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Abstract

Markov logic networks (MLNs) use first-order formulas to
define features of Markov networks. Current MLN structure
learners can only learn short clauses (4-5 literals) due to ex-
treme computational costs, and thus are unable to represent
complex regularities in data. To address this problem, we
present LSM, the first MLN structure learner capable of ef-
ficiently and accurately learning long clauses. LSM is based
on the observation that relational data typically contains pat-
terns that are variations of the same structural motifs. By con-
straining the search for clauses to occur within motifs, LSM
can greatly speed up the search and thereby reduce the cost
of finding long clauses. LSM uses random walks to identify
densely connected objects in data, and groups them and their
associated relations into a motif. Our experiments on three
real-world datasets show that our approach is 2-5 orders of
magnitude faster than the state-of-the-art ones, while achiev-
ing the same or better predictive performance.

Introduction

Markov logic networks (MLNs; Domingos & Lowd, 2009)
have gained traction in the AI community in recent years be-
cause of their ability to combine the expressiveness of first-
order logic with the robustness of probabilistic representa-
tions. An MLN is a set of weighted first-order formulas,
and learning its structure consists of learning both formu-
las and their weights. Learning MLN structure from data
is an important task because it allows us to discover novel
knowledge, but it is also a challenging one because of its
super-exponential search space. Hence only a few practical
approaches have been proposed to date (Kok & Domingos,
2005; Mihalkova & Mooney, 2007; Biba et al., 2008b; Kok
& Domingos, 2009; etc.).

These approaches can be categorized according to their
search strategies: top-down versus bottom-up. Top-down
approaches (e.g., Kok & Domingos, 2005) systematically
enumerate formulas and greedily select those with good em-
pirical fit to data. Such approaches are susceptible to local
optima, and their search over the large space of formulas is
computationally expensive. To overcome these drawbacks,
bottom-up approaches (e.g., Mihalkova and Mooney, 2007)
use the data to constrain the space of formulas. They find
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paths of true atoms that are linked via their arguments, and
generalize them into first-order formulas. Each path thus
corresponds to a conjunction that is true at least once in the
data, and since most conjunctions are false, this focuses the
search on regions with promising formulas. However, such
approaches amount to intractable search over an exponen-
tial number of paths. In short, none of the approaches can
tractably learn long formulas.

Learning long formulas is important for two reasons.
First, long formulas can capture more complex dependen-
cies than short ones. Second, when we lack domain knowl-
edge, we typically want to set the maximum formula length
to a large value so as not to a priori preclude any good rule.

In this paper, we present Learning using Structural Mo-
tifs (LSM) (Kok and Domingos 2010), an approach that can
find long formulas (i.e., formulas with more than 4 or 5 lit-
erals). Its key insight is that relational data usually contains
recurring patterns, which we term structural motifs. These
motifs confer three benefits. First, by confining its search
to within motifs, LSM need not waste time following spu-
rious paths between motifs. Second, LSM only searches in
each unique motif once, rather than in all its occurrences
in the data. Third, by creating various motifs over a set
of objects, LSM can capture different interactions among
them. A structural motif is frequently characterized by ob-
jects that are densely connected via many paths, allowing
us to identify motifs using the concept of truncated hitting
time in random walks. This concept has been used in many
applications, and we are the first to successfully apply it to
learning MLN formulas.

The remainder of the paper is organized as follows. We
begin by reviewing some background in Section . Then we
describe LSM in detail (Section ), and report our experi-
ments (Section ). Next we discuss related work (Section ).
Finally, we conclude with future work (Section ).

Background

We review the building blocks of our algorithm: Markov
logic, random walks, truncated hitting times, and the LHL
system (Kok and Domingos 2009).

Markov Logic

Markov logic is a probabilistic extension of first-order
logic (Genesereth and Nilsson 1987). A Markov logic net-
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work (MLN) is a set of weighted first-order formulas. To-
gether with a set of constants representing objects in a do-
main, it defines a Markov network (Pearl 1988) with one
node per ground atom and one feature per ground formula.
The weight of a feature is the weight of the first-order for-
mula that originated it. The probability distribution over
possible worlds x specified by the ground Markov network
is given by

P (X =x) =
1
Z

exp

⎛
⎝∑

i∈F

∑
j∈Gi

wigj(x)

⎞
⎠ (1)

where Z is a normalization constant, F is the set of all first-
order formulas in the MLN, Gi is the set of groundings of
the ith first-order formula, and gj(x) = 1 if the jth ground
formula is true and gj(x) = 0 otherwise. Markov logic can
compactly represent complex models in non-i.i.d. domains.

Random Walks and Hitting Times

Random walks and truncated hitting times are defined in
terms of hypergraphs. A hypergraph is a straightforward
generalization of a graph in which an edge can link any
number of nodes, rather than just two. Formally, a hyper-
graph G is a pair (V,E) where V is a set of nodes, and E is
a set of labeled non-empty subsets of V called hyperedges.
A path of length t between nodes u and u′ is a sequence
of nodes and hyperedges (v0, e0, v1, e1, . . . , et−1, vt) such
that u = v0, u′ = vt, ei ∈ E, vi ∈ ei and vi+1 ∈ ei for
i ∈ {0, . . . , t−1}. u is said to be reachable from u′ iff there
is a path from u to u′. G is connected iff all its nodes are
reachable from each other. pv

s denotes a path from s to v.
In a random walk (Lovasz 1996), we travel from node

to node via hyperedges. Suppose that at some time step
we are at node i. In the next step, we move to one of its
neighbors j by first randomly choosing a hyperedge e from
the set Ei of hyperedges that are incident to i, and then
randomly choosing j from among the nodes that are con-
nected by e (excluding i). The probability of moving from
i to j is called the transition probability pij , and is given
by pij =

∑
e∈Ei∩Ej

1
|Ei|

1
|e|−1 . The truncated hitting time

hT
ij (Sarkar, Moore, and Prakash 2008) from node i to j is

defined as the average number of steps required to reach j
for the first time starting from i in a random walk limited
to at most T steps. The larger the number of paths be-
tween i and j, and the shorter the paths, the smaller hT

ij .
Thus, truncated hitting time is useful for capturing the no-
tion of ‘closeness’ between nodes. It is recursively defined
as hT

ij = 1 +
∑

k pikhT−1
kj . hT

ij = 0 if i = j or T = 0, and
hT

ij = T if j is not reached in T steps. Sarkar et al. showed
that hT

ij can be approximated accurately with high probabil-
ity by sampling. They run W independent length-T random
walks from node i. In w of these runs, node j is visited for
the first time at time steps t1j , . . . , t

w
j . The estimated trun-

cated hitting time is given by

ĥT
ij = (1/W )

w∑
k=1

tkj + (1 − w/W )T. (2)

Learning via Hypergraph Lifting (LHL)

LHL is a state-of-the-art algorithm for learning MLNs. It
consists of three components: LiftGraph, FindPaths, and
CreateMLN. LSM uses the last two.

In LiftGraph, LHL represents a database as a hypergraph
with constants as nodes and true ground atoms as hyper-
edges. LHL defines a model in Markov logic, and finds a
single global clustering of nodes and hyperedges that opti-
mizes the joint likelihood of the database under the model.
The resulting hypergraph has fewer nodes and hyperedges,
and therefore fewer paths, ameliorating the cost of finding
paths in the next component. In LHL, two nodes v and v′
are clustered together if they are related to many common
nodes. Thus, intuitively, LHL is making use of length-2
paths to determine the similarity of nodes. In contrast, LSM
uses longer paths, and thus more information, to find var-
ious clusterings of nodes (motifs) rather than just a global
one. Also note that spurious edges present in LHL’s initial
hypergraph are retained in the clustered one.

In FindPaths, LHL uses a variant of relational pathfind-
ing (Richards and Mooney 1992). LHL iterates over the hy-
peredges in the clustered hypergraph. For each hyperedge,
it begins by adding it to an empty path, and then recursively
adds hyperedges linked to nodes already present in the path.
Its search terminates when the path reaches a length limit or
when no new hyperedge can be added. Each time a hyper-
edge is added to the path, FindPaths stores the resulting path
as a new one. Note that each path corresponds to a conjunc-
tion of ground atoms.

In CreateMLN, LHL creates a clause from each path by
replacing each unique node with a variable, and convert-
ing each hyperedge into a negative literal1. In addition,
LHL adds clauses with the signs of up to n literals flipped.
Each clause is then evaluated using weighted pseudo-log-
likelihood (WPLL; Kok and Domingos, 2005). WPLL esti-
mates the log-likelihood as a sum over the conditional log-
likelihood of every ground atom given its Markov blanket
(weighting all first-order predicates equally). Rather than
summing over all atoms, LHL estimates the WPLL by sam-
pling θatoms of them. The WPLL score of a clause is pe-
nalized with a length penalty −πd where d is the number of
atoms in a clause. LHL iterates over the clauses from short-
est to longest. For each clause, LHL compares its WPLL
against those of its sub-clauses (considered separately) that
have already been retained. If the clause scores higher than
all of these, it is retained. Finally, LHL greedily adds the
retained clauses to an MLN.

Learning Using Structural Motifs

We call our algorithm Learning using Structural Motifs
(LSM; Algorithm 1). The crux of LSM is that relational data
frequently contains recurring patterns of densely connected
objects, and by limiting our search to within these patterns,
we can find good rules quickly. We call such patterns struc-
tural motifs.

1In Markov logic, a conjunction of positive literals is equivalent
to a disjunction of negative literals with its weight negated.
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Table 1: LSM

Input: G = (V, E), a ground hypergraph representing a database
Output: MLN , a set of weighted clauses

Motifs ← ∅
For each s∈V

Run Nwalks random walks of length T from s to estimate hT
sv for all v∈V

Create Vs to contain nodes whose hT
sv < θhit

Create Es to contain hyperedges that only connect to Vs

Partition Vs into {A1, . . . Al} where ∀v∈Aj , ∃v′∈Aj :

|hT
sv−hT

sv′ |<θsym

Vs ← ∅
For each Ai∈{A1, . . . Al}

Partition Ai into H ={H1, . . . , Hm} so that symmetrical nodes in Ai

belong to the same Hj ∈H

Add H1, . . . , Hm to Vs

Create Es ={E1, . . . , Ek} where hyperedges in E with the same label,
and that connect to the same sets in Vs belong to the same Ej ∈Es

Let lifted hypergraph L=(Vs, Es)

Create Motif(L) using DFS, add it to Motifs

For each m ∈ Motifs

Let nm be the number of unique true groundings returned by DFS for m

If nm < θmotif , remove m from Motifs

Paths ← FindPaths(Motifs)
MLN ← CreateMLN(Paths)
Return MLN

A structural motif is a set of literals, which defines a
set of clauses that can be created by forming disjunctions
over the negations/non-negations of one or more of the lit-
erals. Thus, it defines a subspace within the space of all
clauses. LSM discovers subspaces where literals are densely
connected, and groups them into a motif. To do so, LSM
views a database as a hypergraph with constants as nodes,
and true ground atoms as hyperedges. Each hyperedge is
labeled with a predicate symbol. LSM groups nodes that
are densely connected by many paths, and the hyperedges
connecting them into a motif. Then it compresses the motif
by clustering nodes into high-level concepts, reducing the
search space of clauses in the motif. Next it quickly esti-
mates whether the motif appears often enough in the data
to be retained. Finally, LSM runs relational pathfinding on
each motif to find candidate rules, and retains the good ones
in an MLN.

Figure 1 provides an example of a graph created from a
university database describing two departments. The bot-
tom motifs are extracted from the top graph. Note that the
motifs have gotten rid of the spurious link between depart-
ments, preventing us from tracing paths straddling depart-
ments that do not translate to good rules. Also note that by
searching only once in each unique motif, we avoid dupli-
cating the search in all its occurrences in the graph. Ob-
serve that both motifs are created from each department’s
subgraph. In the left motif, individual students and books
are clustered into high-level concepts Student and Book be-
cause they are indistinguishable with respect to professor P1
(they have symmetrical paths from P1). In the right motif,
the clustering is done with respect to book B1. LSM’s abil-

Figure 1: Motifs extracted from a ground hypergraph.

ity to create different motifs over a set of objects allows it to
capture various interactions among the objects, and thus to
potentially discover more good rules.

Preliminaries

We define some terms and state a propositionthat are used by
our algorithm. A ground hypergraph G = (V,E) has con-
stants as nodes, and true ground atoms as hyperedges. An
r-hyperedge is a hyperedge labeled with predicate symbol
r. There cannot be two or more r-hyperedges connected to
a set of nodes because they correspond to the same ground
atom. σ(p) refers to the string that is created by replacing
nodes in path p with integers indicating the order in which
the nodes are first visited, and replacing hyperedges with
their predicate symbols. Nodes which are visited simultane-
ously via a hyperedge have their order determined by their
argument positions in the hyperedge. Two paths p and p′
are symmetrical iff σ(p) = σ(p′). Nodes v and v′ are sym-
metrical relative to s, denoted as Syms(v, v′), iff there is a
bijective mapping between the set of all paths from s to v
and the set of all paths from s to v′ such that each pair of
mapped paths are symmetrical. Node sets V ={v1, . . . , vn}
and V ′={v′1, . . . , v′n} are symmetrical iff Syms(vi, v

′
i) for

i = 1, . . . , n. Note that Syms is reflexive, symmetric and
transitive. Note that symmetrical nodes v and v′ have iden-
tical truncated hitting times from s. Also note that symmet-
rical paths pv

s and pv′
s have the same probability of being

sampled respectively from the set of all paths from s to v
and the set of all paths from s to v′. LG,s is the ‘lifted’
hypergraph that is created as follows from a ground hyper-
graph G = (V,E) whose nodes are all reachable from a
node s. Partition V into disjoint subsets V = {V1, . . . , Vk}
such that all nodes with symmetrical paths from s are in the
same Vi. Partition E into disjoint subsets E ={E1, . . . , El}
such that all r-hyperedges that connect nodes from the same
Vi’s are grouped into the same Ej , which is also labeled
r. LG,s = (V, E) intuitively represents a high-level concept
with each Vi, and an interaction between the concepts with
each Ej . Note that LG,s is connected since no hyperedge in
E is removed during its construction. Also note that s is in
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its own Vs ∈ V since no other node has the empty path to it.
Proposition 1 Let v, v′ and s be nodes in a ground
hypergraph whose nodes are all reachable from s, and
Syms(v, v′). If an r-hyperedge connects v to a node set
W , then an r-hyperedge connects v′ to a node set W ′ that is
symmetrical to W .2

We create a structural motif Motif(LG,s) from LG,s =
(V, E) as follows. We run depth-first search (DFS) on LG,s

but treat hyperedges as nodes and vice versa (a straightfor-
ward modification), allowing DFS to visit each hyperedge in
E exactly once. Whenever it visits a hyperedge Ej ∈ E , DFS
selects an ej ∈ Ej that is connected to a ground node vi ∈ V
that is linked to the ei selected in the previous step (ej exists
by Proposition 1). When several ej’s are connected to vi, it
selects the one connected to the smallest number of unique
nodes. The selected ej’s are then variabilized (the same vari-
able is used for the same node across ej’s), and added as
literals to the set Motif(LG,s). Let Conj(m) denote the
conjunction formed by conjoining the (positive) literals in
motif m. Note that the selected ej’s are connected and form
a true grounding of Conj(Motif(LG,s)). The true ground-
ing will be used later to estimate the total number of true
groundings of Conj(Motif(LG,s)) in the data.

Motif Identification

LSM begins by creating a ground hypergraph from a
database. Then it iterates over the nodes. For each node i,
LSM finds nodes that are symmetrical relative to i. To do so,
it has to compare all paths from i to all other nodes, which
is intractable. Thus LSM uses an approximation. It runs
Nwalks random walks of length T from i. In each random
walk, when a node is visited, the node stores the path p to it
as σ(p) (up to a maximum of Maxpaths paths), and records
the number of times σ(p) is seen. After running all random
walks, LSM estimates the truncated hitting time hT

iv from i
to each node v that is visited at least once using Equation 2.
(Nodes not visited have hT

iv =T .) Nodes whose hT
iv’s exceed

a threshold θhit < T are discarded (these are ‘too loosely’
connected to i). The remaining nodes and the hyperedges
that only connect to them constitute a ground hypergraph G.
LSM groups together nodes in G whose hT

iv’s are less than
θsym apart as potential symmetrical nodes.

Within each group, LSM uses greedy agglomerative clus-
tering to cluster symmetrical nodes together. Two nodes are
approximated as symmetrical if their distributions of stored
paths are similar. Since the most frequently appearing paths
are more representative of a distribution, we only use the
top Ntop paths in each node. Path similarity is measured us-
ing Jensen-Shannon divergence (Fugledge & Topsoe, 2004;
a symmetric version of the Kullback-Leibler divergence).
Each node starts in its own cluster. At each step, LSM
merges the pair of clusters whose path distributions are most
similar. When there is more than one node in a cluster, its
path distribution is the average over those of its nodes. The
clustering stops when no pair of clusters have divergence
less than θjs. Once the clusters of symmetrical nodes are

2The proof and DFS pseudocode are given in an online ap-
pendix at http://alchemy.cs.washington.edu/papers/kok10/.

Table 2: Details of datasets.
Const- Predi- True Total

Dataset Types ants cates Atoms Atoms
IMDB 4 316 6 1224 17,793

UW-CSE 9 929 12 2112 260,254
Cora 5 3079 10 42,558 687,422

identified, LSM creates lifted hypergraph LG,s and motif
Motif(LG,s) as described earlier. Then LSM repeats the
process for the next node i + 1.

After iterating over all nodes, LSM will have created a set
of motifs. It then estimates how often a motif m appears in
the data by computing a lower bound nm on the number of
true groundings of Conj(m). It sets nm to the number of
unique true groundings of m that are returned by DFS. If nm

is less than a threshold θmotif , the motif is discarded.

PathFinding and MLN Creation

LSM finds paths in each identified motif in the same manner
as LHL’s FindPath. The paths are limited to a user-specified
maximum length. After that, LSM creates candidate clauses
from each path in a similar way as LHL’s CreateMLN, with a
modification. At the end of CreateMLN, rather than adding
clauses greedily to an empty MLN (which is susceptible
to local optima), LSM adds all clauses to the MLN, finds
their optimal weights, and removes those whose weights are
less than θwt. (We use a zero-mean Gaussian prior on each
weight. In our experiments, we use this modification for
LHL too.)

Experiments
Datasets

Our experiments used three publicly available datasets3

(Table 2) as in Kok & Domingos (2009). The IMDB
dataset (Mihalkova and Mooney 2007) is created
from the IMDB.com database, and describes rela-
tionships among movies, actors and directors (e.g,
WorkedIn(person, movie), etc.). The UW-CSE
dataset (Richardson and Domingos 2006) describes
an academic department with predicates such as
TaughtBy(course, person, quarter), etc. The Cora
dataset is a collection of citations to computer science pa-
pers, created by Andrew McCallum, and later processed by
Singla and Domingos (2006) for the task of deduplicating
the citations, and their title, author, and venue fields.

Systems

We compared LSM to three state-of-the-art systems: LHL,
BUSL and MSL. We implemented LHL, and used the BUSL
and MSL implementations in the Alchemy software pack-
age (Kok et al. 2010).
Bottom-up Structure Learner (BUSL). BUSL (Mihalkova
and Mooney 2007) finds paths of ground atoms in train-
ing data, but restricts itself to very short paths (length 2)
for tractability reasons. It variabilizes each ground atom
in the path, and constructs a Markov network whose nodes
are the paths viewed as Boolean variables (conjunctions of

3Available at http://alchemy.cs.washington.edu.
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atoms). For each node, BUSL finds nodes connected to it by
greedily adding and removing nodes from its Markov blan-
ket using the χ2 measure of dependence. From the maximal
cliques thus created in the Markov network, BUSL creates
clauses. For each clique, it forms disjunctions of the atoms
in the clique’s nodes, and creates clauses with all possible
negation/non-negation combinations of the atoms. BUSL
computes the WPLL of the clauses, and greedily adds them
one at a time to an MLN. This makes BUSL susceptible to
local optima. Thus we modified BUSL to use LSM’s Cre-
ateMLN algorithm to add clauses to the MLN. (Empirically,
the modification allowed more good clauses to be included
in the MLN.)
Markov Logic Structure Learner (MSL). We used the
beam search version of MSL (Kok and Domingos 2005) in
Alchemy. MSL maintains a set of n clauses that give the
best score improvement over the current MLN. MSL creates
all possible clauses of length two, and adds the n highest-
scoring clauses to the set. It then repeatedly adds literals to
the clauses in the set, and evaluates the WPLL of the newly
formed clauses, always maintaining the n highest-scoring
ones in the set. When none can be added to the set, it adds
the best performing clause in the set to the MLN. It then
restarts the search from an empty set. MSL terminates when
it cannot find a clause that improves upon the current MLN’s
WPLL.

We ran each system with two limits on clause length. The
short limit is set to 5 (IMDB, UW-CSE) and 4 (Cora). The
long limit is set to 10. Systems with the short and long limits
are respectively appended with ‘-S’ and ‘-L’. For the short
limit, we allowed LSM, LHL, and BUSL to create more
candidate clauses from a candidate containing only nega-
tive literals by non-negating the literals in all possible ways.
For the long limit, we permitted a maximum of two non-
negations to avoid generating too many candidates. Follow-
ing Kok & Domingos (2009), we disallowed clauses with
variables that only appeared once, since these were unlikely
to be useful. To investigate the contribution of our motif
identification algorithm, we removed it to give the system
LSM-NoMot, which found paths directly on the ground hy-
pergraph created from a database. Altogether, we compared
ten systems.

The LSM parameter values were: Nwalks = 15, 000,
T = 5, θhit = 4.9, θsym = 0.1, θjs = 1, Ntop = 3,
Maxpaths = 100, θmotif = 10, π = 0.1 (IMDB) and 0.01
(UW-CSE, Cora), θatoms = 0.5, θwt = 0.01. The other
systems had their corresponding parameters set to the same
values, and their other parameters set to default values. The
parameters were set in an ad-hoc manner, and per-fold opti-
mization using a validation set could conceivably yield bet-
ter results. All systems ran on identically configured ma-
chines (2.3GHz, 16GB RAM, 4096KB CPU cache) for a
maximum of 28 days.

Methodology

For each dataset, we performed cross-validation using
the five previously defined folds. For IMDB and UW-
CSE, we performed inference over the groundings of

each predicate to compute their probabilities of being
true, using the groundings of all other predicates as evi-
dence. For Cora, we ran inference over each of the four
predicates SameCitation, SameTitle, SameAuthor, and
SameVenue in turn, using the groundings of all other predi-
cates as evidence. We also ran inference over all four pred-
icates together, which is a more challenging task than infer-
ring each individually. We denote this task as “Cora (Four
Predicates)”. To obtain the best possible results for an MLN,
we relearned its clause weights for each query predicate (or
set of query predicates in the case of Cora) before perform-
ing inference. This accounts for the differences in our results
from those reported by Kok & Domingos (2009). We used
Alchemy’s Gibbs sampling for all systems. Each run of the
inference algorithms drew 1 million samples, or ran for a
maximum of 24 hours, whichever came earlier. To evaluate
the performance of the systems, we measured the average
conditional log-likelihood of the test atoms (CLL), and the
area under the precision-recall curve (AUC).

Results

Tables 3 and 4 report AUCs, CLLs and runtimes. The AUC
and CLL results are averages over all atoms in the test sets
and their standard deviations. Runtimes are averages over
the five folds.

We first compare LSM to LHL. The results indicate that
LSM scales better than LHL, and that LSM equals LHL’s
predictive performance on small simple domains, but sur-
passes LHL on large complex ones. LSM-S is marginally
slower than LHL-S on the smallest dataset, but is faster on
the two larger ones. The scalability of LSM becomes clear
when the systems learn long clauses: LSM-L is consistently
100-100,000 times faster than LHL-L on all datasets.4 Note
that LSM-L performs better than LSM-S on AUC and CLL,
substantiating the importance of learning long rules.

We next compare LSM to MSL and BUSL. LSM consis-
tently outperforms MSL on AUC and CLL for both short
and long rules; and draws with BUSL on UW-CSE, but does
better on IMDB and Cora. In terms of runtime, the results
are mixed. Observe that BUSL and MSL have similar run-
times when learning both short and long rules (with the ex-
ception of MSL on UW-CSE). Tracing the steps taken by
BUSL and MSL, we found that the systems took the same
greedy search steps when learning both short and long rules,
thus resulting in the same locally optimal MLNs containing
only short rules. In contrast, LSM-L found longer rules than
LSM-S for all datasets, even though these were only retained
by CreateMLN for Cora.

Comparing LSM to LSM-NoMot, we see the importance
of motifs in making LSM tractable.

Our runtimes are faster than those reported by Kok &
Domingos (2009) because of our modifications to Cre-
ateMLN, and our machines are better configured (4 times
more RAM, 8 times more CPU cache).

4LHL-L on UW-CSE and Cora, and LSM-NoMot-L exceeded
the time bound of 28 days. We estimated their runtimes by extrap-
olating from the number of atoms they had initiated their search
from.
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Table 3: Area under precision-recall curve (AUC) and conditional log-likelihood (CLL) of test atoms.

IMDB UW-CSE Cora Cora (Four Predicates)
System AUC CLL AUC CLL AUC CLL AUC CLL
LSM-S 0.71±0.01 −0.06±0.00 0.22±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.92±0.00 −0.42±0.00
LSM-L 0.71±0.01 −0.06±0.00 0.22±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.97±0.00 −0.23±0.00
LSM-NoMot-S 0.71±0.01 −0.06±0.00 0.23±0.01 −0.03±0.00 0.98±0.00 −0.02±0.00 0.93±0.00 −0.38±0.00
LSM-NoMot-L 0.34±0.01 −0.18±0.00 0.13±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
LHL-S 0.71±0.01 −0.06±0.00 0.21±0.01 −0.03±0.00 0.95±0.00 −0.04±0.00 0.76±0.00 −0.88±0.00
LHL-L 0.71±0.01 −0.06±0.00 0.13±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
BUSL-S 0.48±0.01 −0.11±0.00 0.22±0.01 −0.03±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
BUSL-L 0.48±0.01 −0.11±0.00 0.22±0.01 −0.03±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
MSL-S 0.38±0.01 −0.17±0.00 0.19±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00
MSL-L 0.38±0.01 −0.17±0.00 0.18±0.01 −0.04±0.00 0.57±0.00 −0.29±0.00 0.47±0.00 −0.94±0.00

Table 4: System runtimes. The times for Cora (Four Predi-
cates) are the same as for Cora.

System IMDB (hr) UW-CSE (hr) Cora (hr)
LSM-S 0.21±0.02 1.38±0.3 1.33±0.03
LSM-L 0.31±0.04 4.52±2.35 20.57±7.29
LSM-NoMot-S 1.09±0.22 50.83±18.33 332.82±60.54
LSM-NoMot-L 160,000±12,000 280,000±35,000 5,700,000±105

LHL-S 0.18±0.02 5.29±0.81 1.92±0.02
LHL-L 73.45±11.71 120,000±13,000 230,000±7000
BUSL-S 0.03±0.01 2.77±1.06 1.83±0.04
BUSL-L 0.03±0.01 2.77±1.06 1.83±0.04
MSL-S 0.02±0.01 1.07±0.21 9.96±1.59
MSL-L 0.02±0.01 26.22±26.14 9.81±1.50

Related Work

Huynh and Mooney (2008), and Biba et al. (2008a) proposed
discriminative structure learning algorithms for MLNs.
These algorithms learn clauses that predict a single target
predicate, unlike LSM, which models the full joint distri-
bution of the predicates. Relational association rule mining
systems (e.g., De Raedt & Dehaspe, 1997) differ from LSM
by learning clauses without first learning motifs, and are not
as robust to noise (they do not use statistical models).

Random walks and hitting times have been successfully
applied to a variety of applications, e.g., social network anal-
ysis (Liben-Nowell and Kleinberg 2003), word dependency
estimation (Toutanova, Manning, and Ng 2004), collabora-
tive filtering (Brand 2005), and search engine query expan-
sion (Mei, Zhou, and Church 2008).

Conclusion and Future Work

We presented LSM, the first MLN structure learner that is
able to learn long clauses. LSM tractably learns long clauses
by finding motifs of densely connected objects in data, and
restricting its search for clauses to within the motifs. Our
empirical comparisons with three state-of-the-art systems on
three datasets demonstrate the effectiveness of LSM.

As future work, we want to apply LSM to larger do-
mains; discover motifs at multiple granularities; incorpo-
rate bottom-up (Muggleton and Feng 1990) and hybrid top-
down/bottom-up techniques (Muggleton 1995); etc.
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