
State Tracking Networks
for Dialog State Tracking

Xuguang Wang, Xingyi Cheng,∗ Jie Zhou, Wei Xu
Baidu Research - Institue of Deep Learning

{chengxingyi,zhangruiqing01,zhoujie01,wei.xu}@baidu.com

Abstract

Dialog state tracking is to accurately infer a compact repre-
sentation of the dialog status up to the current turn, it needs to
summarize all the dialog history information and user’s goals.
In a successful spoken dialog system, dialog state tracker is
one of the most important components of the pipelines. Yet
until recently, there are no general, flexible, accurate and truly
end to end dialog state tracking models. In this paper, we pro-
pose a novel model named state tracking networks that can
perform dialog state tracking in a natural efficient and elegant
way. It uses an explicit gate to model the state updating mech-
anism and can be trained end to end in a deterministic manner
using standard backpropagation techniques or stochastically
by reinforcement learning. Our model can both deal with
ASR and text input without any modification. We perform
experiments on the Second Dialog State Tracking Challenge
dataset(DSTC2) and get performance matching the state-of-
the-art models. Furthermore, the qualitative analysis reveals
that the gating mechanism learned by our model agree well
with intuition.

1 Introduction

Conversational agent or spoken dialog system become more
and more popular nowadays due to great progress of audio
and natural language processing techniques(Vinyals and Le
2015; Shang, Lu, and Li 2015; Wen et al. 2016; Bordes and
Weston 2016), it is the most natural way that humans interact
with the digital devices. When a conversation is going on,
one of the most important thing for spoken dialog systems is
to keep tracking the state of this conversation. The state of
the conversation summarize all the necessary dialog history
information and is critical for the dialog policy model which
decide the action the system should perform next(Williams,
Raux, and Henderson 2016).

The Dialog State Tracking Challenge(DSTC)(Henderson,
Thomson, and Williams 2014) series of tasks introduced the
shared testbed and evaluation metrics for dialog state track-
ing. The DSTC2 dataset is about restaurant reservation sce-
nario where the dialog system interact with the user(through
speech recognizer) who want to book a restaurant. After
each user utterance, the system must infer the state of the

∗Xingyi Cheng is the corresponding author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dialog which contain the user-specified constraints(inform)
and so on1. We take a example dialog from the DSTC2
training set2 to show the ground truth of dialog state track-
ing(Table 1):

When confronted with noisy speech recognition, varied
natural language representation and long dependency of di-
alog history, dialog state tracking become a non-trivial task.
While traditional methods firstly using spoken language
understanding(SLU)(Williams and Young 2007) to convert
user utterance to meaning representation and then pass this

1Actually, in DSTC2, dialog state contains three components:
Goals, Requested slots, and Method, the Goals corresponding to
constraints(inform), the Requested slots refer to the user’s request
for slot value of a specified restaurant, the ‘method’ describes the
way the user is trying to interact with the system. The last two
components can be determined by the current system and user turn
without the need of dialog history, so we omit it from our work.

2In DSTC2, user utterance is represent as automatic speech
recognition(ASR) top-n results.

Table 1: A example dialog from the DSTC2 training set with
ground truth dialog state(Requested slots and Method are
omitted here).

Turn Utterance, State

1

system: Hello, welcome to the Cambridge
restaurant system? You can ask for restaurants by
area, price range or food type. How may I help
you?
user: im looking for an expensive restaurant that
serves venetian food
State: inform(food=venetian, price=expensive)

2

system: Sorry there is no venetian restaurant in
the expensive price range
user: turkish food
State: inform(food=turkish, price=expensive)

3

system: meze bar restaurant is a great restaurant
serving turkish food and it is in the expensive
price range
user: can i get the addresses
State: inform(food=turkish, price=expensive)

4

system: Sure , meze bar restaurant is on 196 Mill
Road City Centre
user: thank you good bye
State: inform(food=turkish, price=expensive)

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

746



SLU result to the dialog state tracker(DST), recently aris-
ing neural networks based methods bypass the SLU pro-
cedure and require little feature engineering(Perez and Liu
2016; Mrksic et al. 2017; Henderson, Thomson, and Young
2014b). However, these neural methods tend to share two
common limitations. First, they often rely on the mean-
ing representation of system utterance, when training with
human-human dialog data, they must first process the system
part utterance to its meaning representation. Second, they of-
ten train each individual tracker(e.g. individual parameters)
for each slot(e.g. food, price range, area) and don’t leverage
the correlation between those slots information.

In this paper, we propose a new model named state track-
ing networks(STN) for an end to end dialog state tracking.
Our model receives original system and user utterance(ASR
or text) input, take history information into consideration
and process all of the slots jointly. STN use an explicit gate
to model the state updating mechanism with interpretability.
We evaluate STN on DSTC2 dataset and get performance
matching the state-of-the-art models that are more computa-
tional sophisticated than ours.

2 State Tracking Networks

Our state tracking networks are designed to track the dialog
state end to end and consists of three components: an con-
volutional input encoder that get distributed representation
of system and user utterance and their interaction, a state
updater which update the distributed representation of dia-
log state and state output module which output the probabil-
ity form of dialog state. Before we describe our model, we
briefly introduce the procedure of dialog state tracking using
our model3.

In each turn of the dialog4, our model first extract useful
information from system utterance and user utterance, the
interaction of theirs, then, based on the information we ex-
tract, we compute gate for each slot that determines whether
the slot value should be updated or not, for the slot need to
be updated, we use the computed distributed representation
of candidate slot values, for the one shouldn’t be updated,
we keep the last turn’s value unchanged. At last, we cast
the distributed representation of slot values of each slot to
their probabilistic forms. This procedure corresponding to
the three part of our state tracking networks which will be
described in detail next.

2.1 Convolutional Input Encoder

Convolutional neural network(CNN) is one of the most pow-
erful models for modeling sentence(Collobert et al. 2011;
Kim 2014). Our input encoder is built upon convolutional
neural networks. Let xi ∈ R

k be the k-dimensional word
embedding corresponding to the i-th word in the sentence.
A n-gram concatenated vector(start from word position i)

3Because Requested slots and Method of the dialog state
doesn’t require dialog history information, we only care about the
constraints(inform) part of the dialog state, namely the slot-value
pairs(e.g. food=venetian, pricerange=expensive).

4Each turn contain a system turn and an user turn

can be represented as:

xi:i+n−1 = [xi,xi+1, . . . ,xi+n−1] (1)

Where [·, ·, ·] denote vector concatenation. Processing each
of these n-gram concatenated vectors through convolution
operations we get a set of feature maps {hn,i}, where:

hn,i = f(Wnx
T
i:i+n−1 + bn) (2)

f is the non-linearity activation function. Then, we apply
max-pooling over the features map of the convolution size n
and denote it as:

cn = max
i

{hn,i} (3)

The max-pooling over these vectors is a coordinate-wise
max operation. For different window sizes n1, n2, . . . of the
processed vector, we concatenate them to form the whole
sentence representation vector:

c = [cn1, cn2, . . . ] (4)

Because the original user utterance is represented as ASR
top-n list, which is a list of pairs of sentence and its
probability:{(s1, p1), (s2, p2), . . . , (sn, pn)}. We extend our
convolutional sentence representation to the case of ASR
top-n list. The method is quite simple: we build all of
the n-grams in the ASR top-n list, computer probability
for each n-gram and take it as the weight for the n-gram,
then, replace Eq. (1) with the weighted concatenated vector:
xi:i+n−1 = pn,i[xi,xi+1, . . . ,xi+n−1] and keep the other
procedure unchanged. This way, the text form utterance can
be viewed as the special case where all n-gram weight is
equal to one. We use different parametric CNN to process
the system utterance and user utterance and denote them as
s,u respectively. For the interaction of the system and user
utterance, we simply feed [s,u] to a feedforward neural net-
work(FNN) with one hidden and output layer. At last, we
use [s,u,FNN([s,u])] to denote the turn representation. For
simplicity, at turn t, we use column vector it to represent the
encoded turn information:

it = [st,ut,FNN([st,ut])]
T (5)

2.2 State Updater

For state updater, we first compute gate for each slot which
determines how much this slot should be updated:

gj
t = sigmoid(iTt Asj) (6)

where gj
t is the slot j’s gate at turning t and it is a scalar5. sj

is the slot j’s embedding parameter that needs to be learned.
A is parameter matrix. Then, we compute the distributed
representation of candidate slot value which is used for the
update:

h̃j
t = tanh(Vit +Wsj + b) (7)

5In experiment, we use activation function hard sigmoid in-
stead of sigmoid in order to get the extreme value of 0 or 1. In
all the following context, we use hard sigmoid also.

747



it

s j

ht−1j htj

g

�h
gategga

s j

i1

h1j

s j

i2

h2j

s j

it

htj… …

(a) (b)

Figure 1: (a) State update at turn t for slot j: the gate g take slot embedding sj and turn embedding it as input and determine
how much the state should be updated, h̃ take the same input and output the candidate state which is used for update, the
ultimate state at this turn is a combination of h̃ and last state hj

t−1. (b) Overview of state update network unfolded on turn
dimension.

where V,W,b are learnable parameters. The update for-
mula is:

hj
t = (1− gj

t )h
j
t−1 + gj

t h̃
j
t (8)

which is a combination of last time state and current turn
candidate state, it is controlled by the gate we have com-
puted, as show in Fig. 1. Until now, the gate is a continues
value lie in (0, 1). It is the “soft” form of gate and we can
design “hard” version by append Eq. (6) with a further round
operation:

gj
t = round(sigmoid(iTt Asj)) (9)

the hard version gate can only be 0 or 1. For value in (0, 1),
if greater than 0.5, it round to 1, else 0. Eq. (9) can not be
used for training and we will introduce its training form in
section3.

2.3 State Output

After we have got the distributed representation of the state
hj
t , compute its probabilistic distribution is straightforward,

for slot j at turn t:

pjt = sotfmax(Cjhj
t + bj) (10)

Where pjt denote the probability of each value6 for slot j, its
dimension is equal to the available values nums plus two7.
Cj and bj are slot j’s parameter, they differ from slot to slot.
Joint pjt for each j, we get the state probability at turn t.

6We observe that the current turn’s slot value most probably be
the one which exists in the dialog history(including this turn), so,
when predicting, we mask the candidate values which don’t appear
in the history dialog.

7Two special values: ‘dontcare’ and ‘not mentioned’.

3 Training

When we use the soft gate(6), the state tracking networks
can be differentiable end to end, the loss is negative log-
likelihood:

Lnetwork = −
∑
t,j

log pjt (v
j
t ) (11)

Where, vjt is the target value of slot j at turn t, pjt (v
j
t ) is its

probability output by our state tracking networks. However,
when we use the hard gate, this part is’t differentiable. When
training, we replace Eq. (9) with the stochastic version:

gj
t = bernoulli(sigmoid(iTt Asj))

=

{
1 with probability sigmoid(iTt Asj),

0 with probability 1− sigmoid(iTt Asj).
(12)

Neural networks with stochastic unit(Schulman et al. 2015)
can be optimized by maximizing an approximate variational
lower bound or equivalently by RENINFORCE(Williams
1992), in this place we use the RENINFORCE algorithm
and the gate loss can be written as:

Lgate = −
∑
t,j

log p(gj
t |it)(Gj

t − bjt ) (13)

Where Gj
t is the cumulative discounted log-likelihood of

state tracking networks outputs influenced by gj
t :

Gj
t =

L∑
t′=t

γt′−t log pjt′(v
j
t′) (14)

Where, L is the total turn num of a dialog, γ is the discount-
ing factor and we choose it to be 0.9. bjt is the baseline and
bjt = iTt Auj , uj is the parameter whose size is equal to sj .
The lose of baseline is:

Lbaseline =
1

2

∑
t,j

(Gj
t − bjt )

2 (15)

748



Table 2: Dialog state tracking result: slot prediction accuracy on DSTC2 test set

Type Model Area Food Price Joint

ASR n-best

RNN(no dict.)(Henderson, Thomson, and Young 2014b; 2014a) 0.92 0.86 0.86 0.69

RNN(sem. dict.)(Henderson, Thomson, and Young 2014b; 2014a) 0.91 0.86 0.93 0.73

NBT-DNN(Mrksic et al. 2017) 0.90 0.84 0.94 0.72

NBT-CNN(Mrksic et al. 2017) 0.90 0.83 0.93 0.72

STN-soft 0.90 0.84 0.91 0.71

text

MemN2N(Perez and Liu 2016) 0.89 0.88 0.95 0.74

STN-soft 0.95 0.93 0.95 0.84

STN-hard 0.93 0.92 0.97 0.84

STN-hard(soft init.) 0.95 0.94 0.92 0.84

At last, we sum up all of the loss and calculate the gradient8:

∇(Ltotal) =∇(Lnetwork + Lgate + Lbaseline)

=−
∑

t,j

∇ log pjt(v
j
t )

−
∑

t,j

∇ log p(gjt |it)(Gj
t − bjt)

−
∑

t,j

∇bjt(G
j
t − bjt) (16)

For training, we use the Adam(Kingma and Ba 2014)
algorithm and choose the default learning rate 0.001,
batch size is 50 dialogs. We apply dropout(Zaremba,
Sutskever, and Vinyals 2014) to the output of convolu-
tional encoder(equation(4)) and the input of state output
model(section2.3, hj

t of equation(10)) with dropout rate
0.2. We use the 50 dimensional Glove vectors(Pennington,
Socher, and Manning 2014) as our word embeddings and
keep them fixed during training. For convolutional encoder,
window size of one and two grams are used and each with
100 filters. All the other hidden layer dimension is set to 200.
We train our model for 100 pass, all the hype-parameters are
determined by the performance of development set.

4 Experiments

4.1 DataSet

We experiment upon the DSTC2 dataset which come from
the Second Dialog State Tracking Challenge(Henderson,
Thomson, and Williams 2014). The dialog system interact
with a user who want to find a specified restaurant around
Cambridge, UK. The user can constrain the restaurant search
by three informable slot: food type, area and price. As a dia-
log progress, the dialog system ask the user for slot informa-
tion, the user answer these questions and can change the slot
value of answered question. At the end of the dialog, the
system suggests a restaurant, the user can ask for address,
phone number and etc. of the restaurant. In this context, the

8When we compute the gradient of Lgate (equation(13)), we
take (Gj

t − bjt) as constant, also, when compute the gradient of
Lbaseline (equation(15)), we take Gj

t as constant.

dialog state tracker should track the value of each slot(food
type, area, price) the user has specified at each turn.

In DSTC2, The user utterance has two kinds of recorded
forms: ASR n-best list9 and transcription text10. We per-
form experiment on both of them and report comparative
experimental result. In all of our experiments, we directly
take the system transcriptions as input instead of seman-
tic form of system transcriptions which have been taken
by others(Mrksic et al. 2017; Williams, Raux, and Hender-
son 2016; Henderson, Thomson, and Young 2014b; 2014a).
The official transcriptions contain various spelling errors, we
use the manually corrected version of Mrksic et al.. The
training/development/test dataset contains 1612/506/1117
dialogs respectively.

4.2 Results

Table 2 presents dialog state tracking accuracy on DSTC2
test set of our state tracking networks(STN) and other
comparative methods. On the ASR n-best list user utter-
ance input type, we compare with two kinds of works:
A delexicalisation-based RNN model(Henderson, Thom-
son, and Young 2014b; 2014a) with and without a
hand-crafted semantic dictionary and the Neural belief
tracker(NBT)(Mrksic et al. 2017) which is a data driven
method but use a rule based state updater. We get compar-
ative accuracy for all of the slots even though all the other
models use semantic output of system transcriptions instead
of the original utterance text. In this noisy input condition,
we find the hard version STN perform a little worse than the
soft version, so we only report the soft STN result. When
the dialog utterance is noisy, the gate of state updater(8) is
better described as uncertain probability form(soft) than cer-
tain deterministic form(hard), so the superior of soft version
STN can be explained.

When experiment on the input type of user utterance tran-
scriptions(text), we compare with the memory network ap-
proach(Perez and Liu 2016) which formulate the dialog state

9Due to speech recognition errors, the ASR n-best list is very
noisy.

10When use transcriptions, we actually tackle with the text dia-
log problems

749



Table 3: State and gate predicted by STN of a test sample in DSTC2: The state and gate predict by our soft STN and hard STN
is all the same, hard gate can be the value of 0 or 1, soft gate can also reach the value of 0 or 1 due to the use of hard sigmoid
activation function. The gate predicted by STN agree well with our intuition.

Turn Utterance, State, Gate

1

sys: hello , welcome to the cambridge restaurant system ? you can ask for restaurants by
area , price range or food type . how may i help you ?
user: id like a cheap restaurant in the south part of town
State: inform(pricerange=cheap,area=south)
Gate: food=1,pricerange=1,area=1

2

sys: there are 9 restaurants in the south of town . what type of food do you want ?
user: any type of food
State: inform(food=dontcare,pricerange=cheap,area=south)
Gate: food=1,pricerange=0,area=0

3

sys: there are 9 restaurants in the south of town serving any kind of food . what price range
would you like ?
user: cheap
State: inform(food=dontcare,pricerange=cheap,area=south)
Gate: food=0,pricerange=1,area=0

4

sys: the lucky star is a nice place in the south of town and the prices are cheap
user: can i have their phone number please
State: inform(food=dontcare,pricerange=cheap,area=south)
Gate: food=0,pricerange=0,area=0

5

sys: the phone number of the lucky star is 01223 244277 .
user: thank you good bye
State: inform(food=dontcare,pricerange=cheap,area=south)
Gate: food=0,pricerange=0,area=0

tracking as a machine reading problem which read the dia-
log transcriptions multiple times and answer the questions
about each of the slot. STN process the dialog transcrip-
tions one time and output all of the slot values simultane-
ously. We perform both the soft and hard version STNs and
they exceed the performance of MenN2N by a explicit mar-
gin(Table 2 half bottom). We can train the hard version STN
from scratch or initialize it with the parameters of trained
soft STN and train it continuously, each of which perform
pretty well. In the text input condition, the hard STN slightly
outperform the soft STN by two slot(Food and Price), it’s
because the text dialog utterance is accurate and the gate of
state updater can be formulated as a deterministic hard form.

4.3 Analysis

Table 3 show a sample of DSTC2 test set whose state and
gate has been predicted correctly by our STN. The soft STN
and hard STN make the same predictions of state and gate.
Hard gate can only choose the value of 0 or 1, soft gate lies
in [0, 1] and can also reach the extreme value of 0 or 1 by the
use of hard sigmoid activation function. In following analy-
sis, we can found that the gate predicted by STN agree well
with our intuition.

In the first turn, all the gates have been opened, it maybe
because the initialization setup of the state updater. The
value of food slot is the special ‘not mentioned’, so it doesn’t
appear in the state here. The value of pricerange slot and area
slot are correctly predicted as cheap and south respectively.
In the second turn, the system only ask for food type and
the user answer with ‘any’ which means he/she doesn’t care

about(dontcare) food type, they don’t talk about any other
slot, so the only opened gate is food slot, it updates its value
with ‘dontcare’, the gates of other slots are closed and the
slots values follow the last turn. In the third turn, the user
answer the system with cheap pricerange, so only the gate
of pricerange slot is opened, it updates the pricerange slot
with the same cheap value. In the last two turns, the user
doesn’t mention any slot, so all of the gates are closed, as a
result, all the slot values keep unchanged.

5 Related Work

Dialog state tracking methods can roughly be divided into
generative approach and discriminative approach(Williams,
Raux, and Henderson 2016). Generative approach computer
a distribution over possible(hidden) dialog states using a
Bayesian network that relate the dialog state to the system
action, the(unobserved) user action and ASR or SLU re-
sult. For computing efficiency, different factorizations of the
hidden state and probability independence assumptions are
always be made. However, generative models cannot eas-
ily incorporate large sets of potentially informative features
from SLU, dialog history and elsewhere. To cope with such
limitations, discriminative approaches to dialog state track-
ing compute scores for dialog states with discriminatively
train conditional models which can directly incorporate a
large number of features extracted from SLU, dialog his-
tory and so on, it can be optimized directly for prediction
accuracy. The performance of discriminative approach is of-
ten superior than the generative one(Williams, Raux, and

750



Henderson 2016). Recent deep learning based models(Mrk-
sic et al. 2017; Henderson, Thomson, and Young 2014b;
2014a) and our STNs fall into this kind of approach and
have shown promising results. Our method extends the work
of Mrksic et al.; Henderson, Thomson, and Young; Perez
and Liu and overcome some drawbacks of theirs. Hender-
son, Thomson, and Young use a delexicalisation-based RNN
model to track the dialog state without the module of NLU
and feature engineering, but it rely on a heavy strategy
known as delexicalisation whereby slots and values men-
tioned in the text are replaced with generic labels. Mrksic
et al. propose the neural belief tracker(NBT) which doesn’t
rely on either the NLU module or the delexicalisation, it pro-
cess each turn of the dialog utterance independently11 and
enumerate all of the candidate slot value pairs upon which
the NBT model perform binary decisions(the candidate slot
value is right or wrong). Perez and Liu cast dialog state
tracking to machine reading problem and use the end to end
muti-hop memory networks which is a powerful model for
text understanding, however it should read the dialog history
multiple times for predict only a single slot value. Based on
these drawbacks, we propose the state tracking networks for
dialog state tracking which directly model the state update
mechanism until the current turn and output the probability
distribution of the dialog state, STN doesn’t need the NLU
module, delexicalisation and feature engineering, it’s input
is the original user and system utterance(ASR n-best list or
transcription text), output is the probability distribution of
the dialog state, it is a very efficient end to end dialog state
tracking model.

Our state tracking networks are inspired by Recurrent En-
tity Network(EntNet)(Henaff et al. 2016) which maintain
and update a set of parallel memories which represent the
state of the world, due to its explicit gating mechanism Ent-
Net can perform both location and content-based read and
write operations. STN extend the EntNet, but use a different
gating(equation(6)) and updating(equation(8)) mechanism.
STN also absorb the design ideology of GRU(Cho et al.
2014) and LSTM(Hochreiter and Schmidhuber 1997), but
totally different from them with the scalar gate formulation.

6 Conclusion

In this paper we propose a novel model named state track-
ing networks for dialog state tracking, it accept original
user/system utterance(ASR n-best list or transcriptions) as
input and output the dialog state probability at each turn.
One characteristic of our model is that it use explicit gate
to model state update mechanism for each slot and it can be
explained intuitively. Attribute to the recurrent structure of
STN, when process the current turn, it can take all the dialog
history information into consideration. STN track all of slots
simultaneously end to end without the need of NLU module,
it can be trained deterministically using standard backprop-
agation or stochastically using REINFORCE with the hard
version gate. When evaluated on the authoritative DSTC2
dataset, STN can match the performance of state-of-the-art
models, particularly, when experimented on the text dialog,

11They use a rule based state update to track the dialog state.

STN exceed the performance of MemN2N with a sufficient
margin.

References

Bordes, A., and Weston, J. 2016. Learning end-to-end goal-
oriented dialog. CoRR abs/1605.07683.
Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using RNN encoder-decoder for sta-
tistical machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL,
1724–1734.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. P. 2011. Natural lan-
guage processing (almost) from scratch. Journal of Machine
Learning Research 12:2493–2537.
Henaff, M.; Weston, J.; Szlam, A.; Bordes, A.; and LeCun,
Y. 2016. Tracking the world state with recurrent entity net-
works. CoRR abs/1612.03969.
Henderson, M.; Thomson, B.; and Williams, J. D. 2014. The
second dialog state tracking challenge. In Proceedings of the
SIGDIAL 2014 Conference, The 15th Annual Meeting of the
Special Interest Group on Discourse and Dialogue, 18-20
June 2014, Philadelphia, PA, USA, 263–272.
Henderson, M.; Thomson, B.; and Young, S. J. 2014a. Ro-
bust dialog state tracking using delexicalised recurrent neu-
ral networks and unsupervised adaptation. In 2014 IEEE
Spoken Language Technology Workshop, SLT 2014, South
Lake Tahoe, NV, USA, December 7-10, 2014, 360–365.
Henderson, M.; Thomson, B.; and Young, S. J. 2014b.
Word-based dialog state tracking with recurrent neural net-
works. In Proceedings of the SIGDIAL 2014 Conference,
The 15th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 18-20 June 2014, Philadelphia,
PA, USA, 292–299.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kim, Y. 2014. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.

Mrksic, N.; Séaghdha, D. Ó.; Wen, T.; Thomson, B.; and
Young, S. J. 2017. Neural belief tracker: Data-driven di-
alogue state tracking. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, 1777–1788.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, 1532–1543.

751



Perez, J., and Liu, F. 2016. Dialog state tracking, a machine
reading approach using memory network. arXiv preprint
arXiv:1606.04052.
Schulman, J.; Heess, N.; Weber, T.; and Abbeel, P. 2015.
Gradient estimation using stochastic computation graphs. In
Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada,
3528–3536.
Shang, L.; Lu, Z.; and Li, H. 2015. Neural responding ma-
chine for short-text conversation. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers, 1577–1586.
Vinyals, O., and Le, Q. 2015. A neural conversational
model. arXiv preprint arXiv:1506.05869.
Wen, T.; Gasic, M.; Mrksic, N.; Rojas-Barahona, L. M.; Su,
P.; Ultes, S.; Vandyke, D.; and Young, S. J. 2016. A network-
based end-to-end trainable task-oriented dialogue system.
CoRR abs/1604.04562.
Williams, J. D., and Young, S. J. 2007. Partially observ-
able markov decision processes for spoken dialog systems.
Computer Speech & Language 21(2):393–422.
Williams, J. D.; Raux, A.; and Henderson, M. 2016. The di-
alog state tracking challenge series: A review. D&D 7(3):4–
33.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning 8:229–256.
Zaremba, W.; Sutskever, I.; and Vinyals, O. 2014. Recurrent
neural network regularization. CoRR abs/1409.2329.

752


