
Integrating Opponent Models
with Monte-Carlo Tree Search in Poker

Marc Ponsen1 and Geert Gerritsen1 and Guillaume Chaslot1

1: Department of Knowledge Engineering, Maastricht University, Netherlands

Abstract

In this paper we apply a Monte-Carlo Tree Search implemen-
tation that is boosted with domain knowledge to the game of
poker. More specifically, we integrate an opponent model in
the Monte-Carlo Tree Search algorithm to produce a strong
poker playing program. Opponent models allow the search
algorithm to focus on relevant parts of the game-tree. We use
an opponent modelling approach that starts from a (learned)
prior, i.e., general expectations about opponent behavior, and
then learns a relational regression tree-function that adapts
these priors to specific opponents. Our modelling approach
can generate detailed game features or relations on-the-fly.
Additionally, using a prior we can already make reasonable
predictions even when limited experience is available for a
particular player. We show that Monte-Carlo Tree Search
with integrated opponent models performs well against state-
of- the-art poker programs.

Introduction

Board and card games are interesting research domains for Arti-
ficial Intelligence (AI) researchers. Strategic decision-making of
computer players can easily and rapidly be evaluated in such con-
strained domains. For many games research has lead to expert
computer players that at least match humans in playing skill. An
exception is still the game of poker, offering new research chal-
lenges. The complexity of the game is threefold, namely poker is
(1) an imperfect information game, with (2) stochastic outcomes in
(3) an adversarial multi-agent environment.

Recently, for the smallest of poker variants, namely a two-player
game with fixed betting amounts, strong computer players have
been implemented that are competitive with human experts. Cur-
rent state-of-the-art poker algortihms use a game-tree search to de-
cide which actions to take (e.g., (Billings et al. 2003), (Billings et
al. 2006) and (Zinkevich et al. 2008)). Various game-tree search
algorithms are shown to compute or approximate Nash-equilibria,
and as such produce rational players. Such a player would play
perfectly logical and would be oblivious to opponent mistakes.

In this paper we will design and evaluate a poker playing pro-
gram (i.e., bot) that can both play an approximated rational strategy
and a best-reply strategy given an estimation of opponent mistakes.
We will empirically evaluate both approaches against two differ-
ent opponent bots. The contributions of this paper are twofold:
first, we employ the Monte-Carlo tree search (MCTS) algorithm
in poker. MCTS uses a different selection and update procedure

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as compared to current state-of-the-art game-tree search algorihms
used in poker. MCTS has shown to converge to a Nash equilib-
rium and has achieved succes in the perfect-information game of
Go (Sturtevant 2008) (Scoulom 2006). We will evaluate its effec-
tiveness in the game of poker against challenging opposition.

Our second and main contribution is integrating opponent mod-
els with the MCTS algorithm. Given the enormous complexity of
poker we believe that players, and in particular human players, are
uncapable of playing a perfect rational strategy. This then violates
the assumption made by rational computer players. Playing a best-
reply may yield more profit. We need an opponent model to play
a best-reply, which in poker requires two estimations of opponent
information, namely a prediction of the opponent cards and a pre-
diction of opponent actions. In this paper we consider a relational
Bayesian modelling approach that uses a general prior (for pre-
dicting cards and actions) and learns a relational regression tree to
adapt that prior to individual players. This approach was first in-
troduced in (Ponsen et al. 2008). We evaluate the impact of the
learned models by running experiments with MCTS boosted with
domain knowledge of the opponent.

We will first explain the rules of poker and discuss related work.
Then we will describe the MCTS algorithm and how we integrate
opponent models in it. After having explained how the opponent
models are learned, we finish with experiments and a conclusion.

Poker
Poker is a card game played between at least two players. In a nut-
shell, the objective in poker is to win games (and consequently win
money) by either having the best card combination at the end of the
game, or by being the only active player. The game includes several
betting rounds wherein players are allowed to invest money. Play-
ers can remain active by at least matching the largest investment
made by any of the players. This is known as calling or checking.
Players may also decide to bet or raise a bet, which increases the
stakes. Finally, they can choose to fold (i.e., stop investing money
and forfeit the game). In this paper we focus on the most popular
poker variant, namely Texas Hold’em, and more specifically on the
limit variant (i.e., a fixed amount for betting). This game includes
4 betting rounds (or phases), respectively called the pre-flop, flop,
turn and river phase.

Related Work
MCTS led to excellent results in creating computer game-playing
programs, for instance in the games of Go (Coulom 2006) and
General Game Playing (Finnsson and Björnsson 2008). However,
it has been shown that MCTS can be enhanced considerably by
using domain-dependent knowledge learned by extraneous algo-
rithms. This knowledge can be learned by using various methods,

37

Figure 1: Outline of Monte-Carlo Tree Search.

and integrated in different parts of MCTS. For instance, in (Bouzy
and Chaslot 2006) it was proposed to learn a simulation strategy
by reinforcement, which increased significantly the level of play of
the program. Later, (Coulom 2007) proposed to learn Go knowl-
edge by using algorithms developed for calculating ELO ratings.
The knowledge was used both in the simulation, and in the selec-
tion parts of MCTS. Other improvements resulting from the use of
extraneous knowledge in the selection were achieved in (Gelly and
Silver 2007) (Chaslot et al. 2008). We will also boost MCTS with
knowledge in the form of opponent models in the game of poker.

Poker is a perfect domain for opponent modeling, since the abil-
ity to anticipate an opponent’s move highly influences the outcome
of the game. The Adaptive Imperfect Information game-tree search
algorithm (Billings et al. 2006) has an opponent model integrated
with it. They keep track of statistics for both the outcome of the
game and actions at opponent decision nodes for every possible
betting sequence. The problem with this approach is that it uses
little generalization and hence the frequency counts are limited to
a small number of situations. Another drawback is that it assumes
that both cards and strategies of the opponents are independent.

A more general system for opponent modelling was obtained
by training a neural network. (Davidson et al. 2000) use nineteen
different parameters as input nodes and three output nodes repre-
senting the possible actions. The input parameters include infor-
mation about the players, information about the betting history and
information on the community cards. Using a relational approach
allows us to use the same features while easily incorporating rela-
tional properties of the game.

(Southey et al. 2005) uses prior distributions over the opponent’s
strategy space and computes a posterior using Bayes’ rule and ob-
servations of the opponent’s decisions. It also investigates several
ways to play an appropriate reply to that distribution.

Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a search algorithm based on
Monte-Carlo simulations that was developed in 2006 by (Chaslot
et al. 2006) (Coulom 2006) (Kocsis and Szepesvári 2006). MCTS
was successfully applied in several games, and it is now recognized
as the current paradigm for computer Go (Gelly et al. 2006) and
General Game Playing (Finnsson and Björnsson 2008).

MCTS performs a large number of simulated games in self play,
from the initial position to the end of the game. The underlying
idea of MCTS is to improve progressively the quality of simula-
tions by taking into account the games previously played. More
specifically, MCTS directs its simulations to that part of the game-
tree that is most relevant assuming players take rational decisions.
When few simulated games have been played, then moves are cho-
sen randomly. The result of each game is back-propagated on the
visited path. Progressively, the program concentrates its search on
the best moves, leading to a deeper look-ahead ability. We will now

present this mechanism in more detail.
In MCTS, every node in the game-tree represents a state of the

game. Statistics of nodes which are important for MCTS are:

• the value of the game state. This is the average of the reward of
all simulated games that visited this node.

• the visit count of the game state, i.e., the number of simulations
in which this state was reached.

The starting state is represented by the root node, which is ini-
tially the only node in the tree. MCTS consists of repeating the
following four steps (illustrated in Figure 1), as long as there is
time left. We will now detail these steps and also discuss some
implementation details in poker:

1. Selection: Actions1 encoded as nodes in the tree are chosen
according to the statistics stored in a way that balances between
exploitation and exploration. On the one hand, the task is to
select the game action that leads to the highest expected value
(exploitation). On the other hand, less promising actions still
have to be explored due to the uncertainty of the evaluation
(exploration). We use Upper Confidence Bound applied to
Trees (UCT). In UCT, i ∈ I is the set of nodes (possible
actions) reachable from the current node, p. Using the next
equation, UCT selects the child node k of parent node p which
has the highest expected value. The equation for UCT is:

k ∈ argmaxi∈I(vi + C ×
√

ln np

ni
) (1)

where vi is the expected value of the node i, ni is the visit count
of i, and np is the visit count of p. C is a coefficient that balances
exploration and exploitation. A higher value encourages longer
exploration.

2. Expansion: when a leaf node is selected, one or several nodes
are added to the tree. The tree is then expanded by one node for
each simulated game.

3. Simulation: from the newly expanded node, nodes are selected
according to some simulation policy until the end of the game.
More realistic simulations will have a significant effect on the
computed expected values. Heuristic knowledge can be used to
give larger weights to nodes that look more promising. We em-
ploy roll-out simulations starting from the expanded leaf node.
More specifically, all remaining active players call or check un-
til the end of the game. Then community and private cards are
dealt to determine the winner(s). The rewards that are the re-
sult of the simulation consist of the amount of money a player
loses or wins. The process of simulation is executed twice every
MCTS iteration: once from the perspective of the MCTS player
itself, and once for its opponents. For respectively the first simu-
lation, we use known cards of the MCTS player, whereas for the
second simulation we sample them (i.e., we can’t assume that
opponents know the cards of the MCTS player).

4. Backpropagation: after reaching the end of the simulated game,
we update each tree node that was traversed during that game.
The visit counts are increased and the values are modified ac-
cording to the outcome.

1We define three types of actions in our game-tree for poker,
namely ’fold’, ’call’ or ’bet’. One can imagine that in a no-limit
variant of the game (i.e., variable betting amounts) this would in-
volve a various number of raise amounts to be implemented. How-
ever, since we focus on the limit-variant this is no issue.

38

When available computational time is over, the ’best’ move is
selected. There are multiple selection strategies to do this, includ-
ing a node having the highest expected value or the highest visit
count. We respectively choose the first strategy.

Learning an Opponent Model

MCTS as discussed in the previous Section produces an approx-
imated Nash equilibrium strategy, i.e., the best possible strategy
against itself. It treats opponents as rational players (in the game-
theoretic sense) and is oblivious to opponent mistakes. Given the
immense complexity of Texas Hold’em poker, it may be assumed
that players, and in particular human players, do not play a perfect
rational strategy. When facing a predictable and inferior opponent,
a tailored counter-strategy (best-reply) will earn more profit than a
rational strategy. In order to play a best-reply, we need an accurate
estimation or model of the opponent strategy.

Learning an opponent model can be approached as a pattern
recognition task (Bishop 2007), wherein a model is learned based
on experience (in this case, previous poker games of players). The
model is then used to estimate the behavior of opponents in unseen
situations. In the game of poker this implies having an estimation
of opponent cards and actions. These two sources of information
can easily be used in a game-tree search, as we will explain in the
case of MCTS. An established assumption in the field of pattern
recognition is that more training data leads to more accurate mod-
els. However, for an opponent model in the game of poker to be
practical, we must be able to learn from limited amount of training
data. Typically, in large poker tournaments or online poker games
one faces a wide range of opponents, and it may not be assumed
that many training games have been collected for each individual
player. To overcome this difficulty one could learn opponent mod-
els for player types. Poker-experts often categorize players based
on statistical features (Ponsen et al. 2009). However, in this paper
we focus on learning models for specific players. We choose to
start from a prior opponent model, so we can already make reason-
able predictions even when little data is available.

Before we explain our approach in more detail, we describe our
notations first: consider a player p performing the i-th action ai in a
game. The player can fold, call or bet. For simplicity, we consider
check and call to be in the same class, as well as bet and raise 2.
When deciding on an action, the player will take into account his
private cards cp, and the game state Si−1 until time point i. Si−1 is
the betting history of all players in the game and each card on the
table (i.e., the community cards that apply to all players).

We will use the term example to describe the training data that
can be used to learn a model. An example references a tuple
(i, p, ai, cp, Si−1) of the action ai performed at step i by a player
p, together with the private cards cp of player p in the game, and
the game state information Si−1 up until time point i.

We can collect training examples and then train a classifier that
uses as labels the observed private cards cp or the action ai, and
then search for patterns in relation with the game state Si−1. More
formally, the learning task now is to predict the cards for player p
at time i given the observed state information Si−1:

P (cp|Si−1) (2)

and player p’s action (given a guess about the private cards):

P (ai|Si−1, cp) (3)

2Note that this is an identical action representation as used in
the game-tree for MCTS

Approach

We propose to start the opponent model with a prior distribution
over possible action choices and cards. When no training examples
are available to us, we assume that the opponent plays according
to some prior distribution. Using a prior will allow us to make
accurate predictions from the start as long as the choice of prior
is reasonable. We then adapt that prior to the specific opponent
using a so-called differentiating function as soon as more training
data becomes available. The current approach was first proposed
in (Ponsen et al. 2008) and we will explain it here further.

We propose a two-step learning approach. First, we must settle
on a prior distribution. This can be achieved in many ways. We
can learn functions that predict cards and actions for poker players
in general, for certain player types or for rational players. Second,
we learn a differentiating function that learns to correct the prior
according to the actual observed behavior of a particular player.

Consider the mixture Dp+∗ of two distributions: the distribu-
tion D∗ of arbitrarily drawn examples from our prior distribution
and the distribution Dp of arbitrarily drawn examples from a par-
ticular player p. Then, consider the learning problem of, given a
randomly drawn example x from Dp+∗, predicting whether x orig-
inated from D∗ or from Dp. For a given learning setting, namely
either predicting cards or actions, it is easy to generate examples
from D∗ and Dp, labeling them with ∗ or p, and learning the func-
tion P (Dp|x), giving for each example x the probability the ex-
ample is labeled with p. From this learned ’differentiating’ model,
we can compute the probability P (x|Dp), for every example x by
using Bayes’ rule:

P (x|Dp) = P (Dp|x) · P (x)/P (Dp) (4)
Since we have chosen to generate as many examples for D∗ as

for Dp in the mixture,

P (Dp) = P (D∗) = 1/2 (5)
P (x) = P (D∗)P (x|D∗) + P (Dp)P (x|Dp) (6)

and substituting (5) and (6) into (4) gives:

P (x|Dp) =
(
P (Dp|x) ·

(
1

2
P (x|Dp) +

1

2
P (x|D∗)

))
/
1

2

= P (Dp|x)P (x|Dp) + P (Dp|x)P (x|D∗).

From this, we get:

P (x|Dp) =
P (x|D∗) · P (Dp|x)

1 − P (Dp|x)
(7)

Here P (x|D∗) is the prior probability of x and P (Dp|x) is the
learned differentiating function. P (x|Dp) is the posterior probabil-
ity that describes the probability that example x belongs to player
p, and can be used to query action and card probabilities. Sup-
pose we are interested in the probability distribution over actions
for our opponent given a certain game state. We have a number of
examples equal to the number of actions, for which only ai differs.
We plug the examples in our learned differentiating function and
known prior to respectively compute P (Dp|x) and P (x|D∗). We
can then compute the posterior probability, e.g., the probability that
an opponent performs an action given the current game state.

The key motivations for such an approach are that learning
the difference between two distributions is an elegant way to
learn a multi-class classifier (e.g. predicting distributions over
(52*51/2) possible card combinations) by generalizing over many
one-against-all learning tasks, and second that even with only a few
training examples from a particular player already accurate predic-
tions are possible (assuming the prior is reasonable).

39

Relational Decision Trees

A lot of study has already been done to derive important features
for the game of poker, mostly by domain experts (e.g.,(Slansky
1987) (Harrington 2004)). Some examples of important features
are a numerical ranking of a player’s private cards, a player’s po-
sition on the table or some simple to compute features about the
game such as pot odds. In existing opponent modelling techniques,
as for example in (Davidson et al. 2000), a manual selection of
such propositional features are used for learning the models. We
instead use a relational decision tree learner that can automatically
discover important relations in a game, and as such can generate re-
lational features on-the-fly. More specifically, we will employ the
relational probability tree algorithm TILDE (Blockeel and De Raedt
1998) to learn the differentiating function P (Dp|x).

Given a set of examples, the algorithm incrementally builds up
a tree (using top down induction). The set of examples contains all
observed examples for player p, labeled with player. This effic-
tively reflects the player distribution Dp. We then draw an equal
amount of examples from the prior distribution D∗, and label them
as prior. For example, when learning an opponent model that pre-
dicts actions, we duplicate all examples labeled with player. We
then replace the current action ai entry in the example with one
that we randomly draw from the prior distribution.

TILDE then starts with an empty tree with one leaf, which
contains all stored examples. Then, when the algorithm
reaches a leaf node, candidate tests (or a conjunction of sev-
eral) defined in the so-called language bias are evaluated. In
poker, each relational test describes a small part of the game
state, e.g., game number bets(Example, Bets). We can
also use relational tests to generalize over private cards, e.g.,
sum hole cards(Example, Sum). The tree may be expanded
by candidate tests that reduce variance among the two distributions
sufficiently. The best among these candidate tests is then selected
to expand the tree, and the examples are then sorted out among all
terminal nodes. Internal nodes contain a test which is a conjunction
of first order literals. These tests should be read as the existentially
quantified conjunction of all literals in the path from the root of
the tree to that node. In the left subtree of a node, the test of the
node is added to the conjunction, for the right subtree, the negation
of the test should be added. Such a relational decision tree can be
easily translated into a Prolog decision list. Figure 2 gives an ex-
ample of tree learned by TILDE. Note that this tree represents the
differentiating function P (Dp|x).

Integrating an Opponent Model with

Monte-Carlo Tree Search

In this Section, we will discuss the way in which MCTS is influ-
enced by the opponent model. As mentioned in the previous Sec-
tion, the opponent model predicts two sources of information: op-
ponent’s private cards and future actions. The prediction of cards
for players is used to determine the reward for each player at the
end of each MCTS iteration. The prediction of actions is used for
the selection process during the iterations.

First, we look at how card predictions are integrated with MCTS.
Normally, using only MCTS, the opponent’s cards would be sam-
pled randomly and one would be dependent on the numerous iter-
ations of MCTS to give a good uniform card distribution. How-
ever, using the opponent model, card sampling can be done much
more accurately. For instance, the opponent model may state that
the likelihood of higher ranked cards is much greater after having
observed a bet for this opponent. Attaching a higher probability
to these cards leads to more MCTS iterations executed with them.
This improves the expected value as computed by MCTS.

Figure 2: An example of a relational decision tree encoding the
differentiating function for predicting cards. Internal nodes include
relational tests that partition the state space. Terminal nodes con-
tain zero or more examples of the two distributions, effectively de-
noting a probability distribution over both distributions.

At the start of MCTS in some game state wherein the MCTS
player must act, we first compute a probability distribution of the
opponent’s private cards given that game state (according to Equa-
tion 2). This is done only once for a set of MCTS iterations starting
in a specific game state. Then for each single MCTS iteration we
draw the private cards for the opponent according to the computed
distribution. The sampled opponent hand will be used throughout
the current MCTS iteration. In a next iteration, new opponent cards
will be sampled.

Second, action probabilities are queried (according to Equation
3) from the opponent model whenever the opponent has to take an
action in the game-tree. These probabilities are used for selecting
actions in opponent nodes. For non-opponent nodes (i.e., nodes be-
longing to the MCTS player itself), standard UCT selection is done
(see Equation 1). Note that action probabilities are dependent on
the game state as well as the sampled cards in the current iteration.
There are no changes in expansion, simulation nor backpropaga-
tion. The pseudo-code of MCTS with integrated opponent model
is given in Algorithm 1.

Experiments and Results
We compare the results for our bot using standard MCTS and
MCTS integrated with opponent models in a one-on-one game
against two different bots. Our MCTS bot is implemented in Java
and evaluated in the Poker Academy Pro (PAP) software tool. The
first opponent bot is a simple rule-based poker bot (ACE1). ACE1
uses a very straightforward policy, wherein actions are based on
either a numerical ranking of the cards (preflop), or the the sum
of the two private cards (all other remaining phases). During later
phases the sum must be higher in order to execute aggressive ac-
tions (i.e., bet or raise). For example, during the flop ACE1 bets
when the sum of the two private cards is higher than 15, whereas
for the river the sum must be higher than 21 to bet.

Our second opponent is Poki, or more concretely the bot named
’Anders’ (an instance of Poki) which is provided with PAP. The
results from experiments conducted with Poki showed that it is a
fairly tough opponent: it yielded a result between +0.10sb/h and
+0.20sb/h against novice human poker players. The term sb/h is
the income rate, and describes the small bets won per hand which
is used (also in our experiments) to reflect the program’s playing
skill. In games with stronger human opposition Poki’s play re-

40

Data: game state Si−1

Data: root node
Data: card probabilities P (cp|Si−1)∀cp

Result: best move
while (has time) do

current node ← root node
Sample cp from card probabilities
while (current node ∈ T) do

last node ← current node
if current node �= opponent node then

P ← UCT Prob ∀ai

else
P ← P (ai|Si−1, cp) ∀ai

current node ← Select(current node, P)
end
last node = Expand(last node)
R ← Play simulated game(last node)
while (current node ∈ T) do

current node ← current node.parent
Backpropagation(current node, R)

end

end
return best move = argmaxN∈Nc(root node)

Algorithm 1: Monte-Carlo Tree Search overview with inte-
grated Opponent Model

sulted between a +0.07sb/h and +0.10sb/h. For a more detailed
explanation of Poki and its experiments, see (Billings 2006). We
will first describe the process of learning the opponent models for
the opponent bots, and then discuss the parameters used for MCTS.
Then we will present our results, and finish with a discussion.

Learning the Opponent Model

We collected 5000 games for each opponent bot that were used as
training data for learning the models. We learned one decision tree
(i.e., opponent model) per phase. We chose a uniform distribution
as prior. Clearly, this is not an accurate model to start with, but we
ensured that we already have a large amount of games to adapt the
prior. The language bias used by TILDE (i.e., all possible tests for
learning the decision tree) includes tests to describe the game state
Si−1. More specifically, we have tests that check for the phase,
for the number of bets in a game or phase, for previously executed
actions by players, pot odds (ratio between amount for calling and
pot size) and pot ratio (ratio between amount invested and pot size).
We also have tests that generalize over cards, namely checking for
the numerical ranking of a hand, the sum of the rank of the two
private cards, and checking whether the cards are of the same suit
or form a pair. Please note that this is only a small subset of all
possible tests. More elaborate tests can easily be added.

A small part of the model learned for the river phase and bot
ACE1 is illustrated in Figure 2. Let us examine this tree. Given
an example E that includes instantiated values for the modelled
player, its private cards and the game state, the most-left terminal
node satifies the following Prolog decision list:

SUM HOLE CARDS(E,F),F>11,
ACTION IN GAME(E,P,G,CALL),
ACTION IN GAME(G,P,H,BET),
SUM HOLE CARDS(E,I),I>15,

SUM HOLE CARDS(E,J),J>19, !.
This now states the case that the player holds cards with a sum

higher than 19 and at some point in the game called (at time de-
noted with the variable G that references an earlier game state),

and prior to that betted (at a game state H that occurred before
game state G). If this is the case, it is more likely that we are deal-
ing with the modelled player ACE1 (73%), than with (in this case)
a uniform prior (27%). This nicely confirms the static policy used
by ACE1, namely after having observed a bet it is more likely that
this player is holding high ranked cards. As we can see, compli-
cated and detailed relational tests are learned on-the-fly using only
the few simple tests stored in the language bias.

Experimental Setup

In our experiments, a number of parameters are used for MCTS.
First, the number of iterations. MCTS is a technique of which
the accuracy improves with more iterations. Unfortunately, this
parameter is the most limiting factor in terms of time. In partic-
ular querying the opponent model (which is written in Prolog) is
very time demanding because it demands a Java-Prolog interface.
Therefore we ran MCTS for a max of 1000 iterations at each deci-
sion. This is relatively low compared to the research with MCTS
applied in Go (Chaslot et al. 2008) where 20000 MCTS iterations
were allowed per move.

Second, the UCT coefficient C which influences the balance be-
tween exploration and exploitation during the process of selection.
We found in preliminary experiments that a value of 2 for C results
in a good amount of exploration before exploitation takes over.

Results

Results obtained for MCTS with and without integrated model are
displayed in Table 1. Before we discuss the results, we will first ex-
plain the entries of our result table. The column SF stands for ’seen
flops’, this shows the percentage of games a bot participated in a
game (i.e., did not fold preflop). The columns P-AGR and AGR re-
spectively represent the aggression preflop and postflop (all phases
after the preflop). Aggression is computed as (%bets/%calls),
and tells us something on how defensive or offensive someone is
playing. As mentioned before, the sb/h entry is the income rate
which we use to measure the playing skill of the bot.

sf p-agr agr sb/h games
ACE1 0.64 0.5 4.7 1.09 10010
ACE1-M 0.47 7311 8.3 1.67 10010
POKI 0.945 0.7 1.9 -0.50 10304
POKI-M 0.916 0.2 0.8 0.06 10310

Table 1: Results of experiments against two bots using MCTS and
MCTS integrated with an opponent model (rows with added ’-M’)

We can see that both runs against ACE1 are won with large
amounts, which comes as no surprise since this bot is very weak.
MCTS with opponent model wins on average 0.58sb/h more than
without model. Striking is the much higher aggression using an op-
ponent model compared to standard MCTS. Since ACE1 is likely
to fold at some point in the game (namely, it will only remain ac-
tive until the end of the game when the sum of the private cards
is larger than 19, which only occurs very rarely), MCTS with inte-
grated model decides to bet constantly, in particular in early phases.

The results against the more challenging opponent, Poki, indi-
cate that standard MCTS loses quite severely, namely −0.5sb/h.
This result suggests that the chosen parameter values for MCTS
(i.e., number of iterations and UCT-constant) are not optimal, and
thus the resulting strategy is clearly inferior compared to strong
poker-playing programs. An almost identical performance im-
provement is observed as before when using models against POKI,
an improvement of 0.56sb/h. Despite the low number of iterations
per decision, MCTS with model actually wins by a small margin.

41

Conclusions

We presented the Monte-Carlo tree search (MCTS) algorithm in
poker. We integrated opponent models with the algorithm. Our
Bayes-relational opponent modelling system predicts both actions
and cards in Texas Hold’em poker. Both these sources of opponent
information are crucial for simulation and game-tree search algo-
rithms, such as MCTS. The Bayes-relational opponent modeling
approach starts from prior expectations about opponent behavior
and learns a relational regression tree-function that adapts these
priors to specific opponents. Experiments show that our opponent
modeling system can learn detailed, relational features on-the-fly.
Furthermore, by using a prior we can make reasonable predictions
when only few training data are available.

We ran experiments with MCTS, both with and without oppo-
nent models against two opponent poker bots. Among them is the
challenging limit player, Poki (Billings 2006). We conclude that
MCTS alone can be a valuable search technique to be used in poker
bots. It can easily defeat a simple rule-based opponent. However,
against Poki standard MCTS does not perform well. The reasons
for this can be the low number of iterations, or wrong choice of
parameters. Secondly, we conclude that the Bayesian opponent
model proposed by (Ponsen et al. 2008) improves the playing style
which results from MCTS by adapting to a specific opponent. Al-
though the number of games are too few to make any definite state-
ments on the relative skill of the MCTS player compared to the op-
position, we do see a large improvement when using an opponent
model. Using the opponent model, MCTS actually wins against
Poki by a small margin, which is remarkable given the low number
of MCTS iterations at each decision. The learned opponent models
effectively guide MCTS to relevant parts of the game-tree, and as
such lowers the computational demand of the technique. Increas-
ing the number of iterations, and providing more elaborate tests for
learning the opponent model will almost certainly improve perfor-
mance further. Also computing confidence intervals or calibration
corrections on the estimated probabilities is interesting future work.

Acknowledgements

We thank Karl Tuyls, Jan Ramon, Tom Croonenborghs and Kurt
Driessens for collaborating with us on the topic of learning the op-
ponent model.

References

Billings, D.; Burch, N.; Davidson, A.; Holte, R. C.; Schaeffer, J.;
Schauenberg, T.; and Szafron, D. 2003. Approximating game-
theoretic optimal strategies for full-scale poker. In Proceedings of
the Eighteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-03), 661–668. Morgan Kaufmann.
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.; Bowling,
M.; Holte, R. C.; Schaeffer, J.; and Szafron, D. 2006. Game-
tree search with adaptation in stochastic imperfect-information
games. In The 4th Computers and Games International Confer-
ence. Ramat-Gan, Israel: Springer.
Billings, D. 2006. Algorithms and Assessment in Computer Poker.
Ph.D. dissertation. University of Alberta.
Bishop, C. M. 2007. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 1 edition.
Blockeel, H., and De Raedt, L. 1998. Top-down induction of first
order logical decision trees. Artificial Intelligence 101(1-2):285–
297.
Bouzy, B., and Chaslot, G. 2006. Monte-Carlo Go Reinforcement
Learning Experiments. In IEEE 2006 Symposium on Computa-
tional Intelligence in Games, Reno, USA, 187–194.

Chaslot, G. M. J.-B.; Saito, J.-T.; Bouzy, B.; Uiterwijk, J.; and
van den Herik, H. 2006. Monte-Carlo Strategies for Computer
Go. In Proceedings of the 18th BeNeLux Conference on Artificial
Intelligence.
Chaslot, G.-B.; Winands, M.; Uiterwijk, J.; van den Herik, H.;
and Bouzy, B. 2008. Progressive strategies for Monte-Carlo Tree
Search. New Mathematics and Natural Computation 4(3):343–357.
Coulom, R. 2006. Efficient selectivity and backup operators in
monte-carlo tree search. In Proceedings of the 5th International
Conference on Computer and Games. Springer-Verlag, Heidelberg,
Germany.
Coulom, R. 2007. Computing “elo ratings” of move patterns in the
game of Go. ICGA Journal 30(4):199–208.
Davidson, A.; Billings, D.; Schaeffer, J.; and Szafron, D. 2000. Im-
proved opponent modeling in poker. In Proceedings of The 2000
International Conference on Artificial Intelligence (ICAI’2000),
1467–1473.
Finnsson, H., and Björnsson, Y. 2008. Simulation-based approach
to general game playing. In Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008. AAAI Press.
Gelly, S., and Silver, D. 2007. Combining online and offline knowl-
edge in uct. In ICML ’07: Proceedings of the 24th international
conference on Machine learning, 273–280. New York, NY, USA:
ACM Press.
Gelly, S.; Wang, Y.; Munos, R.; and Teytaud, O. 2006. Modifi-
cations of uct with patterns in monte-carlo go. Technical Report
6062, INRIA.
Harrington, D. 2004. Harrington on Hold’em Expert Strategy for
No Limit Tournaments. Two Plus Two Publisher.
Kocsis, L., and Szepesvári, C. 2006. Bandit Based Monte-Carlo
Planning. In Machine Learning: ECML 2006, volume 4212 of
Lecture Notes in Artificial Intelligence, 282–293.
Ponsen, M.; Ramon, J.; Croonenborghs, T.; Driessens, K.; and
Tuyls, K. 2008. Bayes-relational learning of opponent models
from incomplete information in no-limit poker. In Proceedings
of the Twenty-third National Conference on Artificial Intelligence
(AAAI-08), 1485–1487. Menlo Park, CA, United States: AAAI
Press.
Ponsen, M.; Tuyls, K.; ; Kaisers, M.; and Ramon, J. 2009. An
evolutionary game-theoretic analysis of poker strategies. In Enter-
tainment Computing. Elsevier.
Slansky, D. 1987. The Theory of Poker. Two Plus Two Publisher.
Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch, N.;
Billings, D.; and Rayner, D. C. 2005. Bayes’ bluff: Opponent
modelling in poker. In Proceedings of the 21st Conference in Un-
certainty in Artificial Intelligence (UAI ’05), 550–558.
Sturtevant, N. 2008. An Analysis of UCT in Multi-player Games.
ICGA Journal 31(4):195–208.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione, C. 2008.
Regret minimization in games with incomplete information. In Ad-
vances in Neural Information Processing Systems 20 (NIPS).

42

