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Abstract

The paper argues that (1) stochastic planning should be used
as a core problem domain for relational probabilistic models
providing problems of interest that are challenging for current
approaches and significant scope for extending their capabil-
ities, (2) that symbolic dynamic programming solving such
problems can be seen as a prime example of lifted inference
in relational probabilistic problems, (3) that first order deci-
sion diagrams provide a useful tool to drive such lifted com-
putations, and (4) that the resulting lifted inference is qualita-
tively different from what other approaches are providing. As
a result, this relationship can be studied to the benefit of de-
veloping foundations for relational probabilistic models and
to the benefit of stochastic planning.

Introduction

The well known connection between planning and theo-
rem proving suggests a similar analogy for the stochas-
tic case. Indeed this idea has been explicitly explored by
several groups (Attias 2003; Toussaint and Storsky 2006;
Lang and Toussaint 2009) although the inference algorithms
used do not take advantage of relational structure. On
the other hand, interest in lifted inference within SRL has
grown dramatically in recent years (Poole 2003; Braz, Amir,
and Roth 2006; Milch et al. 2008; Singla and Domin-
gos 2008; Kersting, Ahmadi, and Natarajan 2009; Kisyn-
ski and Poole 2009b; Sen, Deshpande, and Getoor 2009;
Kisynski and Poole 2009a; Gordon, Hong, and Dudik 2009;
Braz et al. 2009; Shavlik and Natarajan 2009). Two ob-
vious questions are how to cast the relationship between
lifted stochastic inference and stochastic planning and what
are the best algorithmic outcomes of this correspondence.
There are, in fact, several ways to look at this question from
the perspective of each community and its set of tools, and
these provide different insights. In the following we focus
on just one perspective arising from seeing stochastic plan-
ning as a problem of optimizing Relational Markov Decision
Processes (RMDPs). In particular, we argue that one ap-
proach, symbolic dynamic programming (SDP) (Boutilier,
Reiter, and Price 2001), should be seen as a prime example
of this analogy and that it provides an interesting example of
lifted inference.
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Markov decision processes (MDP) are models of decision
making under uncertainty, and RMDPs are MDPs where the
states, actions and transition probabilities can be described
compactly by referring to objects and relations among them.
Therefore the initial advantage of RMDPs is that they pro-
vide a compact description for complex problems. The
main motivation for RMDPs is the thought that the com-
pactness can be translated to improvement in run time over
approaches that ignore the structure. The first formulation
of this idea was given by Boutilier, Reiter, and Price (2001)
who introduced the SDP algorithm as a means to perform
lifted reasoning in RMDPs. The basic idea is that many
states share the same values and transitions and therefore
the Bellman equation can be calculated at the abstract level
without enumerating states. This requires the algorithm to
identify the right grouping of states dynamically while mak-
ing the updates. It also requires lifted versions of goal re-
gression for stochastic actions, as well as operations over
relational value functions and probability functions.

This work was followed by different groups (Groß-
mann, Hölldobler, and Skvortsova 2002; Hölldobler and
Skvortsova 2004; Kersting, van Otterlo, and De Raedt 2004;
Sanner and Boutilier 2009; Wang, Joshi, and Khardon 2008)
proposing and using different representation schemes to
support lifted computations for RMDPs. Our own work
(Wang, Joshi, and Khardon 2008; Wang and Khardon 2007;
Joshi, Kersting, and Khardon 2009; Wang and Khardon
2010) introduced first order decision diagrams (FODD) and
showed how they can be used in such algorithms. Two chal-
lenges exist in such work, the first showing how a represen-
tation scheme can support the abstract calculations correctly
and yet maintain compactness, and the second identifying
ways to implement such schemes efficiently and deploy
them to solve large problems. A solution based on relational
linear functions approximation (Sanner and Boutilier 2009)
was implemented and shown to solve problems from the In-
ternational Planning Competition (IPC). The FODD solu-
tions were implemented in the FODD-Planner and similarly
applied to problems from the IPC (Joshi and Khardon 2008;
Joshi, Kersting, and Khardon 2010). These efforts show that
the approach can scale to problems of outside interest.

Notice that FODD-Planner, and in fact any implementa-
tion of SDP, performs calculation of values and probabilities
“in bulk”. This is a standard desideratum for lifted inference.
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A similar analogy can be made between FODDs represent-
ing intermediate steps of the computation and parfactors or
their generalizations in lifted inference. However, SDP al-
gorithms seem to go a step further in terms of abstraction.
Unlike most lifted inference work, in SDP the network is
not grounded to start with, and inference is performed as
much as possible at the abstract level. In fact, for some
problem domains and queries the answer does not depend on
the number of objects and can be characterized abstractly, in
which case the network is not grounded at all. SDP algo-
rithms have been motivated by these ideal case scenarios but
can adapt and ground the domain as needed.

Further insight can be obtained by looking at the details
of the algorithm. One can interpret the calculations in SDP
as taking advantage of two aspects of the model: the first
is (context specific) conditional independence, just as in
Bayesian networks. The other might be called “context spe-
cific dependence” where many predicates change simulta-
neously under some conditions. Thus both dependence and
independence can be used for speedup and to enable abstract
solutions. An interesting question is whether similar obser-
vations can be used to improve inference algorithms in net-
works with hard constraints, especially those arising from
relational structure and thus repeating in the network. Our
main point, however, is not that SDP is more general but
that it provides a different perspective on a related problem
and thus provides different tradeoffs and insights into fast
calculation with relational models. Other implications from
this analogy can be similarly drawn to suggest potential new
algorithms.

The main engine underlying lifted computations is a good
representation scheme. This representation must allow for a
calculus of complex functions over structured domains; that
is, we may want to add, multiply or apply some other op-
erations to functions over structured domains. In our work,
FODDs provide this representation and corresponding op-
erations. In more recent work we have shown how to ex-
tend these ideas to capture more problems and algorithms
and to speed up computations. These include relational pol-
icy iteration (Wang and Khardon 2007), relational partially
observable MDPs (Wang and Khardon 2010), FODDs cap-
turing more complex structured functions (Joshi, Kersting,
and Khardon 2009), and improvements to compactness and
run time by using “examples” (Joshi, Kersting, and Khardon
2010). These extensions suggest that the symbolic compu-
tation of SDP might be useful in more general contexts.

We have so far argued that there is an interesting anal-
ogy that is worth investigating. Our second main point is
that a focus on planning might be a useful path for future
work on inference algorithms. Current SDP solvers focus on
simply-defined domains and they cannot capture action du-
rations, continuous resources, continuous actions, and com-
positional and hierarchical problem structure. Extending re-
lational probabilistic models and algorithms to capture such
features would be an interesting challenge and will provide
ample scope for improvements in inference algorithms.
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