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Abstract 
A new approach to implementing cognitive architectures 
based on graphical models holds the potential for simpler 
yet more functional architectures.  It also raises the 
possibility of incorporating visual representation and 
reasoning into architectures in a manner that is uniformly 
implemented, and tightly coupled, with both perception and 
cognition.  While much of this is still highly speculative, the 
core of how it might work is outlined here. 
 
 

Cognitive architectures are hypotheses about the fixed 
structure underlying intelligent behavior, whether intended 
as models of human intelligence and/or implementations of 
artificial intelligence (Langley, Laird and Rogers 2009).  A 
basic cognitive architecture may comprise memories, 
decision algorithms, learning mechanisms, and some 
means of interacting with external environments.  More 
advanced architectures might also have capabilities for 
things like reflection, theory of mind, motivation and 
emotion. In a classical architecture, either the external 
environment with which it interacts is symbolic, making 
interaction relatively simple, or a continuous 
perceptuomotor system is required.  In the latter case, there 
is generally a hard wall between the central cognitive 
system, based on symbol processing, and the peripheral 
perceptuomotor system, based on signal processing.  
Results from one side of this wall are thrown over to the 
other side with an accompanying signal-to-symbol or 
symbol-to-signal transformation. Sophisticated visual 
representation and reasoning (VRR) is not common in 
architectures, although some recent versions do incorporate 
forms of 2D (Lathrop and Laird, 2009; Cassimatis et al. In 
press) or 3D (Wintermute and Laird 2007) imagery. 
  If we were to ask in general how VRR should be 
integrated into a cognitive architecture, a complete answer 
would require responses at both the knowledge level and 
the symbol level (Newell 1982).  The knowledge level 
response must consider what is represented in VRR and 

how that relates to, and semantically interconverts with, 
what is represented in any other architectural modules with 
which it must interact, such as perception, motor control, 
and central cognition.  The symbol level response must 
consider the structure of these interacting modules and how 
they can interoperate.  Together the two responses 
effectively determine what and how. 
 The speculations here focus only on the symbol level 
response – i.e., the how – starting with the notion of 
combining symbolic and perceptuomotor information 
through an intermediary of 3D spatial imagery and 
reasoning.  The starting point is an ongoing effort to 
reconstruct cognitive architectures from the ground up via 
graphical models (Koller and Friedman 2009), with the 
aim of understanding existing architectures better, 
exploring the overall space of architectures, and 
developing new and improved architectures (Rosenbloom 
2009).  
 Graphical models provide efficient computation with 
complex multivariate functions by decomposing them into 
products of simpler subfunctions.  The most familiar class 
of graphical models within AI and cognitive science is 
Bayesian networks (Pearl, 1988), which decompose 
complex joint probability distributions into products of 
simpler conditional and prior distributions, and then 
embody this product as a directed graph in which nodes 
represent random variables, arcs represent dependencies 
among random variables, and conditional probability tables 
at nodes represent the distributions of their random 
variables given the random variables upon which they 
depend.  Markov networks, aka Markov random fields, 
extend this to undirected graphs that are accompanied by 
arbitrary functions, called potentials, defined over variable 
cliques.  Factor graphs go one step further, incorporating 
the potentials from Markov networks into the graphs 
themselves as functions that are specified by an additional 
class of factor nodes (Kschischang, Frey and Loeliger 
2001).  Factor graphs were originally developed in coding 
theory – where they underlie the “surprisingly effective” 
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performance of turbo codes – to support decomposition of 
arbitrary multivariate functions. 
 The intriguing thing about graphical models, and 
particularly the latter forms of them, for cognitive 
architecture is how they yield state-of-the-art algorithms 
across symbol, probability and signal processing from a 
uniform graphical representation and a single generic 
message passing algorithm (summary product).  This 
includes algorithms for constraint processing and 
production match (symbols), loopy belief propagation in 
Bayesian networks (probabilities), and Kalman filters and 
the forward backward algorithm for hidden Markov 
models (signals).  Graphical models in general have 
become the standard approach to probabilistic reasoning 
and perception problems.  Their penetration into symbol 
processing isn’t nearly as significant, but they do show 
potential, with such languages as Alchemy (Domingos et 
al. 2006) and BLOG (Milch et al. 2007) providing broadly 
applicable mixtures of statistical and logical/relational 
processing.  Leveraging the broad-yet-uniform state-of-the-
art functionality provided by graphical models holds out 
significant potential for architectures that are simpler and 
more uniform yet significantly more functional than 
today’s best. 
 Progress to date in exploring this potential has focused 
on the implementation, via factor graphs, of a hybrid 
(discrete and continuous) mixed (Boolean and Bayesian) 
memory architecture that provides the kinds of memories 
embodied in two leading cognitive architectures – ACT-R 
(Anderson 2007) and Soar 9 (Laird 2008) – while also 
going beyond them in significant ways.  This memory 
architecture defines a working memory along with multiple 
long-term memories: classical procedural (rule) and 
declarative (semantic and episodic) memories plus a 
constraint memory.  The long-term memory structures all 
compile into graphs; albeit with some variations in their 
details, such as in the directionality of message passing 
used by the summary product algorithm – rules use 
unidirectional message passing while declarative memories 
use bidirectional message passing. Working memory maps 
onto evidence in graphical models, and as such is encoded 
as a fixed function within one or more factor nodes. 
 In these graphs, factor functions, along with the inter-
node messages that drive the summary product algorithm, 
are represented as N dimensional continuous functions, 
which are in turn approximated as piecewise linear 
functions over rectilinear regions.  The domains of these 
continuous functions can be discretized to represent 
probability distributions, and the ranges of the resulting 
discrete functions can further be Booleanized to represent 
symbols.  The underlying representation remains 
continuous, enabling all three forms of knowledge to be 
processed uniformly by the summary product algorithm.  
But at the same time it provides a broad-spectrum 
representation, capable of encoding continuous signals and 
discrete symbols, as well as points intermediate between 
them. This approach bears a resemblance to Barsalou’s 
(1999) proposal for perceptual symbol systems, in which 

symbols are attentionally extracted patterns of perceptual 
activity, although it does not presently enforce his taboo on 
amodal symbols; i.e., symbols abstracted away from any 
perceptual context. 
 This memory architecture still falls far short of the full 
capabilities required in a cognitive architecture – missing, 
for example, decision making, reflection, perception, motor 
control, motivations and emotions – but it does point in an 
interesting direction.  The core hypothesis explored in the 
remainder of this paper is that the layers of the full 
behavioral hierarchy to be supported by such an 
architecture – from perception and motor control at the 
bottom, up through 3D spatial imagery, to symbolic 
reasoning at the top – along with the bidirectional flow of 
information among these layers, are uniformly 
implementable and integratable via these kinds of 
graphical models. 
 Let’s start with perception.  Vision involves processing 
of 2D arrays of numerically valued pixels.  State-of-the-art 
techniques use Markov random fields and their close 
cousin conditional random fields.  Speech processing 
occurs via hidden Markov models.  All three of these 
techniques are variants of graphical models.  The main 
speculative aspect here concerns whether comparable 
capability can be had from the kind of factor graph just 
described.  For example, will a piecewise linear 
approximation be sufficient to handle these signals with 
their embedded noise, or will it be necessary to directly 
implement Gaussian functions?  Also, will summary 
product be sufficiently efficient, or will some other 
message-passing (or sampling) algorithm be required that 
is more optimized for such data? 
 At the other end of the hierarchy, graphical models have 
not been so well explored for symbol processing. There has 
been significant work in the context of constraint 
processing, including work on mixed hybrid variants 
(Gogate and Dechter 2005), along with the work 
previously mentioned on mixed languages.  My own work 
has also shown rule match in factor graphs that has better 
worst-case complexity than the state-of-the-art Rete 
algorithm (Forgy 1982).  Thus, although symbol 
processing in graphical models is not an extremely well 
explored area overall, the potential is there to justify a 
speculation that graphical models of the kind considered 
here will be sufficient for this aspect. 
 The most speculative aspect, because it is the most 
novel, is basing the intermediate layer – a 3D spatial 
memory with associated reasoning processes – on 
graphical models.  Initial optimism stems from the fact that 
piecewise linear functions already support a superset of the 
functionality of a voxel approach to 3D representation.  But 
a range of other alternatives are also possible, such as 
generalizing from rectilinear regions to ones based on 
convex polytopes (N dimensional polygons) or replacing 
linear functions with Gaussians to better handle noise and 
uncertainty.  Assuming any of these representational 
approaches proves adequate, the remaining question at this 
layer is whether the necessary operations on such a 
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memory – such as object addition, deletion, translation and 
rotation – are feasible through standard graphical 
processing methods. 
 Initial ideas for solving this problem may be found in 
related areas such as sequence predication and stereo 
vision.  Sequence prediction hypothesizes what comes next 
given what has already occurred, with Markov models 
supplying standard techniques.  Stereo vision computes a 
disparity map between two 2D images, with Markov and 
conditional random fields providing typical tools.  Our task 
starts with a 3D image plus a set of transformations – 
serving a role that is analogous to the disparity map in the 
stereo problem – and must compute a second 3D image.  A 
good place to start will thus be to look at fusing the 
insights from these two related problems. 
 Beyond implementing the three layers of the hierarchy, 
these layers must also be integrated together so as to enable 
straightforward interoperation. Experience implementing 
the memory architecture mentioned earlier showed that 
subtle incompatibilities among multiple capabilities can 
arise when attempting to implement them in a uniform 
substrate – e.g., conflicts between closed world and open 
world assumptions in procedural and declarative memories 
– but that otherwise the uniform implementation substrate 
acts as an excellent integration medium across the 
capabilities.  So such interoperability does appear to be 
within the realm of feasibility for our three hierarchy 
layers. 
 Should this general approach and its accompanying 
speculations pan out, it will yield a cognitive architecture 
embodying a uniformly implemented and tightly integrated 
capability for VRR.  Such a capability would also 
hopefully yield improvements in overall VRR capabilities, 
from either the breadth of functionality provided by 
graphical models or the tight integration with cognition and 
perception.  However, how this might actually occur is a 
speculation on speculations that is best left to later, when 
the present speculations have become reality. Also left for 
later are speculations on the across-layer semantic 
interconversion issues that can only be addressed by a 
knowledge level response to the original question. 
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