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Abstract

Activity recognition plays an important role in many areas
such as smart environments by offering unprecedented op-
portunities for assisted living, automation, security and en-
ergy efficiency. It’s also an essential component for planning
and plan recognition in smart environments. One challenge of
activity recognition is the need for collecting and annotating
huge amounts of data for each new physical setting in order
to be able to carry out the conventional activity discovery and
recognition algorithms. This extensive initial phase of data
collection and annotation results in a prolonged installation
process and excessive time investment for each new space. In
this paper we propose a new method of transferring learned
knowledge of activities to a new physical space in order to
leverage the learning process in the new environment. Our
method called ”Home to Home Transfer Learning” (HHTL)
is based on using a semi EM framework and modeling ac-
tivities using structural, temporal and spatial features. This
method allows us to avoid the tedious task of collecting and
labeling huge amounts of data in the target space, and allows
for a more accelerated and more scalable deployment cycle
in the real world. It also allows us to exploit the insights
learned in previous spaces. To validate our algorithms, we
use the data collected in several smart apartments with differ-
ent physical layouts.

Introduction

With remarkable recent progress in sensor technology and
machine learning techniques, activity recognition is becom-
ing an integral part of many pervasive computing systems
and smart environments. A smart environment typically
contains many embedded sensors such as motion sensors
that provide opportunities for assisted living and health mon-
itoring, automation, and energy efficiency based on activity
recognition and inferring users behaviors from the observa-
tions (Cook and Das 2004). Activity recognition is an essen-
tial component for planning and plan recognition in smart
environments. Typically in a smart environment, first the
activities are recognized, and then based on the activity data
the plans are recognized and are adjusted. There are many
ways in which smart homes rely on activity recognition for
planning. Some examples include providing guidance or re-
minders to a resident during a task, performing actions to
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help the resident complete a task, or identifying emergen-
cies if the resident is not doing what s/he is supposed to do
or is doing something the wrong way (Simpson et al. 2006).
Activity recognition and planning can be especially useful
in the area of assisted living by monitoring the daily activi-
ties of elderly adults with memory deficiencies and helping
them via timely prompts and task completion. Typically a
set of day to day activities called Activities of Daily Living
(ADL) are monitored, including eating, bathing, etc. The
completion of ADLs indicates the ability of the individual
for an independent life (Rialle et al. 2008).

Besides assisted living and health monitoring applica-
tions, activity recognition in smart environments can be used
in a variety of other different situations, and in general it can
be used to respond to residents’ needs in a context-aware
manner (Wren and Munguia-Tapia 2006). In this paper we
focus on the activity recognition component of smart envi-
ronments.

Some of the recent smart environment efforts have been
demonstrated in actual physical testbeds such as the CASAS
project (Rashidi and Cook 2009a), the MavHome project
(Cook et al. 2003), the Gator Tech Smart House (Helal
et al. 2005), the iDorm (Doctor, Hagras, and Callaghan
2005), and the Georgia Tech Aware Home (Abowd and My-
natt 2004). There also have been a number of stand-alone
or ambient cognitive orthotics systems. Early cognitive or-
thotics systems were based on simple reminders such as the
PEAT system which relies on automated planning to provide
visible and audible clues about plan execution (Levinson
1997). The COACH reminder system recognizes the hand
washing activity and provides a step by step plan in form of
useful prompts. Other projects such as the CASAS project
(Rashidi and Cook 2009a), Assisted Cognition Project (Di-
eter et al. 2002), and SOPRANO (Sixsmith et al. 2009)
aim at developing cognitive orthotic systems for people with
Alzheimer’s disease by using ubiquitous sensors to moni-
tor the performance of routine tasks and providing prompts
when the user gets stuck or is confused.

In all above projects, activity recognition plays an impor-
tant role. There have been a number of supervised methods
for recognizing activities, such as naive Bayes (Brdiczka,
Maisonnasse, and Reignier 2005), decision trees (Maurer et
al. 2006), Markov models (Liao, Fox, and Kautz 2005),
dynamic Bayes networks (Inomata et al. 2009), and con-
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ditional random fields (Philipose et al. 2004). The un-
supervised activity discovery and recognition methods in-
clude frequent sensor mining methods (Gu et al. 2009),
discontinuous activity pattern discovery methods (Pei, Han,
and Wang 2007), and methods for finding mixed frequent-
periodic activity patterns (Rashidi and Cook 2009a). None
of these approaches address the issue of transferring the
learned knowledge of activities to new contexts in order
to make the systems more scalable. Instead they learn the
model of each environment separately. Using conventional
unsupervised methods such as frequent or periodic data min-
ing methods, the long data collection period and prolonged
installation process becomes a problem in practice. Using
supervised methods a greater burden is placed on the user of
the smart environment, who must annotate sufficient data in
order to train the recognition algorithms. Our testbeds have
required at least one hour of an expert’s time to annotate a
single day’s worth of sensor data. This particularly becomes
problematic if we are targeting a deployment in the home
of an older adult. Also by ignoring what has been learned
in other physical settings, we are faced with a redundant
computational effort and excessive time investment to learn
a new model. Therefore it is beneficial to develop models
that can exploit the knowledge of learned activities by em-
ploying it in new spaces, thereby reducing or eliminating the
need for data annotation, reducing the data collection time,
and achieving an accelerated learning pace.

Exploiting the knowledge gained in one problem and ap-
plying it to a different but related problem is called trans-
fer learning (Raina, Ng, and Koller 2006), (Caruana 1997).
Researchers have studied transfer learning in different com-
putational settings such as reinforcement learning (Asadi
and Huber 2007), genetic algorithms (Taylor, Stone, and
Liu 2007), neural networks (Thrun 1996), Bayesian mod-
els (Roy and Kaelbling 2007) and many other methods (Pan
and Yang 2008). As a hallmark of human intelligence, trans-
fer learning has been vastly studied in the literature (Pan and
Yang 2008), but it has been applied to activity recognition in
very few cases.

In previous works, it has been shown how to transfer the
activity models learned for one person to another in the same
physical setting (Rashidi and Cook 2009b). Zhang et al.
(Zheng, Hu, and Yang 2009) have developed a model that
maps different types of activities to each other (e.g. sweep-
ing to cleaning) by learning a similarity function via a Web
search. Our goal is to transfer activities between different
physical spaces where the physical aspects of the spaces,
the residents and the sensor can be different. Kasteren et.
al (van Kasteren, Englebienne, and Krose 2008) describe a
simple method for transferring the transitional probabilities
of Markov models for two different spaces. By reducing
activity models to two simple HMMs, their work does not
address how activities in a target context can be found us-
ing knowledge from the source space except for the tran-
sitional probabilities, and they ignore most of the activities’
important features such as the activity’s structure and related
temporal features. They also manually map the sensors from
source to target space, which is done automatically in our ap-
proach. More importantly, they assume that the structure of

HMMs is given and pre-defined, but in our model we make
no assumption about the structure of the activities in the tar-
get space. The activity model in our work is much more
sophisticated, and is based on using structural, temporal and
spatial features of activities.

The remainder of this paper is organized as follows. First
we describe our two stage approach in more detail, wherein
the first stage of our algorithm mines target data and extracts
activity models from both spaces, and the second stage maps
activity models from source to target environment using a
semi EM framework. Next we present the result of our ex-
periments on the data obtained from three smart apartments,
and finally we will end the paper with our conclusions and
discussion of the future works.

Model Description
Our objective is to develop a method that can transfer
learned activities across different physical spaces in order
to label and recognize the unlabeled activities in a target
space. We assume that labeled activity data is available in
the source space S, and the objective is to use such a knowl-
edge to learn the activity “labels” in a target space T . We
assume that the physical aspects of the spaces, the number
and type of sensors, and also the residents and their sched-
ules can be different. Similarly, we do not require all of the
same activities to exist across all spaces. We assume that
the nature of the problem is “inductive transfer learning” or
“self taught” (Pan and Yang 2008), i.e. we have labeled data
in the source domain, and none or few data labels are avail-
able in the target domain. This allows us to reduce several
weeks or months of data collection and annotation in the tar-
get space to only a few days of data collection. Our ultimate
objective is to be able to correctly recognize activities in the
target space. By using our method, labeled target activity
data becomes available that can be consumed by conven-
tional learning algorithms to perform activity recognition, or
can be used as a baseline for other techniques such as active
learning techniques.

The input data is a sequence of sensor events e in the form
of e = 〈t, s, l〉 where t denotes a timestamp, s denotes a sen-
sor ID, and l is the activity label, if available. An example
showing several sensor events can be seen in Table 1. As de-
picted in Table 1, each sensor event can be part of a labeled
activity such as the first and second sensor events, or it can
have no activity labels such as the third sensor event. Each
sensor is tagged with its associated room name (e.g. kitchen)
which we will refer to as a location tag L. A standard set of
location tags is used across all different sources. We define
an activity as a = 〈E , l, t, d,L〉 where E is a sequence of n
sensor events 〈e1, e2, ..en〉, l is its label (if available), t and
d are the start time and duration distributions, and L repre-
sents the set of location tags where a has occurred. Note
that the start time and duration in general are represented
as mixture normal distributions, though initially most activ-
ities’ start time and duration consists only of a single data
point, and later during activity consolidation the distribution
will be formed. As can be seen from the activity’s definition,
each activity has structural information in the form of sen-
sor sequence E , temporal information in the form of t and
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Timestamp (t) Sensor ID (s) Label (l)

7/17/2009 09:52:25 M004 Personal Hygiene

7/17/2009 09:56:55 M030 Personal Hygiene

7/17/2009 14:12:20 M015 None

Table 1: Example sensor data. Here M004, M030 and M015

denote sensor IDs.

d, and spatial information in the form of L. These features
allow us to convert raw data into an activity model suited for
mapping.

In our notation we consider AS as the set of source ac-
tivities, AT as the set of target activities, Ss as the set of
source sensors, and ST as the set of target sensors. In order
to be able to map activities, we need to find a way to map
the source sensor network to the target sensor network i.e.

we’re looking for the mapping F́(SS) = ST , as the source
sensors will have different locations and properties than the

target sensors. Based on using activity features and also F́ ,
we will find the activity mapping function F(AS) = AT .

The extent to which activity ai ∈ AS maps to activity
aj ∈ AT is reflected in matrix M , where M [i, j] ∈ [0..1]
shows the probability that activity ai and aj have the same
label. Similarly, a second matrix m[p, q] ∈ [0..1] shows
the probability that sensor sp ∈ SS maps to sensor sq ∈
ST based on their location and their role in activity models.
Note that the mappings need not to be one to one, due to the
differences in the number of sensors and number of activities
in the source and target spaces. It’s also possible that the
mapped sensors are of different types.

Our model performs activity transfer from a source space
to a target space in several stages (Figure 1). First, labeled
data from the source space and unlabeled data from the tar-
get space are processed in order to extract the activity mod-
els in each space. In the source space, each contiguous se-
quence of sensor events with the same label is converted
to an activity. To reduce the number of activities and find
a canonical mapping, similar activities are consolidated to-
gether to represent a “activity template”. To avoid mapping
irrelevant sensors, a filter feature selection method based on
mutual information(Guyon and Elisseeff 2003) is used to re-
move the irrelevant sensors for each activity template. In the
target space the data is mined to find unlabeled activity pat-
terns. Activities are then consolidated using an incremental
clustering method (Can 1993). If any labeled data is avail-
able in the target space, it can be used to refine the target
activity models.

In the next step, source activity models are mapped to the
target activity models. First the activities’ initial mapping
probabilities are computed based on structural, temporal and
spatial similarities. The sensors’ initial mapping probabili-
ties are assigned based on a simple spatial similarity mea-
sure. After initialization, the algorithm starts the semi-EM
framework in an iterative manner. First, the sensor map-
ping probabilities are adjusted based on the activity mapping
probabilities, next the activity mapping probabilities are ad-
justed based on the updated sensor mapping probabilities.

This continues until no more changes are perceived or until
a user defined number of iterations is reached. A target ac-
tivity’s label is chosen to be the same as the source activity’s
label that maximizes the mapping probability. We will pro-
vide a more detailed description of each of the above steps
in the following subsections.

Figure 1: Main components of HHTL for transferring activities
from a source space to a target space.

Activity Extraction

The first step of the HHTL algorithm is to extract the activ-
ity models from the input data. In the source space, each
contiguous sequence of sensor events with the same label
is converted to an activity. The start time of the activity is
the timestamp of its first sensor event, while its duration is
the difference between its last and first timestamps. Due
to the prohibitively large number of extracted activities and
possible similarity among them, it is necessary to combine
similar activities together as an “activity template”. This al-
lows for a more efficient canonical mapping from source to
target instead of mapping a large number of activities with
only minor differences. The activity template for a set of ac-
tivities is an activity formed by merging activities’ sensors,
durations, and start times where the merged start times and
durations form a mixture normal distribution. The temporal
mixture model allows us to capture and model variations of
the same activity that occur at different times. For example,
consider the “eating” activity which usually happens three
times a day, once in the morning as breakfast, once at noon
as lunch, and once at night as dinner. Using a mixture model
for the start time we are able to capture all three variations
by using a single activity model.

In the source space, all the source activities that have the
same label will be consolidated into one single activity tem-
plate. Note that as the activity template is an activity itself,
we use the terms activity and activity template interchange-
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ably. After similar activities are consolidated together, we
need to perform sensor selection for each activity template
by preserving only relevant sensors. This allows us to map
only relevant sensors and avoid mapping irrelevant sensors
as noise. Our sensor selection method is a filter feature se-
lection method based on mutual information (Guyon and
Elisseeff 2003). For each activity template a and each sensor
s we define their mutual information MI(s, a) as in Equa-
tion 1. It measures their mutual dependence and shows how
relevant is sensor s in predicting the activity’s label. Here
P (s, a) is the joint probability distribution of s and a, while
P (s) and P (a) are the marginal probability distributions, all
computed from the sensor and activity occurrences in the
data. A high mutual information value indicates the sensor
is relevant for the activity, we simply consider sensors with
a mutual information above the midpoint (0.5) as relevant,
otherwise they will be discarded.

MI(s, a) = P (s, a) ∗ log
P (s, a)

P (s)P (a)
(1)

To extract meaningful structure from unlabeled target
data, we perform data mining on the input data. First we
partition the input data into activities. A sensor event e1 =
〈t1, s1, l1〉 and a successor sensor event e2 = 〈t2, s2, l2〉 are
part of the same activity if Ls1

= Ls2
, i.e. if both sensors

are in the same location. Such a local partitioning allows
us to have a baseline for finding individual activities. This
approach is based on the intuition that occurrences of the
same activity are usually within the same location (such as
preparing meal in the kitchen, grooming in the bathroom,
etc), and more complex activities occurring in different lo-
cations can be composed of those basic activities. Notice
that as we only have access to limited input data (perhaps a
few days or even a few hours), we cannot use conventional
activity discovery methods such as frequent or periodic se-
quence mining methods (Rashidi and Cook 2008) to find ac-
tivity patterns in the data. Therefore exploiting the spatial
closure can be a way to overcome this problem. After par-
titioning data into the initial activities, we consolidate those
activities by grouping together similar activities into an ac-
tivity template. To combine activities together, we use an
incremental clustering method (Can 1993), such that each
activity is assigned to the most similar centroid if their sim-
ilarity is above threshold ς , and then the centroid is recom-
puted . Otherwise the activity forms a separate cluster. The
centroid is represented as an activity template. At the end all
the activities in one cluster are consolidated together and the
sensor selection is carried out. For two activities ai and aj ,
their similarity Υ(i, j) is defined as in Equation 2.

Υ(i, j) = Mt[i, j] + Md[i, j] + ML[i, j] + MS[i, j] (2)

In above equation, Mt refers to start time mapping (if
the two activities happen at similar times, e.g. both around
noon), Md refers to duration mapping (if the two activities
have similar durations), ML refers to location mapping (if
the two activities happen in similar locations, e.g. both in
the kitchen), and MS refers to structure mapping (if the two

activities have similar structure in terms of sensors). We nor-
malize Υ(i, j) to fall within the range [0..1]. For simplicity,
we have chosen the mappings to have equal effects, however
it’s possible to define Υ(i, j) as a weighted average.

As mentioned, the start times are in form of a mixture
normal distribution with means Θ = 〈θ1..θk〉. We represent
start time θ in an angular form Φ measured in radians instead
of a linear representation. This allows for time differences
to be represented correctly (2:00 am will be closer to 12:00
am rather than 5:00 am). Then the similarity between the
two start time distributions will be as in Equation 3.

Mt[i, j] = max
θ1∈Θi
θ2∈Θj

(1 −
|Φθ2

− Φθ1
|

2π
) (3)

Duration mapping is calculated as in Equation 4 where
durations are in form of a mixture normal distribution with
means Γ = 〈γ1..γk〉.

Md[i, j] = max
γ1∈Γi
γ2∈Γj

(1 −
|γ2 − γ1|

max(γ2, γ1)
) (4)

To compute ML we use Equation 5 which is the Jaccard
similarity coefficient (Tan, Steinbach, and Kumar 2005) for
the sets of locations of the two activities. A similar Jaccard
similarity coefficient based on similar sensors is defined for
the structure mapping MS in Equation 6.

ML[i, j] =
| Li

⋂
Lj |

| Li

⋃
Lj |

(5)

MS[i, j] =
| Ei

⋂
Ej |

| Ei

⋃
Ej |

(6)

Mapping Sensors and Activities

After the activity models for the source and target space have
been identified, the source activity templates are mapped to
the target activity template. The first step is initializing the
sensor and activity mapping matrixes, m and M . The initial
values of the sensor mapping matrix m[p, q] for two sensors
sp and sq is defined as 1.0 if they have the same location
tag, and as 0 if they have different locations tags. The initial
value of M [i, j] for two activities ai ∈ AS and aj ∈ AT

is obtained based on exploiting related spatial and tempo-
ral information and also prior activity label information (if
available), as in Equation 7. Note that in Equation 7 the first
case applies to the few labeled target activities, while for the
majority of the target activities the second case is applied.

M [i, j] =

{
1.0 if li = lj

Υ(i, j) otherwise
(7)

For computing subsequent mapping probabilities, we use
an Expectation Maximization (EM) like framework (Demp-
ster, Laird, and Rubin 1977) by estimating the mapping
probabilities in an iterative manner. First, the sensor map-
ping probabilities are computed; and in the next step the
activity mapping probabilities are maximized based on the
sensor probabilities. Though this model doesn’t exactly re-
flect an EM algorithm, however due to its iterative manner
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and likelihood estimation in two steps, we call it a semi-EM
framework.

To compute sensor mapping probabilities m[p, q] for sen-
sors sp ∈ Ss and sq ∈ ST , we rely on activities in which
sp and sq appear in, as in Equation 8. The learning rate α
refers to how fast we want to converge on the new values,
while mn[p, q] and mn+1[p, q] refer to the current and up-
dated values of m[p, q] in iteration n and n+1, respectively.

mn+1[p, q] = mn[p, q] − α ∗ Δm[p, q] (8)

Δm[p, q] = mn[p, q] −
1

|Xp||Yq|

∑
ai∈Xp

∑
aj∈Yq

M [i, j] (9)

Xp = {ai ∈ AS |sp ∈ Ei}

Yq = {aj ∈ AT |sq ∈ Ej}
(10)

In Equation 9, Xp and Yq for sensor p and q give us all
the activities in which the sensors appear. This means that
those activities which do not include a given sensor will not
contribute to that sensor’s mapping probability.

In the next step, to adjust the mapping probability be-
tween each two activities, we use Equation 11 to account for
the updated sensor mappings. Here Mn[i, j] and Mn+1[i, j]
refer to the current and updated values of M [i, j] in iteration
n and n + 1, respectively.

Mn+1[i, j] = Mn[i, j] − α ∗ ΔM [i, j] (11)

ΔM [i, j] = Mn[i, j] −
1

|Ei|

∑
sp∈Ei

max
q

sq∈Ej

m[p, q] (12)

The above procedure for computing sensor mapping prob-
ability and activity mapping probability is repeated until no
more changes are perceived or until a pre-defined number
of iterations is reached. Next, the labels are assigned to the
target activities. To assign labels to the target activities and
also find sensor mappings, we use Equation 13, 14, and 15

which provide us with the mapping functions F and F́ as
well as the assigned label laj

for an activity aj ∈ AT .

F(ai) = max
aj

(M [i, j]) (13)

F́(sp) = max
sq

(m[p, q]) (14)

laj
= lai

s.t. M [i, j] = max
k

(M [k, j]) (15)

Experiments

We evaluated the performance of HHTL using data collected
from three different apartments during a 3 month period.
Each apartment is equipped with motion sensors and con-
tact sensors which monitor the open/closed status of doors
and cabinets. The layout of the apartments including sensor
placement and location tags are shown in Figure 2(a), Fig-
ure 2(b) and Figure 2(c). The apartments have different lay-
outs: the third apartment has 2 bedrooms, 2 bathrooms and

a workspace, while the first and second apartments have 1
bedroom and 1 bathroom. All the sensor data is captured and
stored in a SQL database, using a publish/subscribe protocol
middleware. To maintain privacy we remove identifying in-
formation and encrypt collected data before it is transmitted
over the network.

The residents have quite different schedules, as can be
seen in activity distributions in Figures 2(d), 2(e) and 2(f).
For example, in the first apartment housekeeping is per-
formed each Friday, while in the second apartment it’s per-
formed once a month, and in the third apartment the house-
keeping activity is replaced by work activity. Each of the
three datasets was annotated with activities of interest for
the corresponding resident and apartment. A total of 11
activities were noted in each case which include bathing,
bed-toilet transition, eating, enter home, housekeeping (for
the third apartment this is replaced by “work”), leave home,
meal preparation, personal hygiene, sleeping in bed, sleep-
ing not in bed (relaxing) and taking medicine.

We ran our algorithm on each pair of apartments, resulting
in six different transfer learning problems. In each setting,
we used 3 months of source labeled data, 1 to 14 days of
target unlabeled data, and 0 to 1 days of target labeled data.

The first step, activity extraction, resulted in a consid-
erable reduction in the number of activities. In particular
3384, 2602, and 1032 activity instances from the first, sec-
ond and the third apartments were represented by as few as
11, 10 and 9 activity templates. The reason that we have
obtained less templates than the 11 predefined activities in
the second and third apartment is that the “eating” activity
was done rather in an erratic way and in different locations,
therefore our sensor selection algorithm didn’t choose any
specific sensor for that activity, and as a result the activity
was eliminated. The same applied for “taking medicines” in
third apartment. This shows how our algorithm can avoid
mapping very irregular activities. It also shows how the al-
gorithm condensed the activity instances into a compressed
representation, as we approximately obtained the 11 prede-
fined activities. During activity extraction, also the number
of sensors for each activity template was reduced from an
average of 32.13 sensors to 1.94 sensors, as the algorithm re-
moved the irrelevant sensors and preserved only the relevant
sensors. This shows that for each activity a few key sensors
can be used to identify the activity, e.g. taking medicine can
be identified by the cabinet sensor where the medicines are
kept.

Figure 3 shows the number of discovered activity tem-
plates for the target data. For example, using three days of
unlabeled target data and no labeled target data, we discov-
ered 8, 7, and 7 activity templates for the first, second and
third apartments, respectively. The similarity threshold ς in
those experiments was set to the midpoint 0.5. The reason
that fewer activity templates are discovered is because some
similar activities might be merged into one activity, such as
relaxing and eating which happen at similar times and simi-
lar places. Also variations of the same activity that initially
might have been considered as different activities, might be
merged together as more data is provided. Also for some
other activities it is not very easy to discover them from
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Figure 2: Figures (a-c) show sensor map and location tags for each apartment. Circle and triangles on the map show motion sensor and
contact sensors. Figures (d-f) show distribution of residents’ activities per each day (horizontal axis) for 3 months (vertical axis).

only a few days of data, such as housekeeping which hap-
pens quite rarely compared to other activities; and even if it
happens to be in the data, because of its erratic nature and
occurring all over the home, it is not very easy to be discov-
ered.

Figure 3: Number of discovered activities in the target space.

In the next step the source activities were mapped to the
target activities. In order to be able to evaluate the mapping
accuracy of our algorithm, we embedded the actual labels of
target activities in data. This label is not used during train-
ing, rather it’s only used at the end to verify the correctness
of the results. The mapping accuracy is defined as number
of target activities which their assigned label matches the ac-

tual embedded label. Figure.4 shows the mapping accuracy
for different amounts of unlabeled target data and no labeled
target data, in several different settings. It’s interesting to
note that transferring activities from a bigger apartment such
as the third apartment to smaller apartments such as the first
apartment leads to better results (e.g. 83% vs. 67% for 3
days of unlabeled data). One explanation can be the lack of
certain spaces in smaller apartments, such as the workspace
in the first and second apartments. It should be noted that
some activities might not be present in both spaces, such as
working or housekeeping. Also transfer between the first
and second apartment produced relatively satisfactory re-
sults, as those two apartments have a more similar layout
and functional structure.

We tested two of our own activity recognition algorithms
on the transferred labeled data. The first algorithm is a near-
est neighborhood (NN) algorithm based on the similarity
measure in Equation 2. The second algorithm is a standard
hidden Markov model (HMM) which learns the activities
using the Viterbi algorithm (Viterbi 1967). The models al-
most performed the same with the nearest neighborhood al-
gorithm sometimes slightly outperforming HMM due to its
use of temporal and spatial features. Using the embedded la-
bels we define the recognition rate as the percentage of sen-
sor events predicted with the correct label. Figure. 5 shows
NN’s recognition rate based on mapping from apartment 3 to
1 using 0 and 1 day of labeled target data. Figure. 6 shows
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Figure 4: Mapping accuracy in several different settings.

recognition rate based on mapping from apartment 2 to 1
for both NN and HMM. Our results show that despite using
little to no labeled target data, and having different layouts
and schedules, both algorithms still perform recognition in a
target space using data from a source space.

Figure 5: Nearest neighborhood’s recognition rate based on map-
ping from apartment 3 to 1 using 0 and 1 day of labeled target data.

Figure 6: Recognition rate based on mapping from apartment 2 to
1 for nearest neighborhood and HMM.

Conclusion and Future Work

Activity recognition plays an important role in smart envi-
ronments and is an essential component for planning and
plan recognition in smart environments. This paper intro-
duces a method of transferring learned activities from one

physical space to another, in order to avoid the time con-
suming task of data annotation for each new physical space
and to achieve a more accelerated deployment process. Our
experiment results show that it’s possible to recognize activ-
ities using no labeled data from the target space, and despite
the fact that the apartment layouts and residents schedules
were different.

In the future, we intend to combine this method with adap-
tive and active learning methods in order to be able to en-
hance the results over time. We also want to develop algo-
rithms that can map activities from environments with to-
tally different functionalities, such as from a workplace to a
residential space. Ultimately, we intend to integrate our ac-
tivity recognition system with a plan recognition and plan-
ning component as part of an assisted living project. Such an
integrated system will allow us to effectively recognize el-
derly’s activities and plans and provide timely prompts and
cues, whenever necessary.
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