
By encoding images into the skip-thought embedding space,
AEGIM is able to interpret the gestalt meaning of items in
a scene rather than evaluating each element independently.
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Generated Text
AEGIM
Output

Clarifai:

‘people’, ‘adult’, ‘smoke’,
‘flame’, ‘vehicle’,
‘military’, ‘one’, ‘man’,
‘weapon’, ‘war’

Barter

CaptionBot: ‘A man jumping over a fire’ Explore

Human text: ‘An archer ready to fight
against the enemy’

Threat,
Explore

Figure 4: This is one of the few combat images that was
even moderately well-captioned by the automated systems.
(Scenes with similar elements were described as ‘A group of
people jumping’ or ‘a young man practicing his tricks on his
skateboard’)

(3) AEGIM offers the possibility of dynamically-generated
example sets extracted from game-internal images. (4) With
AEGIM, image descriptions may be augmented using char-
acter dialogue, in-game annotations or other raw text pro-
duced by the game engine.

AEGIM’s greatest current weakness lies in the poor qual-
ity of the automatically generated captions. More research is
required to determine which (if any) of the currently avail-
able open-source vision systems is able to produce accept-
able descriptions of fictional scenarios. For many games, this
limitation may be circumvented by utilizing character dia-
logue and/or in-game annotations instead of a vision system.

Future work in this area should include the use of neural
networks or K-nearest-neighbor classifiers in lieu of linear
classification. AEGIM’s performance thus far indicates that
the skip-thought space is well-structured for the task of dis-
tinguishing between interaction modes; however, the current
system is easily foiled by modifying clauses. ‘A dragon fly-
ing’ is consistently classified as a threat, but ‘a dragon flying
through a cloudy sky’ is not. We anticipate that the use of
more sophisticated classifiers will rectify this problem.

Lastly, attention should be given to the task of train-
ing high-quality image recognition systems for computer-
generated images extracted during gameplay. Such a system
would not only be useful for AEGIM, but also for many
other potential applications.
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Generated Text
AEGIM
Output

Clarifai:

‘people’, ‘adult’, ‘religion’,
‘indoors’, ‘man’, ‘group’,
‘home’, ‘one’, ‘no person’,
‘travel’

Barter

CaptionBot: ‘A kitchen with wooden
cabinets and a fireplace’ -

Human text:
‘A blacksmith that is sitting
in his shop, but he also
looks very buff’

-

Figure 5: In this case the human captioner’s commentary on
the shopkeeper’s physique obscured the correct classifica-
tion. AEGIM correctly returns the interaction mode ‘Barter’
when given the input text ‘A blacksmith sitting in his shop’.

Generated Text
AEGIM
Output

Clarifai:

‘rusty’, ‘old’, ‘iron’,
‘security’, ‘dirty’, ‘safety’,
‘no person’, ‘steel’, ‘lock’,
‘door’

Puzzle

CaptionBot: ‘A clock that is looking at
the camera’ -

Human text:
‘A door lock which is trying
to be opened with a floating
knife and a sharp thingie’

Puzzle

Figure 6: It is not difficult to see why CaptionBot mistook
the image for a clock. Less obvious is why AEGIM does not
consider the clock a puzzle item to be interacted with.
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