
Decentralised Metacognition in Context-Aware
Autonomic Systems: Some Key Challenges

Catriona M. Kennedy
MIT Computer Science and AI Lab,

Cambridge MA 02139
cmk@csail.mit.edu

Abstract

A distributed non-hierarchical metacognitive architec-
ture is one in which all meta-level reasoning compo-
nents are subject to meta-level monitoring and manage-
ment by other components. Such metacognitive distri-
bution can support the robustness of distributed IT sys-
tems in which humans and artificial agents are partic-
ipants. However, robust metacognition also needs to
be context-aware and use diversity in its reasoning and
analysis methods. Both these requirements mean that an
agent evaluates its reasoning within a “bigger picture”
and that it can monitor this global picture from multi-
ple perspectives. In particular, social context-awareness
involves understanding the goals and concerns of users
and organisations.
In this paper, we first present a conceptual architecture
for distributed metacognition with context-awareness
and diversity. We then consider the challenges of apply-
ing this architecture to autonomic management systems
in scenarios where agents must collectively diagnose
and respond to errors and intrusions. Such autonomic
systems need rich semantic knowledge and diverse data
sources in order to provide the necessary context for
their metacognitive evaluations and decisions.

1 Introduction
Real world distributed IT systems may be regarded as a com-
position of artificial and human agents (socio-technical sys-
tems). Autonomic management (Sterritt et al. 2005) of such
systems will become increasingly necessary, since frequent
manual configuration and fault-diagnosis is error-prone and
not feasible in the longer term.

Robust autonomic management requires the managing
agents to monitor and manage all aspects of the system, in-
cluding their own reasoning and control decisions. The abil-
ity of an agent to reason about its reasoning is called “metar-
easoning” (Cox and Raja 2007) or more generally metacog-
nition. The agents may also support human metacognition
by alerting them to errors or misunderstandings while they
use the system. This is particularly required in safety-critical
applications (such as for example disaster management) but
is also important in other areas such as collaborative re-
search or learning.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We identify the following three requirements for robust-
ness in socio-technical systems:

1. Distribution and decentralisation of all aspects including
the metacognition. This means that all kinds of reasoning
should be subject to questioning and criticism (provided
that coordination mechanisms are used).

2. Diversity of methods: different and independent ways to
think about things and to do things (Minsky 2006).

3. Social context-awareness: understanding goals and con-
cerns of users and organisations, social norms etc;

In earlier work (Kennedy 2008) we argued for decentralised
metacognition to resist subversion of meta-level reasoning
by hostile code. A decentralised architecture is one in which
all meta-level reasoning components are subject to meta-
level monitoring and management by other components (the
first requirement for robustness above). In this paper we ex-
tend this work to address the need for diversity and for so-
cial context-awareness. Both these requirements relate to
the need for a metacognitive agent to evaluate its reasoning
within a “bigger picture” and to see this larger picture from
multiple perspectives (using different conceptualisations and
analysis methods).

The paper is structured as follows: the first part presents
a conceptual architecture for metacognition with general
(non-social) context-awareness and diversity in a simple
robotics domain. The second part considers its application to
a socio-technical domain in which autonomic management
agents are aware of user concerns and goals. Finally we dis-
cuss some key challenges and propose ways to address them.

2 Role of Context in Metacognition

Figure 1 shows a schematic diagram of metacognition which
emphasises the role of context and the need for different
kinds of meta-level control. Figure 1 (a) shows an agent
as a two-layer structure containing an object-level O1 and
a meta-level M1 respectively. The sensors and actuators
(ground level) are not shown for simplicity.

The monitoring function (labelled m) of M1 requires a
reasoning trace T1 of O1. A trace can include information
on active goals, assumptions made, conclusions drawn and
knowledge sources used (among other things) by a reason-
ing process (Morgan 2009). The meta-level component M1

34



(which we call an M-box) is a software component which
analyses the trace to check if the object-level O1 (O-box)
satisfies its requirements (such as making progress towards a
goal). M1 also attempts to debug any problems. The control
arrow (c) modifies O1 if the M-box has identified a bug that
can be corrected. An M-box can contain various anomaly-

Figure 1: Meta-level monitoring and control: (a) simple con-
trol loop; (b) Agent activates other object-level methods to
compare with O1

detection and performance evaluation tests. Examples in-
clude case-based reasoning (Singh 2005) to test for known
faults.

In many realistic scenarios, an agent must evaluate its rea-
soning with regard to the current situation in the environ-
ment, and particularly whether its reasoning or knowledge
is appropriate when a new situation arises. Since it would
be illogical to trust the same object-level method that it is
debugging, it needs to have alternative object-level methods
available which it uses to gather evidence about the context.

For example, if a robot is expecting an office at the end
of a corridor, and finds a cupboard instead, it may think it
has encountered a very small office (since it knows nothing
about cupboards). When its meta-level analyses the reason-
ing trace, it can consider two possibilities: (a) the object-
level has made an error (such as in navigation or in feature
recognition) and it is not really at the end of the corridor it
thinks it is in or (b) the object-level knowledge of the build-
ing is incomplete, which led to a wrong expectation about
this particular corridor. To rule out (a), it can explore the area
using alternative object-level methods (for route planning,
sensing and perception). If they all give the same anoma-
lous result, the robot may conclude instead that its knowl-
edge is incomplete and plan to learn a more accurate map of
the building.

2.1 Role of Diversity

Figure 1(b) shows the use of additional object-level meth-
ods to collect independent evidence about the environment.
These methods are trusted by the agent at that point (ar-
rows labeled “u”) and may also be used to probe whether
an anomalous result was only reported by O1 or whether the

other methods produce similar results. Therefore M1’s us-
age of O2 and O3 help it to monitor and debug O1. The
activation and suppression of different methods may happen
dynamically as in the critic-selector architecture of (Minsky
2006). Similarly the level of detail of M1’s monitoring may
be varied dynamically in response to problems.

Two different kinds of control are illustrated here. One
kind of control acts on the object-component it is debugging,
for example to modify or suppress it as a result of fault diag-
nosis. Another kind of control activates alternative object-
level methods.

2.2 Distributed metacognition

A meta-component (M-box) may contain errors or its mon-
itoring may be unnecessary and cause inefficiency. In dis-
tributed metacognition, several M-boxes participate in the
monitoring and control of the system so that all M-boxes are
monitored.

In previous work (Kennedy and Sloman 2003) we im-
plemented distributed metacognition for a simulated au-
tonomous vehicle using the SimAgent toolkit (Sloman and
Poli 1995). This implementation detects anomalies as devi-
ations from learned models of normal rule firing. In addition
to dangers in the virtual world, hostile agents can attack the
O- or M-boxes controlling the vehicle, including those de-
tecting and repairing errors. Self-repair is implemented as
automated patching of corrupted rule-systems. Repair deci-
sions are made by majority voting among replicated com-
ponents, on the assumption that these are not all attacked
simultaneously.

Introducing diversity Replication has the disadvantage
that a vulnerability or design error may also be replicated
(or exploited repeatedly). To overcome this problem, we
propose to introduce diversity by using different meta-level
methods or “perspectives”. An example configuration show-

Figure 2: A snapshot of distributed metacognition

ing perspectives is shown in Figure 2. The dashed arrows in-
dicate that reasoning events are recorded in a trace. For the
ith O-box, Ti is the trace of Oi and similarly for the M-boxes
Tmi is the trace of Mi. The fuzzy dotted arrows (pointing

35



towards M1) show the perspective of M1, while the black
filled arrows show the perspective of M2.

Figure 2 shows a configuration in which metacognition is
distributed in two ways:

1. M-boxes monitor and evaluate O-boxes in different ways.
E.g. one monitors traces of reasoning processes (such
as matching rules), another monitors changes in mem-
ory contents. Different methods and criteria of evaluation
may also be used. These represent the different perspec-
tives.

2. M-boxes also monitor each other. In some cases they may
also activate or suppress each other, provided such meta-
level control actions are coordinated (for example, if there
is sufficient agreement among M-boxes before taking an
action).

The advantage of using the second kind of distribution in
addition to the first is that it makes it possible to debug an
M-box and explain the cause of the error in situations where
the M-box is at fault, thus enabling self-explanation (Cox
2007) in those situations.

Context-aware debugging of meta-level reasoning In
the same way as for the debugging of an O-box, an M-box’s
reasoning needs to be analysed within a context. In addi-
tion to events in the world, the meta-level context includes
the current reasoning processes that are active at the time.
For example, M2 may need to know how M1 is reasoning
when certain object-level reasoning events happen (such as
forgetting something or when making a decision).

In a purely hierarchical system with two layers of M-
boxes, we would normally expect M2 to have a separate
role from M1. M2’s role may be called the “meta-meta”-
role in contrast to the “meta-object”-role of M1. Therefore
the upper layer (M2) would need to trust alternative meta-
level methods at the lower layer (playing the “meta-object”
role) to deliver the “current state” of the agent’s object-level
reasoning. However, a hierarchical system involves a prolif-
eration of components which cannot all be monitored, thus
making the system fragile. Therefore we propose a non-
hierarchical architecture.

Reusablity of meta-level reasoning methods A require-
ment for such a non-hierarchical closed architecture is that
the same component must be able to play both the roles of
“meta-meta” and “meta-object” (MM and MO respectively).
Therefore M2 can directly analyse the trace of O1 (without
intermediaries) provided that its method of analysing M1’s
trace will also suffice for O1. In this way, M2 is providing
an alternative view of O1, which may be different from that
of M1.

For this requirement to be met, an object-level trace
should not require fundamentally different processing from
a meta-level trace (although differences in detail can exist).
For example, M2 may detect that a particular goal has been
forgotten in either O1 or M1. The concepts of reusablil-
ity and polymorphism in software engineering are important
here.

2.3 Social metacognition

In traditional multi-agent systems as in human societies,
components are independent agents with no direct access to
each other’s reasoning traces, but may instead infer reason-
ing traces by observing spoken communication or by access-
ing a shared log showing the history of a debate or a series
of decisions.

Similarly, agents cannot activate or suppress each other
directly but must use accepted social rules and forms of com-
munication. The agents must agree to cooperate to solve a
given problem. Although they may disagree about specific
subgoals, they have a common goal to solve the disagree-
ments.

Figure 2 can be translated into a social (multi-agent) sys-
tem if the connections are changed as follows:

• M1 and M2 become M-Boxes for separate agents, with
separate O-Boxes. For example M1 together with O1, O2

and O3 become an agent A1 while M2 and O4 become
A2.

• Diverse object-level methods (O-Boxes): in addition to
activating its own alternative O-Boxes directly, an agent
may ask for another agent’s opinion on its external be-
haviour or about the state of the environment. Particu-
larly, critical evaluation from the viewpoint of the other
agent is important.

• Diverse meta-level methods (M-Boxes): it may be fea-
sible for agents to ask each others’ opinions on the cor-
rectness of their reasoning, assuming that their reasoning
traces can be made available for inspection.

• Distributed control: Instead of M-Boxes activating or sup-
pressing each other, agents are willing to be corrected by
other agents.

A social metacognitive architecture may involve individual
agents with distributed metacognition which are in turn em-
bedded within a cooperative multi-agent system.

Humans as participating agents Humans may be “com-
ponents” in such a distributed metacognitive system. If we
assume a computational model of human cognition (and
metacognition), a human (or group of humans) may be the
“agent” whose reasoning is being critically evaluated by an-
other agent (itself software or human) without fundamen-
tally changing the architecture. The converse of this is tra-
ditional debugging where humans monitor agent reasoning.
We can list the different forms of social metacognition as
follows:

1. A-A: artificial multi-agent metacognition or “social”
metacognition within one agent.

2. A-H: an agent analyses a human reasoning trace.

3. H-A: traditional debugging.

4. H-H: human social metacognition (also includes psychol-
ogy and social sciences).

Figure 2 may be translated into a multi-agent (A-A) scenario
or a human-agent (A-H) scenario. If some form of human
reasoning trace is available, many of the same debugging

36



strategies may be applicable to both A-A and A-H. For ex-
ample, a human may fail to use relevant knowledge in the
same way as an artificial reasoning process. Such “debug-
ging” would typically be an assistive process to help human
metacognition. Intelligent tutoring systems (Bull and Kay
2008) can do this by showing users the system-generated
model of the user’s learning history.

3 Autonomic and Self-Adaptive Systems

We will now consider whether the above concepts of social
metacognition can be applied in an autonomic computing
scenario. The objective of autonomic computing or “self-
management” is to automate many aspects of system ad-
ministration, such as reconfiguration, fault-diagnosis, pro-
tection from security violations and optimisation (Sterritt
et al. 2005). Similarly self-adaptive software (Salehie and
Tahvildari 2009; Robertson and Williams 2006) should have
the capability to adapt itself to ongoing changes with less ne-
cessity for system administrators and programmers to make
manual updates.

3.1 Autonomic Control Loop

An autonomic agent has been defined as a control loop
known as MAPE-K (Monitor Analyse Plan Execute +
Knowledge) by (Sterritt et al. 2005). We divide this loop
into two components:

1. Monitoring and analysis: e.g. anomaly-detection,
performance-evaluation, fault diagnosis;

2. Planning and execution: e.g. resource-allocation, config-
uration and coordination; planning and action is done in
response to specified goals and policy but may also be
corrective as a result of problems that were detected by
monitoring.

Both are mutually interdependent. Monitoring depends on
resource-allocation, since it needs sensor coverage as well
as processing power for timely analysis of sensor data and
planning of corrective action. Conversely, the effective-
ness of control (including resource management) depends
on monitoring of its performance and timely detection of
problems.

The following are examples of managed systems:
• systems for accessing data (e.g. database servers, seman-

tic web portals).
• software tools and middleware that need to be adapted;
• networks
• data-center and “cloud” resources.
We include self-adaptive software within our definition of
autonomic systems, since they are an important subclass
of “self*” systems (self-configuration, self-protection etc).
An autonomic system with self-adaptive software would
not only monitor and reconfigure the managed system but
also its own software. Instead of policies which would
be used to manage devices and computing resources, self-
adaptive software would normally have a representation of
the software requirements at run-time. Its self-monitoring
and analysis would involve “self-debugging”, which may

be regarded as a generalisation of self-healing and self-
protection, if we define a “bug” as an error or deliberately
caused fault (such as an intrusion).

Importance of ontologies and models Autonomic man-
agement agents require a language and ontology for spec-
ifying models of the managed system and its desired be-
haviour. This is necessary in order to reason about pos-
sible future states of the managed system and to predict
faults. Ontologies are also needed to define objects and the
possible actions on them so that re-configurations may be
planned. Recent work on ontologies includes the descrip-
tion and modelling of networked devices (Serrano, Serrat,
and Strassner 2007) and the FOCALE adaptive autonomic
architecture (Strassner, Agoulmine, and Lehtihet 2006).

3.2 Metacognition in Autonomic Systems

A meta-level for an autonomic agent would effectively be
a second MAPE-K loop which monitors and controls the
object-level MAPE-K loop. It may reason about any of the
following:

1. Monitoring and analysis methods: e.g. meta-level deter-
mines what data should be collected about the managed
infrastructure and social environment and how often.

2. Planning and execution: e.g. meta-level monitors and
controls the planning and execution of reconfigurations,
or responses to intrusions.

3. Current knowledge and goals: e.g. meta-level critically
evaluates and adapts the models and policies currently be-
ing applied by the agent.

3.3 Context Aware Autonomic Management

Diagnosis of a problem needs context-awareness. Effec-
tively we need an autonomic system to understand and adapt
to its environment in a similar way to a robot (although the
environment here is very different). We define an autonomic
system as context-aware if it is aware of the semantic content
of at least some of the applications it is managing and it can
adapt its management dynamically in response to new de-
velopments within the semantic content. This is sometimes
known as adaptive infrastructure. An example is the LEAD
project (Plale et al. 2005) which adapts its processing and
sensor coverage in response to emerging weather events.

Autonomic management can also involve the planning of
action sequences (scripts) for reconfiguring software com-
ponents (Srivastava, Bigus, and Schlosnagle 2004). In
a non-context-aware system, the reconfiguration has no
knowledge of what the software is used for. Context-
awareness involves some understanding of this purpose. Ide-
ally the system is goal-directed and the managed software
contains a solution to a problem that the system has found
by reasoning about an application domain.

As an example of context-aware meta-level control, we
can imagine an autonomic monitoring agent that uses a
model or simulation of a managed system (e.g. a sensor
network) to predict its future states and to detect problems
(Williams et al. 2004; Robertson and Williams 2006). A
discrepancy is detected between the model-predicted state

37



and the observed state. The measured state also seems much
”worse” than the model-predicted state, when considered in
the context of a critical application (e.g. severe weather
tracking). Therefore an urgent re-allocation of computing
resources is required in order to investigate and diagnose
the problem. The problem may be in the network itself or
the autonomic monitoring and analysis algorithms may be
faulty.

3.4 Towards Social Context Awareness

We can define the system as socially context-aware if it is
aware of user concerns and goals and acts on behalf of them.
For example, if the users are experimental physicists, they
are concerned about the results of experiments and they want
to test hypotheses; if they are emergency health workers,
they are concerned about diagnoses and critical life support
monitoring. Recognition of user goals is addressed in (Smith
and Lieberman 2010).

The social environment is the context in which events in
an IT infrastructure take place. For example, file access pat-
terns and network activity can be associated with user goals
and actions, which can in turn be associated with organisa-
tional goals and wider social networks. Determining causal-
ity is also feasible; a network intrusion event may be traced
to a social event which is a violation of a social norm (e.g.
fraud).

The interaction between IT infrastructure and social en-
vironment can be represented as different levels shown in
Figure 3. This diagram shows multiple levels at which a
socio-technical system can be modelled and observed.

Figure 3: Multiple levels of an IT system within a social
context

Models and data sources This kind of deep context
awareness ideally needs commonsense knowledge about the
world and about social norms. Steps in this direction are
possible using agent-based social models (Epstein 2006),
where an “agent” can represent an artificial or human agent.
These models might be developed from existing theories
or directly from observation and learning. Some may be
classed as meta-level models and may be developed by ob-
serving reasoning and decision processes. Such models may

later be used for meta-level reasoning (for example, to de-
tect typical reasoning flaws) or to reason about the limits or
relevance of the knowledge that is being taken into consid-
eration.

These different kinds of models and their associated data
(from which the models may be built or adapted) include the
following:
• Models of the infrastructure - devices, networks, soft-

ware, applications etc.
• Models of the managing agents. These would be partial

models, each corresponding to a perspective held by an
agent.

• User models (cognitive models and goals).
• Social models - generated or updated using various data

sources such as transaction logs, text etc.
Figure 4 shows a schematic diagram of agents managing and
modelling an IT infrastructure. Many different social mod-
els may be constructed from related data sources.

Figure 4: Social context awareness

Data fusion and high-level descriptions Just as in the
robotics example, components (agents) may cooperate to-
gether to build global or partial pictures from different per-
spectives. A perspective (held by an agent) may represent
a conceptual categorisation (an ontology) which is used to
interpret and fuse data from multiple sources. Such perspec-
tives might represent the different concepts and priorities of
the various users in an organisation. Multiple agents can
interpret the same data in different ways according to their
high level conceptualisation. They may also use specialist
data sources. In a configuration such as Figure 2, each agent
might have its own specific algorithms (O-Boxes).

Simulations based on those ontologies may be used on
the different levels of abstraction in Figure 3 and may be
continually updated from different data streams. For exam-
ple, a simulation on L4 may use data streams from several
different sources on the lower levels (e.g. software usage,
conversations, network traffic etc). The simulations gener-
ate ongoing expectations which also guide the data collec-
tion (or “attention focus”) of the agents. More details of this
general concept are in previous work (Kennedy et al. 2007).

Automated or (semi-automated) building of such models
and their subsequent refinement and testing is a non-trivial
meta-level control operation. Potential policy conflicts (for

38



example, involving privacy) would also need to be resolved
(Lupu and Sloman 1999).

4 Towards Distributed Metacognition in

Autonomic Systems

In this section we address the challenges of applying the ar-
chitecture in Figure 2 to the above socio-technical scenarios
and suggest directions for solving them. We identify some
key requirements below:

1. Automated diagnosis and correction: cooperative agents
need to evaluate and correct each other, while taking into
account the wider context. This requires solution of the
following sub-problems:

(a) Limiting complexity: aiming for reusability of methods
for analysing different reasoning traces.

(b) Mutual evaluation (criticism) requires translation
across different representations held by each agent.

(c) Mutual adaptation: not only is a translation between
perspectives required, but also a method of adaptation
to each other’s requirement, with possible learning of
new concepts.

2. Subversion resistance: multiple agents need to agree to
overrule a hostile agent. A common understanding of “ac-
ceptable goals” may be necessary.

4.1 Automated Diagnosis and Debugging

Context-aware error detection and correction depends on the
perspective of the monitoring agent. If an agent represents a
perspective which is defined according to user concepts and
goals then its “debugging” method may include the evalua-
tion of whether those goals are being satisfied, and whether
the relevant concepts are being taken into account.

For example, an agent A1 representing the concern of
information integrity (such as in medical imaging) might
evaluate its own (object-level) reasoning according to how
well it meets integrity requirements in changing contexts.
A1 might also apply the same evaluation process to an-
other agent A2 responsible for applying an energy manage-
ment policy (in accordance with the first type of distributed
metacognition in Figure 2). A “bug” in A2’s object-level
reasoning would be a failure of A2 to ensure that the energy
conservation does not violate information integrity. There-
fore it needs to be aware of these constraints.

Reusability A1 may also detect a bug in A2’s meta-level
reasoning. For example, it may determine whether A2’s
meta-level’s considerations and goals contradict the infor-
mation integrity requirement. Since we wish to reuse as far
as possible the evaluation method for both meta-level and
object-level, a generic method of sending a negative evalua-
tion may be feasible, although the interface with the different
traces would not be identical.

Translation across representations Agents can send
each other alerts and correction messages if they are not sat-
isfying each other’s requirements. However, if agents use
different sets of concepts and representations then a transla-
tion is necessary between perspectives.

The binding problem in cognitive science addresses this
kind of translation when applied between sensory modali-
ties. One solution to the binding problem is in (Hawes et
al. 2007). If we imagine that one “agent” is responsible for
processing visual input and another for auditory, translation
between these modalities allows, for example, the auditory
agent to alert the vision agent to focus on a human who has
just begun speaking. A similar translation is possible be-
tween events on the different levels of abstraction in Figure
3 and between the different models in Figure 4.

Mutual adaptation In the visual-auditory example above,
agents can give feedback to each other to focus attention on
certain stimuli. If they have access to each other’s reasoning
traces, they can monitor focus of attention and send correc-
tive alerts as necessary (e.g. not giving sufficient attention
to relevant events). In response to a correction alert, the vi-
sion agent can learn to recognise the visual cues when a per-
son speaks by correlating alerts it receives from the auditory
agent with new visual features in the environment. Effec-
tively agents help to ”debug” each other interactively.

An alert from another agent would be similar to an unex-
pected event in the environment. The agent would respond
by planning to learn (Cox and Ram 1999). Subsequent mon-
itoring and conflict resolution in the learning process would
also be important (Kim and Gil 2008). If necessary, the
vision agent can learn a new concept (“person speaking”)
which it can add to its ontology. (Afsharchi and Far 2006)
addresses this kind of problem in a more general multi-agent
context.

4.2 Subversion Resistance

If a security monitoring agent is subverted, its meta-level
control may activate hostile code, causing it to send a false
alert stating that a security problem has been detected. If
other agents find no evidence of an intrusion, this does not
prove that there is no problem. Therefore, resources are al-
located to its detection, possibly diverting resources away
from a real problem. If agents can identify a bug in the
agent’s meta-level control, they can explain the cause of the
problem and disable the rogue code.

Benign agents must recognise the potential for hostility
and agree on joint action. Recognising hostility requires so-
cial context-awareness as well as diverse and independent
ways of gathering evidence. In particular, metareasoning
about human reasoning traces is useful in this context.

Agreement on whether an agent is potentially damaging
requires that the agents have a common understanding of
what kind of activity is acceptable or necessary and what
kind of activity is hostile. One possible approach is to define
goals on the meta-level that agents agree to pursue. These
are requirements to be satisfied by the management agents’
reasoning processes. Such goals can include the following:

1. to learn about other agents’ requirements and goals (in-
cluding user goals);

2. to cooperate with other agents’ object-level goals, pro-
vided that:

(a) these goals are consistent with agreed meta-level goals;

39



(b) if there are conflicts between object-level goals, they
generate a new goal to try to overcome these specific
conflicts;

Agents may have different representations of these require-
ments, but they should be able to test if an observed agent’s
activity and reasoning trace satisfies them. A “friendly”
agent (executing non-hostile code) which is merely in error
should not contradict these requirements. In other words,
it must be seen to make an effort to cooperate by a suffi-
cient number of agents, which are monitoring the agent in
different ways. Research on trust and reputation systems is
relevant for this problem (Jøsang, Ismail, and Boyd 2007) as
well as agent-based modelling (Epstein 2006).

5 Related Work

Research on multi-agent metacognition such as (Raja and
Lesser 2007) is addressing many of the coordination prob-
lems that a distributed metacognitive system will have to
solve. Although the mult-agent approaches do not in-
volve the kind of distribution of metacognition we defined
here, they have to address similar issues, such as connec-
tivity between agents and the resources that should be al-
located to metacognition. Planning to learn (and decid-
ing what and how to learn) in response to anomalies is
also an important requirement for context-aware metacog-
nition. Relevant work on this includes (Cox and Ram 1999;
Josyula et al. 2009; Kim and Gil 2008).

We have considered an autonomic system as a cogni-
tive system. A cognitive architecture for autonomic sys-
tems is proposed in (Kramer and Magee 2007), which in-
volves online planning and deliberation with continual self-
configuration in response to changes. Other approaches are
based on multi-agent systems. For example (Das et al. 2008)
uses agents for power management. Autonomic context-
awareness is currently being addressed in simple scenarios
(Klein et al. 2008; Sitou and Spanfelner 2007). An example
of metareasoning in context-aware self-adaptive software is
(Robertson and Laddaga 2009), where a metareasoner eval-
uates the accuracy of predictions made by vehicle trackers
(reasoners) and selects the best performing ones for further
refinement.

Mutual debugging among agents assumes that conflicts
between requirements or policies can be resolved. A com-
mon approach to conflict resolution is to use a “meta-policy”
giving guidelines or constraints on the application of policy
rules (Lupu and Sloman 1999). For example, precedence or
priority of one rule over another may be specified in a meta-
policy (Kagal, Finin, and Joshi 2003).

6 Summary and Conclusion

In this paper we showed how context-awareness and di-
versity can be incorporated into distributed metacognition.
We then argued that these principles can also be applied to
agents in an autonomic management system. Automated re-
covery in such a system means that the agents have to par-
ticipate in monitoring and debugging each other, since there
is no hierarchical system of evaluation.

The following are challenges for automated recovery:

• If agents are cooperative, they can share reasoning traces
and help each other learn their respective requirements.
Translation between representations is necessary.

• If one agent is hostile because its meta-level has been sub-
verted, it may not respond to error correction requests.
In this case, agents have to agree to overrule the hostile
agent. Social context awareness is important here to iden-
tify the causes and motivation of an attack.

• An important software engineering requirement is that the
meta-level methods for analysing traces are reusable and
polymorphic as far as possible, so that they can be ap-
plied to object-level traces as well as meta-level traces
with minimal changes. Otherwise, the complexity of ad-
ditional meta-level components can make the system frag-
ile.

Acknowlegement

This work was funded in part by the Defense Advanced Re-
search Projects Agency.

References

Afsharchi, M., and Far, B. H. 2006. Automated ontology
evolution in a multi-agent system. In InfoScale ’06: Pro-
ceedings of the 1st international conference on Scalable in-
formation systems, 16. New York, NY, USA: ACM.
Bull, S., and Kay, J. 2008. Metacognition and Open
Learner Models. In 3rd Workshop on Meta-Cognition and
Self-Regulated Learning in Educational Technologies, at the
9th International Conference on Intelligent Tutoring Sys-
tems (ITS2008).
Cox, M. T., and Raja, A. 2007. Metareasoning: A Mani-
festo. Technical Report BBN TM 2028, BBN Technologies.
Cox, M. T., and Ram, A. 1999. Introspective multistrategy
learning: On the construction of learning strategies. Artifi-
cial Intelligence 112:1–55.
Cox, M. T. 2007. Metareasoning, Monitoring, and Self-
Explanation. In Proceedings of the First International Work-
shop on Metareasoning in Agent-based Systems at AAMAS-
07, 46–60.
Das, R.; Kephart, J. O.; Lefurgy, C.; Tesauro, G.; Levine,
D. W.; and Chan, H. 2008. Autonomic Multi-agent Man-
agement of Power and Performance in Data Centers. In
AAMAS-08: Proceedings of the 7th International Joint Con-
ference on Autonomous Agents and Multi-agent Systems,
107–114. Richland, SC: International Foundation for Au-
tonomous Agents and Multiagent Systems.
Epstein, J. M. 2006. Generative Social Science: Studies in
Agent-Based Computational Modeling. Princeton Univer-
sity Press (Princeton Studies in Complexity).
Hawes, N.; Sloman, A.; Wyatt, J.; Zillich, M.; Jacobsson,
H.; Kruijff, G.-J.; Brenner, M.; Berginc, G.; and Skočaj, D.
2007. Towards an Integrated Robot with Multiple Cognitive
Functions. In Holte, R. C., and Howe, A., eds., Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2008), 1548 – 1553. Vancouver, Canada:
AAAI Press.

40



Jøsang, A.; Ismail, R.; and Boyd, C. 2007. A Survey of
Trust and Reputation Systems for Online Service Provision.
Decision Support Systems 43(2):618–644.
Josyula, D. P.; Hughes, F. C.; Vadali, H.; Donahue, B. J.;
Molla, F.; Snowden, M.; Miles, J.; Kamara, A.; and Maduka,
C. 2009. Metacognition for Self-Regulated Learning in a
Dynamic Environment. In Procceedings of the Workshop
on Metareasoning in Self-Adaptive Systems at the Third
IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, (SASO 2009).
Kagal, L.; Finin, T.; and Joshi, A. 2003. A Policy Language
for A Pervasive Computing Environment. In Proceedings
of the IEEE 4th International Workshop on Policies for Dis-
tributed Systems and Networks.
Kennedy, C. M., and Sloman, A. 2003. Autonomous Recov-
ery from Hostile Code Insertion using Distributed Reflec-
tion. Journal of Cognitive Systems Research 4(2):89–117.
Kennedy, C. M.; Theodoropoulos, G.; Sorge, V.; Ferrari, E.;
Lee, P.; and Skelcher, C. 2007. AIMSS: An Architecture for
Data Driven Simulations in the Social Sciences. In Work-
shop on Dynamic Data-Driven Applications Simulation at
ICCS 2007. Beijing, China: Springer-Verlag.
Kennedy, C. M. 2008. Distributed Meta-Management for
Self-Protection and Self-Explanation. In Proceedings of
the AAAI-08 Workshop on Metareasoning: Thinking about
Thinking.
Kim, J., and Gil, Y. 2008. Developing a Meta-Level Problem
Solver for Integrated Learners. In Proceedings of the AAAI-
08 Workshop on Metareasoning: Thinking about Thinking.
Klein, C.; Schmid, R.; Leuxner, C.; Sitou, W.; and Spanfel-
ner, B. 2008. A survey of context-adaptation in autonomic
computing. In Proceedings of the Fourth International Con-
ference on Autonomic and Autonomous Systems, 106–111.
IEEE Computer Society.
Kramer, J., and Magee, J. 2007. Self-managed systems: an
architectural challenge. In FOSE ’07: 2007 Future of Soft-
ware Engineering, 259–268. Washington, DC, USA: IEEE
Computer Society.
Lupu, E. C., and Sloman, M. 1999. Conflicts in policy-
based distributed systems management. IEEE Trans. Softw.
Eng. 25(6):852–869.
Minsky, M. 2006. The Emotion Machine. New York: Simon
and Schuster.
Morgan, B. 2009. Funk2: A Distributed Processing Lan-
guage for Reflective Tracing of a Large Critic-Selector Cog-
nitive Architecture. In Workshop on Metareasoning in Self
Adaptive Systems at the Third IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems (SASO
2009).
Plale, B.; Gannon, D.; Reed, D.; Graves, S.; Droegemeier,
K.; Wilhelmson, B.; and Ramamurthy, M. 2005. Towards
Dynamically Adaptive Weather Analysis and Forecasting in
LEAD. In Workshop on Dynamic Data Driven Application
Systems at the International Conference on Computational
Science (ICCS 2005).

Raja, A., and Lesser, V. 2007. A Framework for Meta-level
Control in Multi-Agent Systems. Autonomous Agents and
Multi-Agent Systems 15(2):147–196.
Robertson, P., and Laddaga, R. 2009. Metareasoning Based
Self Adaptive Tracking. In Workshop on Metareasoning
in Self Adaptive Systems at the Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2009).
Robertson, P., and Williams, B. C. 2006. Automatic Re-
covery from Software Failure: A Model-based Approach
to Self-Adaptive Software. Communications of the ACM
49(3):41–47.
Salehie, M., and Tahvildari, L. 2009. Self-adaptive software:
Landscape and research challenges. ACM Transactions on
Autonomous Adaptive Systems 4(2):1–42.
Serrano, J.; Serrat, J.; and Strassner, J. 2007. Ontology-
Based Reasoning for Supporting Context-Aware Services on
Autonomic Networks. In Proceedings of the IEEE Inter-
national Conference on Communications (ICC-07), 2097–
2102.
Singh, P. 2005. EM-ONE: An Architecture for Reflective
Commonsense Thinking. Ph.D. Dissertation, Artificial Intel-
ligence Lab, MIT.
Sitou, W., and Spanfelner, B. 2007. Towards requirements
engineering for context adaptive systems. In Proceedings of
the 31st Annual International Computer Software and Ap-
plications Conference (COMPSAC 2007), vol. 2, 593–600.
IEEE Computer Society.
Sloman, A., and Poli, R. 1995. SimAgent: A toolkit for
exploring agent designs. In Mike Wooldridge, J. M., and
Tambe, M., eds., Intelligent Agents Vol II, Workshop on
Agent Theories, Architectures, and Languages (ATAL-95) at
IJCAI-95, 392–407. Springer-Verlag.
Smith, D., and Lieberman, H. 2010. The Why UI: Using
Goal Networks to Improve User Interfaces. In Proceedings
of the ACM International Conference on Intelligent User In-
terfaces (IUI-2010).
Srivastava, B.; Bigus, J.; and Schlosnagle, D. 2004. Bring-
ing Planning to Autonomic Applications with ABLE. In
International Conference on Autonomic Computing (ICAC
2004), 154–161.
Sterritt, R.; Parashar, M.; Tianfield, H.; and Unland, R.
2005. A Concise Introduction to Autonomic Computing.
Advanced Engineering Informatics 19(3):181 – 187.
Strassner, J.; Agoulmine, N.; and Lehtihet, E. 2006. FO-
CALE: A Novel Autonomic Networking Architecture. In
Proceedings of the Latin American Autonomic Computing
Symposium (LAACS-2006).
Williams, B. C.; Ingham, M.; Chung, S.; Elliott, P.; and Hof-
baur, M. 2004. Model-based Programming of Fault-Aware
Systems. AI Magazine 24(4):61–75.

41


