
Lifted Message Passing for Satisfiability

Fabian Hadiji and Kristian Kersting and Babak Ahmadi
Knowledge Discovery Department, Fraunhofer IAIS

53754 Sankt Augustin, Germany
{firstname.lastname}@iais.fraunhofer.de

Abstract

Unifying logical and probabilistic reasoning is a long-
standing goal of AI. While recent work in lifted belief
propagation, handling whole sets of indistinguishable
objects together, are promising steps towards achiev-
ing this goal that even scale to realistic domains, they
are not tailored towards solving combinatorial problems
such as determining the satisfiability of Boolean formu-
las. Recent results, however, show that certain other
message passing algorithms, namely, survey propaga-
tion, are remarkably successful at solving such prob-
lems. In this paper, we propose the first lifted variants
of survey propagation and its simpler version warning
propagation. Our initial experimental results indicate
that they are faster than using lifted belief propagation
to determine the satisfiability of Boolean formulas.

Introduction

Much has been achieved in the field of AI, yet much remains
to be done if we are to reach the goals we all imagine. One
of the key challenges in moving ahead is closing the gap be-
tween logical and statistical AI. Logical AI has mainly fo-
cused on complex representations, and statistical AI on un-
certainty. Intelligent agents, however, must be able to handle
both the complexity and the uncertainty of the real world.

Therefore, it is not surprising that recent years have wit-
nessed a surge of interest in lifted probabilistic inference,
handling whole sets of indistinguishable objects together.
For instance, lifted versions of the variable elimination algo-
rithm have been proposed, see e.g. (Milch et al. 2008) and
references in there. These exact inference approaches are
extremely complex, so far do not easily scale to realistic do-
mains, and hence have only been applied to rather small arti-
ficial problems. Recently, Sen et al. (2008) presented a lifted
variable elimination approach based on bisimulation. It es-
sentially groups together random variables if they have iden-
tical computation trees, the tree-structured unrolling of the
underlying graphical model rooted at the nodes. The sim-
plest and hence most efficient lifted inference approaches
are lifted belief propagation approaches. They easily scale
to realistic domains. Singla and Domingos (2008) devel-
oped the first lifted belief propagation variant tailored to-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

wards Markov logic networks. Subsequently, Kersting et
al. (2009) generalized Singla and Domingos’ approach to
any factor graph over finite random variables. Similar to Sen
et al., they also group together random variables, if they have
identical computation trees, but now run the more efficient
belief propagation approximation.

The main drawback of all currently existing lifted infer-
ence approaches, however, is that they are not tailored to-
wards combinatorial problems such as determining the sat-
isfiability of Boolean formulas. In many real-world applica-
tions, however, the problem formulation does not neatly fall
into the pure probabilistic inference case. The problem may
very well have a component that can be well-modeled as a
combinatorial problem, hence, taking it outside the scope of
standard (lifted) belief propagation. Ideally, lifted inference
should be efficient here, too, exploiting as much symmetries
as possible. Driven by a similar question, namely how to
reason with both probabilistic and deterministic dependen-
cies, but for the non-lifted case, Poon and Domingos (2006)
developed MC-SAT that combines ideas from MCMC and
satisfiability. It still proceeds by first fully instantiating the
first-order theory and then essentially staying at the propo-
sitional level. LazySAT (Singla and Domingos 2006) is a
lazy version of WalkSAT taking advantage of relational spar-
sity. Recently, Poon et al.(2008) have shown that this idea
of lazy inference goes beyond satisfiability and can be com-
bined with other propositional inference algorithms such as
belief propagation. So far, however, the link has not been
explored on the lifted (message-passing) level.

In this paper, we therefore revisit lifted message-passing
algorithms this time for combinatorial problems. Specifi-
cally, we focus on the Boolean satisfiability (SAT) problem
consisting of a formula F representing a set of constraints
over n Boolean variables, which must be set so as to satisfy
all constraints. It is the most studied problem in Computer
Science and AI. All other NP-complete problems can be re-
duced to it and, hence, ”reduction to SAT” is a powerful
paradigm for solving Computer Science and AI problems
and has applications in several important areas such as auto-
mated deduction, verification, and planning, among others.

In fact, we develop a lifted version of an exciting new al-
gorithm for solving combinatorial problems, namely survey
propagation (SP). It was introduced by Mezard et al. (2002)
and can easily solve random SAT problems with one million

26



variables in a few minutes on a desktop computer. Braun-
stein and Zecchina (2004) have shown that SP can be viewed
as a form of belief propagation, hence, somehow suggesting
that lifting SP is possible. As noted by Kroc et al. (2007;
2009), SP’s remarkable effectiveness — the performance is
clearly beyond the reach of mainstream SAT solvers — has
created the impression that solving hard combinatorial in-
stances requires survey propagation and belief propagation
would have little success. Kroc et al., however, have shown
that ”the gap between BP and SP narrows” as the number
of variables per clause increases. This is also supported by
(Montanari, Ricci-Tersenghi, and Semerjian 2007) showing
good performance of a combination of belief propagation
and warning propagation, a popular message passing algo-
rithm that is simpler than SP. Therefore we also show how
to lift warning propagation and, hence, provide a complete
picture of lifted message-passing algorithms for SAT, which
is our main contribution.

We proceed as follows. We first provide background on
Boolean formulas and factor graphs, and discuss lifted mes-
sage passing. Specifically, we review Step 1 of LBP, which
consists of lifting the factor graph, and show how a sim-
plified version can be used for lifting warning and survey
propagation. Then we introduce Step 2 for both warning
and survey propagation, i.e., the modified message-passing
formulas to be run on the lifted graph. Again we argue that
they are simpler than the ones for LBP. Before concluding,
we present the results of our initial experimental evaluation.

CNFs and Factor Graphs
We assume that a Boolean formula is represented in Con-
junctive Normal Form (CNF). A CNF is a conjunction of
disjunctions of Boolean literals. A literal is either a negated
or unnegated propositional variable. Specifically, a CNF
consists of n variables X = {X1, . . . , Xn} with xi ∈ {0, 1}
and m clauses C = (C1, . . . , Cm) constraining the vari-
ables. A clause Ci is defined on a subset of the variables
Xi = {Xi,1, . . . , Xi,k} and — this will turn out to be con-
venient for formulating the message-passing update formu-
las — a corresponding list of their signs which is denoted
as Si = {si,1, . . . , si,k} with si,j = −1 if Xi,j occurs un-
negated, otherwise si,j = 1 if Xi,j occurs negated. A so-
lution to a CNF is an assignment to all variables in X satis-
fying all constraints in C. As an example, consider the fol-
lowing CNF, consisting of three variables, three clauses, and
seven literals: (X1∨¬X2)∧(¬X1∨X2)∧(X1∨X2∨X3) .

As e.g. shown in (Kschischang, Frey, and Loeliger 2001),
every CNF can be represented as a factor graph. A factor
graph is a bipartite graph G = (V, E), where V is the set of
nodes, which contains a variable node (denoted as a circle)
for each variable Xi and a factor node (denoted as a square)
for each clause Ci. There is an edge e ∈ E between a vari-
able node and a factor node if and only if the variable ap-
pears in the clause. Since G is bipartite, there are no edges
connecting two variable nodes or two factors. The factor
graph representing the example CNF from above is shown
in Fig. 1 (left). We use a dashed line between a variable and
a clause whenever the variable appears negated in a clause,
i.e. si,j = 1, otherwise a full line.

C1

X1 X2

C2

C3

X3

sn1 sf 1

sf 2

sn2

vc = (1, 1)
fc = (1, 1)

vc = (0, 2)
fc = (0, 1)

vc = (0, 1)
fc = (0, 1)

Figure 1: (Left) (X1 ∨ ¬X2) ∧ (¬X1 ∨ X2) ∧ (X1 ∨ X2 ∨
X3) represented as a factor graph. Circles denote variable
nodes and squares denote factors. A dashed line indicates
that the variable appears negated in a clause; otherwise we
use a full line. (Right) The resulting lifted CNF factor graph
after running CP as illustrated in Fig. 2. For details, see main
text.

Step 1: Lifting the Factor Graph
One of the best known message passing approaches is
belief propagation (BP). Given a probability distribution
P (x1, . . . , xn) = 1

Z

∏
k fk(xk) over some random vari-

ables, it computes the marginal probabilities of the variables.
Here, each factor fk is a non-negative function of a subset
Xk of the random variables, and Z is a normalization con-
stant. Here, we use it to illustrate the basic idea of lifted
message-passing.

BP works by sending messages between variable nodes
and their neighboring factor nodes. The message from a
variable i to a factor a is

ni→a(xi) =
∏

b∈nb(i)\{a}
mb→i(xi)

where nb(i) is the set of factors i appears in. The message
from a factor to a variable is

ma→i(xi) =
∑

¬{i}

⎛
⎝fa(xa)

∏
j∈nb(a)\{i}

nj→a(xj)

⎞
⎠

where nb(a) are the arguments of factor a, and the sum is
over all of these except i, denoted as ¬{i}. The messages
are usually initialized to 1.

Although BP is already quite efficient, many graphical
models produce inference problems with a lot of symme-
tries not reflected in the graphical structure and hence not
exploitable by BP. To overcome this, lifted versions of
BP (LBP) have recently been proposed (Singla and Domin-
gos 2008; Kersting, Ahmadi, and Natarajan 2009). LBP runs
in two steps:

1. It groups together nodes and factors that send and receive
the same messages. This is sometimes called lifting.

2. Then, it runs a modified BP on the resulting lifted, i.e.,
clustered network.

As shown empirically by Singla and Domingos (Singla and
Domingos 2008) as well as by Kersting et al. (Kersting, Ah-
madi, and Natarajan 2009), this can significantly speed up

27



1 2 3 4 5 6

Figure 2: Lifting a factor graph running a color passing (CP) approach. From left to right, the steps of CP running on the factor
graph in Fig. 1 (left) (assuming no evidence). The colored small circles and squares denote the groups and signatures produced
running CFG. (Best viewed in color.)

inference. More importantly, Kersting et al. have shown
that the lifting step can be viewed as a color-passing (CP)
approach. This view abstracts from the type of messages
sent and, hence, highlights one of the main insights underly-
ing the present paper: CP can be used to lift other message-
passing approaches.

More importantly, as we will show, it can actually be sim-
plified in the SAT context. But first, let us illustrate CP.
To do so, we use fraktur letters such as G, X, and f to de-
note the lifted graphs, nodes, and factors. Due to space re-
strictions, we will not review the lifted BP message update
formulas but instead refer to (Singla and Domingos 2008;
Kersting, Ahmadi, and Natarajan 2009).

Essentially, CP simulates message passing, keeping track
of which nodes and factors send the same messages, and
groups nodes and factors together correspondingly. Specifi-
cally, let G be a given factor graph with variable and factor
nodes. Initially, all variable nodes fall into the same group
as we do not deal with evidence here. For ease of explana-
tion, we will represent the groups by colored circles, say red.
All factor nodes with the same associated potentials also fall
into one group represented by colored squares. For the fac-
tor graph in Fig. 1 (left) the situation is depicted in Fig. 2.
As shown on the left-hand side, assuming no evidence, all
variable nodes are unknown, i.e., red. Now, each variable
node sends a message to its neighboring factor nodes saying
“I am of color red” (step 2). A factor node sorts the incom-
ing colors into a vector according to the order the variables
appear in its arguments. The last entry of the vector is the
factor node’s own color, represented as light blue, respec-
tively green, squares in Fig. 2 (step 3). Based on these sig-
natures, the colors of the factors are newly determined and
sent back to the neighboring variables nodes (step 4), es-
sentially saying “I have communicated with these nodes”.
The variable nodes stack the incoming signatures together
and, hence, form unique signatures of their one-step mes-
sage history (step 5). Variable nodes with the same stacked
signatures, i.e., message history can be grouped together. To
indicate this, we assign a new color to each group (step 6).
In our running example, only variable node X3 changes its
color from red to yellow. Finally, this process is iterated.
The process stops when no new colors are created anymore.

The final lifted factor graph G is constructed by grouping

all nodes with the same color into so-called supernodes and
all factors with the same color signatures into so-called su-
perfactors. Supernodes (resp. superfactors) are sets of nodes
(resp. factors) that send and receive the same messages at
each step of carrying out message-passing on G. It is clear
that they form a partition of the nodes in G. In our case,
variable nodes X1, X2 and factor nodes C1, C2 are grouped
together into supernode sn1 = {X1, X2} and superfactor
sf 1 = {C1, C2}, the others are singletons (sn2 and sf 2) as
shown in Fig. 1 (right).

Now, we are essentially ready to run Step 2, i.e., the mod-
ified warning respectively survey propagation on the lifted
factor graph. Before doing so, we show that CP and its out-
come, the lifted factor graph, are simpler for the CNF case
than the ones for the BP case.

First, we can employ a more efficient color signature cod-
ing scheme. The initial grouping of the factors solely de-
pends on their zero state. Additionally, the factor nodes do
not have to sort the incoming colors according to the po-
sitions of the variables, instead only the sign of a variable
matters, i.e. only two positions exist.

Second, we can employ simplified counts. As in LBP, the
lifted update formulas essentially simulate ground warning
resp. survey propagation on the lifted network. To do so, we
store the counts of how often messages are sent along edges.
Specifically, there are two types of counts. First, there is
the factor count fc. It represents the number of equal ground
factors that send messages to the variable at a given position.
Because there are only two positions — a variable may oc-
cur at any position in negated and unnegated form, we store
two values: counts for the negated position and for the un-
negated position. Reconsider Fig. 1 (right). Here, the count
associated with the edge between sn1 and sf 1 is (1, 1) be-
cause sn1 represents ground variables that appeared positive
and negative in ground factors represented by sf 1. Second,
there is the variable count vc. It corresponds to the number
of ground variables that send messages to a factor at each
position. In the ground network, the clause C3 is connected
to three positive variables, but two of them are represented
by a single supernode in the lifted network. Hence, we have
vc = (0, 2) for the edge between sn1 and sf 2. So, for lifted
CNF factor graphs, all counts are of dimension 2 only.

28



Step 2: Lifted Warning Propagation

Clauses consisting of a single literal only, i.e. factors with
an edge to exactly one variable X only, are called unit
clauses. A unit clause essentially fixes the truth value of
X . The process of fixing all variables appearing in unit
clauses and simplifying the CNF correspondingly is called
Unit Propagation (UP). Casted into the message passing
framework (Braunstein, Mézard, and Zecchina 2005; Mon-
tanari, Ricci-Tersenghi, and Semerjian 2007), it is known
under the name of Warning Propagation (WP).

Intuitively, a message ma→i = 1 sent from a factor to a
variable says: ”Warning! The variable i must take on the
value satisfying the clause represented by the factor a.” As
e.g. shown by Braunstein et al. (2005), this can be expressed
mathematically as follows:

ma→i =
∏

j∈nb(a)\{i}
θ(nj→asa,j)

where nb(a) is the set of variables that a constrains and
θ(x) = 0 if x ≤ 0 and θ(x) = 1 if x > 0. sa,j is the
sign of the edges and defined as above. The message from a
variable to a factor is:

ni→a =

⎛
⎝ ∑

b∈nb+(i)\{a}

mb→i

⎞
⎠ −

⎛
⎝ ∑

b∈nb−(i)\{a}

mb→i

⎞
⎠

where nb+(i) resp. nb−(i) is the set of factors in which i
appears unnegated resp. negated.

The lifted WP equations take the following form1:

ma→i,p =
∏

j∈nb(a)

∏
p′∈P (a,j)

θ(nj→a,p′sp′)
vc(a,j,p′)−δijδpp′

with sp′ = 1 if p′ = 0 and sp′ = −1 if p′ = 1. Here, P (a, j)
only runs over positions with a variable count greater than
zero. Reconsidering the factor graph in Fig. 1 (right), P
contains both positions for the edge sn1 − sf 1, while for
sn2 − sf 2 it only contains the unnegated position. The Kro-
necker deltas take care of the ”\{i}” in the product’s range
of the ground formula. They reduce counts when a mes-
sage is sent to the node itself that means it prevents double
counting of messages. Intuitively, this already shows that
the lifted formula indeed simulates WP on the ground net-
work. It even becomes more clear when we run it on the
ground network shown in 1 (left). In this case, there is ex-
actly one position with a variable count greater than zero for
each neighbor j of factor a. In other words, P (a, j) is a sin-
gleton. In turn, the second product can be dropped, and both
formulas coincide.

Similarly, one can intuitively check that the following for-
mula is correct for the lifted case:

ni→a,p =(
∑

b∈nb(i),
fc(b,i,1)>0

mb→i(fc(b, i, 1) − δabδp1))−

(
∑

b∈nb(i),
fc(b,i,0)>0

mb→i(fc(b, i, 0) − δabδp0))

1We define 00 = 1 in cases where θ(x) = 0 and
vc(a, j, p′) − δij,pp′ = 0.

Again the δs take care of the ”\{a}”, the ”fc(b, j, 1/0) > 0”
of ”nb+/−(j)”. Using this correspondence, the proof that
applying the lifted formulas to the lifted graph gives the
same results as WP applied to the ground network follows
essentially from the one for LPB (Singla and Domingos
2008).

Step 2: Lifted Survey Propagation

In survey propagation, the intuition of a message ma→i sent
from a factor to a variable is that of a ”survey” which rep-
resents the probability that a warning is sent from a to i.
Essentially, the SP equations can be lifted in the very same
way as for WP. That is, we apply rewriting rules such as
”\{i}” �→”δijδpp′” to the ground SP equations. This yields
the lifted SP equations as listed in Table 1.

Indeed, we have to be a little bit more careful. More pre-
cisely, for messages from factors to variables we use ex-
actly the same rules. For the messages from variables to
factors, however, we use slightly different rules. The set

”b ∈ nbu/s
a (i)” maps to ”b ∈ nb(i), p′ ∈ P (b, i), p′ �= p”

resp. to ”. . . , p′ = p” for the message sent at position p.
This ensures that we consider exact those neighbors of i that
tend to make it unsatisfy resp. satisfy the clause a.

Now, we can safely apply the rewrite rules to the ground
survey propagation equations as they can e.g. be found in
Braunstein et al. (2005). They look as follows:

ma→i =
∏

j∈nb(a)\{i}

[
nu

j→a

nu
j→a + ns

j→a + n0
j→a

]

nu
i→a =

⎡
⎣1 −

∏
b∈nbu

a (i)

(1 − mb→i)

⎤
⎦ ∏

b∈nbs
a(i)

(1 − mb→i)

ns
i→a =

⎡
⎣1 −

∏
b∈nbs

a(i)

(1 − mb→i)

⎤
⎦ ∏

b∈nbu
a(i)

(1 − mb→i)

n0
i→a =

∏
b∈nb(i)\{a}

(1 − mb→i)

where nbu
a(i) = nb+(i) and nbs

a(i) = nb−(i)\{a} if sa,i =
1, while nbu

a(i) = nb−(i) and nbs
a(i) = nb+(i) \ {a} if

sa,i = −1. In the following we will investigate different
SAT solving scenarios using message passing algorithms.

Experimental Evaluation

Our intention here is to empirically investigate the correct-
ness of the lifted message updates for WP and SP. To this
aim, we implemented lifted SP and its variants in Python
using the LIBDAI library (Mooij 2009). More precisely, we
implemented decimation approaches. Decimation is the pro-
cess of assigning a truth value to one variable (or a few vari-
ables) of F and simplifying F , obtaining a smaller formula
on n − 1 variables. Now, we repeatedly decimate the for-
mula in this manner, until all variables have been fixed. As
a proof of concept, we compared the performances of lifted
message passing approaches with the corresponding ground

29



(1) Message sent from factor a to a variable i at position p:

ma→i,p =
∏

j∈nb(a),

p′∈P(a,j)

[
nu

j→a,p′

nu
j→a,p′ + ns

j→a,p′ + n0
j→a,p′

]vc(a,j,p′)−δijδpp′

(2) Messages sent from variable j to factor a at position p′:

nu
i→a,p =

[
1 −

∏
b∈nb(i),

p′∈P (b,i),p′ �=p

(1 − mb→i)
fc(b,i,p′)−δab

]∏
b∈nb(i),

p′∈P(b,i),p′=p

(1 − mb→i)
fc(b,i,p′)−δab

ns
i→a,p =

[
1 −

∏
b∈nb(i),

p′∈P (b,i),p′=p

(1 − mb→i)
fc(b,i,p′)−δab

]∏
b∈nb(i),

p′∈P(b,i),p′ �=p

(1 − mb→i)
fc(b,i,p′)−δab

n0
i→a,p =

∏
b∈nb(i)

p′∈P (b,i)

(1 − mb→i)
fc(b,i,p′)−δabδpp′

Table 1: The lifted update formulas for survey propagation equations. For details, we refer to the main text.

versions on standard CNF benchmarks. We use decimation
to measure the efficiency of the algorithms.

To assess performance, we report running times. Running
time is measured by the number of messages sent. For the
typical message sizes, e.g., for binary random variables with
low degree, computing color messages is essentially as ex-
pensive as computing the actual messages. Therefore, we
view the running time in terms of the number of both color
and (modified) messages computed, treating individual mes-
sage updates as atomic unit time operations. For BP, we used
the “flooding” message protocol, the most widely used and
generally best-performing method for BP. Here, messages
are passed from each variable to all corresponding factors
and back at each step. Messages were damped by 0.4, and
the convergence threshold was 10−3. For WP we used a se-
quential random update schedule and initialized all message
to zero. SP used a sequential random update as well, but the
messages were randomly initialized.

We evaluated (lifted) WP+BP decimation on the circuit
synthesis problem 2bitmax 6. The formula has 192 vari-
ables and 766 clauses. The resulting factor graph has 192
variable nodes, 766 factor nodes, and 1800 edges. The statis-
tics of the runs are shown in Fig. 3 (left). As one can see, lift-
ing yields significant improvement in efficiency especially
in the first iterations: LIFTED WP + BP reduces the mes-
sages sent by 13% compared to GROUND WP + BP when
always fixing the most magnetized (largest difference be-
tween negated and unnegated marginals) variable.

Then, we investigated the Latin square construction prob-
lem ls8-norm. The formula has 301 variables and 1601
clauses, resulting in a factor graph with 3409 edges. The
statistics of running lifted message-passing are shown in
Figure 3 (middle). Again, the lifting yields improvement
in efficiency: LIFTED WP + BP saved 16% of the messages
sent by the ground version.

Finally2, we also applied the lifted message passing algo-

2Note that we also conducted initial experiments on CNF pro-
duced from the ”Friends-and-Smokers” Markov logic network, see
e.g. (Singla and Domingos 2008), for the case of deterministic

rithms to a random 3-CNF, namely wff.3.150.525. The
CNF contains 150 variables, 525 clauses and 1575 edges. As
expected, no lifting was possible as shown in 3 (right).

We also ran ground and lifted SP on these three problem
instances. Due to the properties of the CNFs, SP always
converged to a paramagnetic state, i.e. the trivial solution,
with a single iteration. In such cases the problem is usually
passed to a SAT-solver such as WalkSAT. Note, however,
that the lifted SP saved roughly 45% of the messages the
ground version sent on the 2bitmax 6 problem. On the
latin square, lifted SP sent only 44% of the number of mes-
sages ground SP sent. As expected, the lifting produced a
small overhaed on the random CNF for the lifted SP.

To summarize, the results clearly show that a unified lifted
message-passing framework that includes BP, WP, and SP is
indeed useful for SAT. Not only are significant efficiency
gains obtainable by lifting, but lifted WP-guided BP clearly
outperforms unguided (lifted) BP.

Conclusions

We have presented the first lifted message-passing algo-
rithms for determining the satisfiability of Boolean formu-
las. Triggered by the success of recent lifted belief prop-
agation approaches, our algorithms construct a network of
supernodes and superfactors, corresponding to sets of nodes
and factors that are sending and receiving the same mes-
sages, and apply warning resp. survey propagation to this
network. Our initial experimental results validate the cor-
rectness of the resulting lifted approaches. Significant effi-
ciency gains are obtainable when employing lifted instead of
standard warning respectively survey propagation. In partic-
ular, lifted survey and warning propagation approaches are
faster than ”just” using LBP to determine the satisfiability of
Boolean formulas.

Indeed, much remains to be done. Next to running more
experiments and developing lifted decimation and back-

clauses. Setting rather few unit clauses, however, either produced
contradictions or solutions quickly. Therefore, we do not report re-
sults here. We are currently running a more detailed investigation.

30



Figure 3: Total number of messages sent in each iteration of decimation for (lifted) WP+BP and lifted BP on several CNF
benchmarks. (Left) 2bitmax 6: Lifted WP+BP saves 13% of the messages ground WP+BP sent. (Middle) ls8-norm:
Lifted WP+BP saves 16% of the messages ground WP+BP sent. (Right) wff.3.150.525. A small lifting overhead occurs.

tracking approaches, the most interesting avenue for future
work is the tight integration of lifted SAT and lifted proba-
bilistic inference. In many real-world applications, the prob-
lem formulation does not fall neatly into one of them. The
problem may have a component that can be well-modeled
as a SAT problem. Our work suggests to partition a prob-
lem into corresponding subnetworks, run the correspond-
ing type of lifted message passing algorithm on each sub-
network, and to combine the information from the different
sub-networks. For the non-lifted case, this is akin to Duchi
et al.’s (2006) COMPOSE approach that has been proven to
be successful for problems involving matching problems as
sub-problems. It is also very interesting to explore lifted
inference for (stochastic) planning. Last but not least, we
should start investigating lifted satisfiability for other clas-
sical AI tasks and, in turn, start exploring of what might be
called Statistical Relational AI.

Acknowledgments

The authors would like to thank the anonymous reviewers
for the helpful comments. This work is partially supported
by the Fraunhofer ATTRACT scholarship STREAM and
by the European Commission under contract number FP7-
248258-First-MM.

References

Braunstein, A., and Zecchina, R. 2004. Survey propagation
as local equilibrium equations. J. Stat. Mech. P06007.

Braunstein, A.; Mézard, M.; and Zecchina, R. 2005. Sur-
vey propagation: An algorithm for satisfiability. Random
Structures and Algorithms 27(2):201–226.

Duchi, J.; Tarlow, D.; Elidan, G.; and Koller, D. 2006. Using
combinatorial optimization within max-product belief prop-
agation. In Proc. of NIPS-06, 369–376.

Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Count-
ing belief propagation. In A. Ng, J. B., ed., Proceedings of
the 25th Conference on Uncertainty in Artificial Intelligence
(UAI–09).

Kroc, L.; Sabharwal, A.; and Selman, B. 2007. Survey
propagation revisited. In Proc. of the Conf. on Uncertainty
in Artificial Intelligence (UAI-07), 217–226.

Kroc, L.; Sabharwal, A.; and Selman, B. 2009. Mes-
sagepassing and local heuristics as decimation strategies for
satisfiability. In Proc. of the ACM Symposium on Applied
Computing (SAC-09), 1408–1414.

Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001.
Factor graphs and the sum-product algorithm. IEEE Trans-
actions on Information Theory 47.

Mézard, M.; Parisi, G.; and Zecchina, R. 2002. Analytic
and algorithmic solution of random satisfiability problems.
Science 297:812–815.

Milch, B.; Zettlemoyer, L.; Kersting, K.; Haimes, M.; and
Pack Kaelbling, L. 2008. Lifted Probabilistic Inference with
Counting Formulas. In Proc. of the 23rd AAAI Conf. on
Artificial Intelligence (AAAI-08).

Montanari, A.; Ricci-Tersenghi, F.; and Semerjian, G.
2007. Solving constraint satisfaction problems through be-
lief propagation-guided decimation. In Proc. of the 45th
Allerton Conference on Communications, Control and Com-
puting.

Mooij, J. M. 2009. libDAI 0.2.3: A free/open
source C++ library for Discrete Approximate Inference.
http://www.libdai.org/.

Poon, H., and Domingos, P. 2006. Sound and efficient infer-
ence with probabilistic and deterministic dependencies. In
Proc. of the 21st National Conference on Artificial Intelli-
gence (AAAI-2006).

Poon, H.; Domingos, P.; and Summer, M. 2008. A gen-
eral method for reducing the complexity of relational in-
ference and its application to mcmc. In Proc. of the 23rd
National Conference on Artificial Intelligence (AAAI-08),
1075–1080.

Sen, P.; Deshpande, A.; and Getoor, L. 2008. Exploiting
Shared Correlations in Probabilistic Databases. In Proc. of
the Intern. Conf. on Very Large Data Bases (VLDB-08).

Singla, P., and Domingos, P. 2006. Memory-efficient in-
ference in relational domains. In Proc. of the 21st National
Conference on Artificial Intelligence (AAAI-2006).

Singla, P., and Domingos, P. 2008. Lifted First-Order Belief
Propagation. In Proc. of the 23rd AAAI Conf. on Artificial
Intelligence (AAAI-08), 1094–1099.

31


