
Multiagent Meta-Level Control for Predicting Meteorological Phenomena

Shanjun Cheng and Anita Raja
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

{scheng6, anraja}@uncc.edu

Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003
lessercs.umass.edu

Abstract

It is crucial for social systems to adapt to the dynamics of
open environments. This adaptation process becomes espe-
cially challenging in the context of multiagent systems. In
this paper, we argue that multiagent meta-level control is
an effective way to determine when this adaptation process
should be done and how much effort should be invested in
adaptation as opposed to continuing with the current action
plan. We develop a reinforcement learning based mechanism
for multiagent meta-level control that facilitates the meta-
level control component of each agent to learn policies in a
decentralized fashion that (a) it can efficiently support agent
interactions with other agents and (b) reorganize the underly-
ing network when needed. We evaluate this mechanism in the
context of a multiagent tornado tracking application called
NetRads. Empirical results show that adaptive multiagent
meta-level control significantly improves the performance of
the tornado tracking network for a variety of weather scenar-
ios.

Introduction

Social systems consisting of collaborating agents capable
of interacting with their environment are becoming ubiqui-
tous. These agents operate in an iterative three-step closed
loop (Russel and Norvig 2006): receiving sensory data from
the environment, performing internal computations on the
data, and responding by performing actions that affect the
environment either using effectors or via communication
with other agents. Two levels of control are associated
with this sense, interpretation, and response loop: delib-
erative and meta-level control (Cox and Raja 2008). The
lower control level is deliberative control (also called ob-
ject level), which involves the agent making decisions about
what domain-level problem solving to perform in the current
context and how to coordinate with other agents to complete
tasks requiring joint effort. At the higher control level is
meta-level control, which involves the agent making deci-
sions about whether to deliberate, how many resources to
dedicate to this deliberation, and what specific deliberative
control to perform in the current context. In practice, meta-
level control can be viewed as the process of deciding how to

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

interleave domain and deliberative control actions such that
tasks are achieved within their deadlines.

Meta-level control in complex agent-based settings was
explored in previous work (Raja and Lesser 2007) where
a sophisticated architecture that could reason about alter-
native methods for computation was developed. We build
on this earlier work and open a new vein of inquiry by ad-
dressing issues of scalability, partial information, and com-
plex interactions across agent boundaries. Consider for in-
stance a scenario where two agents A1 and A2 are nego-
tiating about when A1 can complete task T1 that enables
A2’s task T2. This negotiation involves an iterative process
of proposals and counter-proposals where at each stage A2

generates a commitment request to A1, A1 performs local
optimization computations (scheduling) to evaluate commit-
ment requests; this process repeats until A1 and A2 arrive at
a mutually acceptable commitment. The multiagent meta-
level control decision would be to ensure that A1 completes
its local optimization in an acceptable amount of time so
that A2 can choose alternate methods in case the commit-
ment is not possible. In setting up a negotiation, the meta-
level control should establish when negotiation results will
be available. This involves defining important parameters
of the negotiation including the negotiation context and the
earliest time the target method will be enabled. Meta-level
control will ensure that the negotiation phase of two agents
overlaps to guarantee efficiency. Multiagent meta-level con-
trol (MMLC) facilitates agents to have a decentralized meta-
level multiagent policy, where the progression of what delib-
erations the agents should do, and when, is choreographed
carefully and includes branches to account for what could
happen as deliberation plays out. Our hypothesis in this pa-
per is that MMLC leads to improved performance in the con-
text of a multiagent tornado tracking application.

NetRads (Krainin, An, and Lesser 2007) is a network of
adaptive radars controlled by a collection of Meteorologi-
cal Command and Control (MCC) agents that determine for
the local radars where to scan based on emerging weather
conditions. The NetRads radar is designed to quickly detect
low-lying meteorological phenomena such as tornadoes, and
each radar belongs to exactly one MCC. The MCC agent
can manage multiple radars simultaneously. The time allot-
ted to the radar and its control systems for data gathering
and analysis of tasks is known as a heartbeat. In (Krainin,

6



An, and Lesser 2007), a system is implemented with three
phases containing only deliberative-level actions in a heart-
beat. The phases are: Data Processing, Local Optimization
and Negotiation. In Data Processing, each MCC gathers
moment data from the radars and runs detection algorithms
on the weather data. The results of this analysis lead to a set
of weather-scanning tasks of interest for the next radar scan-
ning cycle. In Local Optimization, the MCC determines the
best set of scans for the available radars that will maximize
the sum of the utilities associated with the chosen tasks ac-
cording to a utility function based on the end-user priorities.
In Negotiation, the MCC communicates with its neighboring
MCCs to compromise their local optimization based on the
need for radars from multiple MCCs to be coordinated so as
to accomplish some joint tasks and to avoid redundant scan-
ning of the same area. The authors (Krainin, An, and Lesser
2007) applied a hill-climbing approach to an abstract simu-
lation of NetRads radars to show its usefulness in distributed
radar networks.

In this work, we add a new phase: Multiagent Meta-level
Control. Each heartbeat is split into four phases: Phase
1: Data Processing; Phase 2: Multiagent Meta-level Con-
trol; Phase 3: Local Optimization and Phase 4: Negotiation.
The deliberative actions in Phases 1, 3 and 4 are exactly
the same as described in (Krainin, An, and Lesser 2007)
while the meta-level actions in Phase 2 is the research de-
scribed in this paper. Multiagent Meta-level Control con-
tains meta-level actions that handle the coordination of MCC
agents and guide the deliberative-level actions in Local Op-
timization and Negotiation. We augment the MCC agents
with meta-level control capabilities (Phase 2) to address two
problems in NetRads: 1) How to adjust the system heartbeat
so as to adapt to changing weather conditions? 2) How to
re-organize the sub-nets of radars under each MCC?. We de-
scribe a multiagent meta-level control approach that involves
coordination of decentralized Markov Decision Processes
(DEC-MDPs) (Bernstein, Zilberstein, and Immerman 2000)
using Weighted Policy Learner (WPL) (Abdallah and Lesser
2007), a reinforcement learning (RL) algorithm. WPL is
used to learn the policies for the meta-level DEC-MDPs be-
longing to individual agents. We empirically show that dis-
tributed meta-level control gives a performance advantage in
NetRads for a number of scenarios.

The rest of the paper is structured as follows: We first
identify the meta-level research issues within the context of
NetRads, a real-world tornado-tracking application. We then
describe the formalization of MMLC based on coordinating
DEC-MDPs (Bernstein, Zilberstein, and Immerman 2000)
using WPL algorithm followed by an empirical evaluation of
this approach on NetRads. We then present the conclusions
and future work directions.

Motivating Example

At the highest level, the question we plan to address in Ne-
tRads is the following: How does the meta-level control
component of each agent learn policies so that it can effi-
ciently support agent interactions with other agents and re-
organize the underlying network when needed? Specifically

in NetRads, reorganizing the network involves addressing
the following questions:

1. How to assign different heartbeats to sub networks of
agents in order to adapt to changing weather conditions?

2. What triggers a radar to be handed off to another MCC
and how do we determine which MCC to hand off the
radar to?

The intuition behind identifying these meta-level issues is
that it is preferable that radars with large data correlation be
allocated to the same MCC. Data Correlation occurs when
radars belonging to different MCCs share data of the same
weather phenomenon. MCCs cooperatively avoid redundant
scans of the same area by sharing data with each other. Al-
locating such radars to the same MCC potentially reduces
the amount of communication and the time for negotiation
among MCCs. Moreover, adjusting the system heartbeat al-
lows MCCs to adapt to changing weather conditions. For
example, if many scanning tasks occur in a certain region,
meta-control may decide to use a shorter heartbeat to allow
the system to respond more rapidly. In our work, a single
heartbeat of MCC is set to be 30 seconds (shorter) or 60
seconds (longer). This decision would also involve reorga-
nizing the MCC neighborhoods so that there are clusters of
MCCs with each cluster having a different heartbeat depend-
ing on the type and frequency of tasks that the cluster has to
handle.

Figure 1 shows an example NetRads topology of 4 MCCs.
Each MCC controls 3 radars (A radar is connected with its
supervised MCC via a solid line in Figure 1, e.g., MCC2

supervises radars {R4, R5, R6}). Data correlation between
two radars is represented by dashed arrows. R3 has large
data correlation with R4 and R5, and reallocating it from
MCC1 to MCC2 improves the performance. In Figure 1,
suppose many scanning tasks occur in the common bound-
ary between MCC2 and MCC3, it is preferable for these
two MCCs to use a shorter heartbeat (30 seconds) so as to
respond rapidly to the changing environments. Also, sup-
pose MCC1, MCC2 and MCC3 execute the specific ac-
tions respectively: “ Move R3 to MCC2”, “Move R5 to
MCC3” and “Move R9 to MCC4” . Figure 2 is the result-
ing NetRads topology. By making such changes in heartbeat
and radar associations, the system saves the cost on commu-
nication and the time on negotiation among MCCs as well
as enhances response time.

In the next section we describe the details of Phase 2:
Multiagent Meta-level Control which implements the co-
ordination of meta-level control parameters across agents.
This includes discussing the RL based approach to learn
meta-level policies and how the MCC network handles the
non-stationary environment by switching between policies.

Formalizing MMLC

Prior to describing our framework of MMLC, we define sev-
eral key terms used in the rest of this paper:

Task: In NetRads application, each task in the system
has a position, a velocity, a radius, a priority, a preferred
scanning mode, and a type (Krainin, An, and Lesser 2007).
Tasks may be one of a few different types: storm, rotation,

7



Figure 1: An Example NetRads Topology

Figure 2: Resulting NetRads Topology of Figure 1.

reflectivity or velocity. Each of these types has its own dis-
tributions for the characteristics described above. Tasks may
be either pinpointing or non-pinpointing.

Pinpointing and non-pinpointing Task: Pinpointing
tasks are those tasks that contribute to a significant util-
ity gain by scanning the associated volume of space with
multiple radars belonging to the same or different MCCs
at once (Krainin, An, and Lesser 2007). The utility gained
from scanning a pinpointing task increases with the number
of radars scanning the task; whereas, the utility for a non-
pinpointing task is the maximum of the utilities from the
individual radars.

Degree of Data Correlation: Degree of data corre-
lation captures how much data correlation MCCi has
with its neighbor(s). It is defined as 〈Q1, Q2, ..., Qj〉, in
which j is the total number of MCCi’s neighbors, Qj ∈
{High, Low}. When radars belonging to different MCCs

share data (especially data about the pinpointing tasks be-
tween them), the communication between these two MCCs
during negotiation would increase. Tasks may be either pin-
pointing or non-pinpointing. We assume the value to be
High if the percentage of pinpointing tasks between two
MCCs is equal or more than 50%; otherwise it is set to Low.

Neighborhood Scenario: In NetRads application, two
MCCs are defined as neighbors if they share overlapping
scanning regions (In Figure 1, MCC2 has two neighbors
{MCC1, MCC3} while MCC1 has only MCC2 as its
neighbor.). In other words, if radars belonging to two MCCs
are expected to scan some part of the same physical space,
then the MCCs are neighbors. Each neighborhood scenario
is a qualitative abstraction that captures the characteristics
of a class of real scenarios that are similar in structure and
policy. We define a set of NSi which consists of the neigh-
borhood scenarios of MCCi might encounter based on the
data correlation degrees it has with its neighbors. NSi =
{V0, V1, .., Vj}, where j denotes the number of neighbors of
MCCi. Vj(j �= 0) denotes the number of radars involved
in the data correlation between MCCi and its jth neighbor
(V0 is the number of radars of MCCi involved in the data
correlation.). Vj ∈ {0, 1, many}. In Figure 1, from the view
of MCC2, it is in NS2= {many, 1, many}.

Meta-level Control flow

Figure 3 captures the control flow in Multiagent Meta-level
Control of each MCC. The Scenario Library Module stores
the MDPs of the abstract meta-level scenarios and their poli-
cies which is available to each MCC agent. We group sets
of MCC scenarios into abstract meta-level scenarios based
on types of tasks and neighborhood scenarios and learn the
policies for each abstract scenario offline which is the role of
the Offline RL Module (We will discuss this module later.).
The Optimal Policy Generation Module generates the op-
timal abstract policy from an abstract MDP. The Specific
Action Mapping Module maps the abstract action policies
to specific actions in NetRads domain which includes the
radar handoffs and heartbeat changing. At runtime, each
MCC agent adopts the scenario-appropriate policy, executes
the appropriate actions and switches to a new policy with
changes in scenario in the next heartbeat.

DEC-MDP formalization

A Markov Decision Process (MDP) is a probabilistic model
of a sequential decision problem, where states can be per-
ceived exactly, and the current state and action selected de-
termine a probability distribution on future states (Sutton
and Barto 1998). Specifically, the outcome of applying an
action to a state depends only on the current action and state
(and not on preceding actions or states). We map the Ne-
tRads meta-level control problem to a DEC-MDP model in
the following way. The model is a tuple 〈S,A,P,R〉, where

• S is a finite set of world states, with a distinguished initial
state s0. In NetRads domain, the state of each MCC agent
is the meta-level state (defined below).

• A is a finite set of actions. In NetRads domain, The
actions for the MCC agents are the combinations of the

8



Figure 3: Control flow in Multiagent Meta-level Control of
each MCC involving 4 MCCs.

abstract actions (defined below) or the changing of the
heartbeat.

• P is a transition function. P(s′ | s, ai) is the probabil-
ity of the outcome state s′ when the action ai is taken
in state s. In NetRads domain, the transition function
is based on the time/quality distribution for the actions
MCCi chooses to execute.

• R is a reward function. R(s, ai, s
′) is the reward obtained

from taking action ai in state s and transitioning to state
s′. In NetRads domain, the reward is only received in a
terminal state, and it represents the average of qualities
of all tasks collected by MCCi in Phase 1 (Data Pro-
cessing) from last heartbeat. The quality of a task from a
single radar is the priority of the task multiplied by a fac-
tor meant to represent the quality of the data that would
result from the scan (specified by experts in the field e.g.
meteorologists) (Krainin, An, and Lesser 2007).

The real state of the agent has the detailed information
related to the agent’s decision making and execution (Raja
and Lesser 2007). It accounts for every task which has to
be reasoned about by the agent, the execution characteris-
tics of each of these tasks, and information about the en-
vironment such as types of tasks (storm, rotation, velocity
or reflectivity in NetRads application) arriving at the agent
and frequency of arrival of tasks. The real state is continu-
ous and complex. This leads to a combinatorial explosion
in the real state space for meta-level control even for sim-
ple scenarios. The complexity of the real state is handled by
defining an abstract representation of the state which cap-
tures the important qualitative state information relevant to
the meta-level control decision making process. We call this
the meta-level state of the agent.

We define three features of the meta-level state F0, F1 and
F2 as follows:

Feature F0 contains Information about Self. Specifi-
cally it consists of the MCC’s own heartbeat (Vhb) and the
number of MCC’s own radars (Vradar) involved in the data

correlation with its neighboring MCCs. It is defined as
(Vhb, Vradar), in which Vhb ∈ {30seconds, 60seconds}
and Vradar ∈ {0, 1, many}. many means there are more
than one radar involved in the data correlation. We use the
qualitative value many to simplify the description of MCC’s
relation with its neighbors so as to reduce the number of
different feature sets. As discussed later, this helps deter-
mine abstractions of the states and actions of MDPs. In
Figure 1, suppose MCC2 has a 30 seconds heartbeat and
it has two radars (R4 and R5) involved in the data corre-
lation with its neighboring MCCs. MCC2 has the feature
F0 = (30seconds, many) in its meta-level state.

Feature F1 contains Information about Neighbor(s). This
feature is expressed as a tuple 〈f1, f2, ..., fi〉, in which i
is the total number of neighbors of the MCC, fi denotes
the ith neighbor’s information and is as defined in F0. In
Figure 1, suppose MCC1 has a 30 seconds heartbeat and
MCC3 has a 60 seconds heartbeat. MCC2 has the feature
F1 = 〈(30seconds, 1), (60seconds, many)〉 in its meta-
level state.

Feature F2 has the same definition as Degree of Data
Correlation defined before.

In Figure 1, MCC2 has the initial state: s0,
in which F0 = (30seconds, many), F1 =
〈(30seconds, 1), (60seconds, many)〉 and F2 =
〈High, High〉.

We abstract the actions in each class of MDPs in two
qualitative modes. The two modes are:Heavy Move and
Light Move. Suppose MCCi has high data correlation
with its neighbors, Heavy Move of MCCi , is defined as
“Move more than 70% of MCCi’s radars to its neighbors
until data correlation degree between MCCi and its neigh-
bors changes to Low” ; Light Move of MCCi is defined
as “Move less than 20% radars of MCCi’s radars to its
neighbors until data correlation degree between MCCi and
its neighbors changes to Low” . Abstract action is de-
fined as: Mode(MCCi to MCCj), which means “move
radars from MCCi to MCCj using the qualitative mode
Mode. In Figure 1, one action for MCC2 could be
“LightMove(MCC1 to MCC2) & LightMove (MCC3

to MCC2)”.

Applying WPL to Learn Policy

Multiagent Reinforcement Learning (MARL) is a common
approach for solving multiagent decision making problems.
It allows agents to dynamically adapt to changes in the en-
vironment, while requiring minimum domain knowledge.
Previous techniques of MARL have the problem of not con-
verging in the worst case. Bowling (Bowling and Veloso
2002a) contributes to the concept of learning with a variable
learning rate that is shown to be able to overcome this short-
coming. Bowling presents the Win or Learn Fast heuris-
tic (WoLF) that makes a rational algorithm convergent in a
two-agents, two-actions game. In this paper, we map Abdal-
lah & Lesser’s WPL algorithm (Abdallah and Lesser 2006)
to the NetRads domain in the Offline RL Module to do of-
fline learning of the MMLC policies. WPL achieves con-
vergence using an intuitive idea: slow down learning when
moving away from a stable policy and speed up learning

9



when moving towards the stable policy. Abdallah (Abdal-
lah and Lesser 2007) develops a self-organizing mechanism
that uses information from learning to guide the network
restructuring process. In his work, there is an assumption
that the network configuration will converge. In our work,
we are studying network reorganization from a continuous
perspective without the assumption of configuration conver-
gence. This is because the weather phenomena are expected
to change constantly.

WPL is a variant of the WoLF (Bowling and Veloso
2002b) algorithm for multiagent meta-level control. The
main characteristic of the WoLF algorithm is its ability to
change the learning rate to encourage convergence in a mul-
tiagent RL scenario. It helps determine how quickly or
slowly an agent should change its policy while accounting
for other agents that are learning. The intuition is that a
learner should adapt quickly when not performing well and
should be cautious when doing better than expected since
there is the likelihood of other agents changing their policy.

The main idea in Algorithm 1 is to compute an approxi-
mate gradient of Qi, defined as Δ(a), and use it to update πi,
with small step η. We determine the computation of Δ(a)
by comparing the value of total average reward r̂ to the value
of Qi(s, a). A learner is doing better than expected, if

Σa∈Aπi(s, a)Qi(s, a) > Qi(s, a) (1)

When it is doing better, we update πi using Δ(a) calculated
in line 9, Algorithm 1, otherwise using Δ(a) calculated in
line 10, Algorithm 1.

In Algorithm 1, Qi(s, a) stores the reward MCCi ex-
pects if it executes action a at state s. πi(s, a) stores the
probability that MCCi will execute action a at state s. The
actions here are abstracted actions and the states are meta-
level states as defined in Section 3.2. As in WPL, Q and
π together capture what a MCC has learned so far. The
reward value in our RL algorithm is the average of quali-
ties collected by MCCi in Data Processing phase. In the
(i + 1)th heartbeat period, the radars of MCCj would do
the scanning tasks based on the optimization of ith heartbeat
period. At the beginning of the (i + 2)th heartbeat period,
the Average Quality is collected by MCCj which reflects
the effect of the meta-level control policies of MCCj in the
ith heartbeat period. The horizon of the MMLC policies
for the NetRads application is two heartbeat periods. We
defined this horizon manually after examining the behavior
of the NetRads domain in various scenarios. If the hori-
zon of the MMLC policies is too short, it triggers meta-level
control too frequently which increases the cost of decision
making and affects performance. On the other hand, a long
horizon makes the meta-level control policy obsolete due
to dynamic nature of the environment. In future work, the
heartbeat could be set dynamically by the system to handle
non-stationary environments.

Since a heartbeat period consists of four phases, it is im-
portant that the Multiagent Meta-level Control phase takes
negligible amount of time so that there is enough time for the
complex operations of Local Optimization and Negotiation
phases. The NetRads system is designed to quickly detect
low-lying meteorological phenomena, so time is a critical

concern. Online learning on a very large MDP that cap-
tures all possible weather scenarios (learning Qi(s, a) and
πi(s, a) for each possible specific weather scenario) dur-
ing the Multiagent Meta-level Control phase can be very
time expensive. To overcome this challenge, we construct
a library of small MDPs (the Scenario Library Module) for
different types of neighborhood scenarios at the meta-level
where there is no requirement for the transfer of learned
knowledge between agents. Each neighborhood scenario
is a qualitative abstraction that captures the characteristics
of a class of real scenarios that are similar in structure and
policy. We perform the learning offline and constrain the
runtime costs by limiting Phase 2 activity to just looking up
the scenario-appropriate policy to determine the best action
(the Optimal Policy Generation Module).

The Specific Action Mapping Module maps the abstract
action policies to specific actions in NetRads domain which
includes the radar handoffs and heartbeat changing.

Algorithm 1 Abdallah & Lesser’s WPL (state s, action a)
1: begin
2: r ← Average Quality
3: update Qi(s′, a′) using r
4: s′ ← s
5: a′ ← a
6: r̂ ← total average reward =

Σa∈Aπi(s, a)Qi(s, a).
7: foreach action a ∈ A do
8: Δ(a) ← Qi(s, a) − r̂
9: if Δ(a) > 0 then Δ(a) ← Δ(a)(1 − πi(a))

10: else Δ(a) ← Δ(a)(πi(a))
11: end
12: πi ← πi + ηΔ
13: end

In the next section, we will evaluate the role of MMLC in
NetRads performance. We first generate meta-level heuris-
tics manually to show meta-level control is useful and then
show that our learning algorithm allows the NetRads net-
work to dynamically adjust to changing weather phenom-
ena.

Empirical Evaluation

We use the simulator of the NetRads radar system (Krainin,
An, and Lesser 2007) to evaluate our algorithm. In this
simulator, radars are clustered based on location, and each
cluster of radars has a single MCC. Each MCC has a fea-
ture repository where it stores information regarding tasks in
its spacial region, and each task represents a weather event.
The simulator additionally contains a function that abstractly
simulates the mapping from physical events and scans of
the radars to what the MCC eventually sees as the result of
those scans. MCCs discover and track the movement of the
weather events through this process.

Tasks are created at a MCC based on radar moment data
that has been just received. Tasks may be either pinpointing
or non-pinpointing.

10



Experiment Setup

For the experiments reported here, we use the simulation
setup where there are 3 MCCs and 9 radars and each MCC
supervises 3 radars separately. This is the setup used by
Krainin et. al (Krainin, An, and Lesser 2007). Figure 4
is the snapshot of the radar simulator for a particular real-
time scenario. In Figure 4, each hollow circle represents a
radar and each filled circle represents a task (we are only
concerned about rotation and storm tasks in the evaluation.).
The Radar Information Panel (Figure 4) provides informa-
tion about a particular radar including its name, its MCC
supervisor, its physical location in the plane coordinate sys-
tem, the angle range it sweeps, the target task it scans and the
belief value of the negotiation algorithm in Phase 4: Negoti-
ation. We test the results for three different types of weather
scenarios. They are defined as: High Rotation Low Storm
(HRLS), Low Rotation High Storm (LRHS), and Medium
Rotation Medium Storm (MRMS). HRLS denotes the sce-
nario in which the number of rotations overwhelms the num-
ber of storms in a series of heartbeats (e.g. Lots of rotation
phenomena move in followed by a few storm phenomena,
and then followed by lots of rotation phenomena.). LRHS
stands for the scenario in which the number of storms over-
whelms the number of rotations in a series of heartbeats.
MRMS denotes the scenario in which the number of storms
approximately equals that of rotations. Suppose there are 80
total tasks, HRLS contained 60 rotation tasks, 20 storm tasks
as well as each of the other two types; LRHS contained 60
storm tasks, 20 rotation tasks as well as each of the other two
types; MRMS contained 40 storm tasks, 40 rotation tasks as
well as each of the other two types.

Figure 4: Snapshot of Radar Simulator.

We generate the training/test cases by varying such pa-
rameters as number and types of tasks, initial heartbeat for
each MCC, percentPinpointing and etc. percentPinpoint-
ing is defined as the percentage of pinpointing tasks to all
tasks in a specific training/test case. We vary percentPin-
pointing to evaluate the performance on different numbers
of pinpointing tasks. We also scale up the number of tasks
in training/test cases. Average Quality (defined in Data Pro-
cessing phase of a heartbeat) and Negotiation Time are the

parameters to compare the scanning performance. Negotia-
tion Time denotes the total time (seconds) MCCs spend in
Negotiation (Phase 4).

We compare the results of three methods: No-MLC,
Adaptive Heuristic Heartbeat (AHH) and MMLC-WPL. No-
MLC is the method that without meta-level control module
(It has all the phases except Multiagent Meta-level Control
in a heartbeat). AHH is the method where we incorporate
simple heuristics in meta-level control to adaptively change
the heartbeat of each MCC. The rules are simple: For each
MCCi, at the end of Data Processing (Phase 1), if there are
more rotation phenomena in the region of MCCi, MCCi

sets the longer heartbeat for its next heartbeat period, oth-
erwise, MCCi sets the shorter heartbeat for its next heart-
beat period (longer heartbeat is better for rotations due to
the need for more scanned elevations, and shorter heartbeat
is better for storms). MMLC-WPL augments MCCs with
meta-level control based on offline RL (WPL) to adjust the
system heartbeat and re-organize the sub-nets of radars so
as to adapt to changing weather conditions. For the Multi-
agent Meta-level Control phase, we used 50 training cases
and each has a long sequence of training data (500 heartbeat
periods) to learn the policies for all the abstract scenarios
offline. The learning rate (η in Algorithm 1) is set to 0.01.
Using each method mentioned above, we run 30 test cases
for each of three weather scenarios. We do one-tailed paired
two-sample t-tests to compare the results reported.

Discussion

We ran 30 test cases for each weather scenario (percentPin-
pointing is set to 60%, the number of tasks is 80.). Figure 5
and Figure 6 show the performance of No-MLC, AHH and
MMLC-WPL on Average Quality and Negotiation Time for a
variety of scenarios. In HRLS scenarios, all the MCCs have
to handle HRLS scenarios simultaneously. AHH performs
significantly (p < 0.05) better than No-MLC on Average
Quality (Figure 5(a)) (p value from t-test is 0.022. AHH im-
proved, on average, 6.59 on Average Quality than No-MLC).
This shows the effectiveness of adding meta-level control
in the system in HRLS scenarios. According to the simple
rules in AHH, the three MCCs would all set their heartbeat
to 60 seconds for HRLS. The three MCCs would then have
more time on Local Optimization and Negotiation so that the
final configurations of scanning tasks for the next heartbeat
period would be more optimized. This results in larger Aver-
age Quality. MMLC-WPL performs significantly (p < 0.05)
better than No-MLC (p value from t-tests is 0.0093. MMLC-
WPL improved, on average, 8.02 on Average Quality than
No-MLC.) and a little better than AHH. The minor discrep-
ancy of performance between MMLC-WPL and AHH on
HRLS scenarios leads to the speculation that the 60 seconds
heartbeat is critical for rotations due to the need for more
scanned elevations. Rotations need more time for scanning
as they must be scanned at the lowest six elevations. Storms,
on the other hand, must be scanned at the lowest four eleva-
tions to obtain useful information.

In both LRHS and MRMS scenarios (Figure 5(b) and
Figure 5(c)), AHH performs a little better than No-MLC.
MMLC-WPL performs significantly (p < 0.05) better than

11



(a) HRLS Scenarios

(b) LRHS Scenarios

(c) MRMS Scenarios

Figure 5: Average Quality of No-MLC, AHH and MMLC-
WPL in different weather scenarios.

No-MLC (p values from t-tests are 0.0085 and 0.027 respec-
tively. MMLC-WPL improved, on average, 6.35 and 9.34
on Average Quality than No-MLC.) and AHH (p values are
0.014 and 0.0062 respectively. MMLC-WPL improved, on
average, 5.64 and 8.47 on Average Quality than AHH.). We
can see that the 30 seconds heartbeat is not a profound factor
in LRHS scenarios (AHH increases small amount of Average
Quality.). In MMLC-WPL, each MCC adopts the policy ap-
propriate to its neighborhood scenario. Allocating radars
with large data correlation to the same MCC reduces the
time for negotiation between MCCs which would increase

the time for Local Optimization. In certain situations (e.g.,
there are many internal tasks compared to boundary tasks) it
is better to do a good job in local optimization and allocate
fewer cycles to negotiation while in other situations more cy-
cles for negotiation would be better (e.g., many pinpointing
tasks exist in boundary regions between MCCs). MMLC-
WPL performs significantly better on learning policies so as
to control when and which radars should be moved.

Figure 6: Negotiation Time of No-MLC, AHH and MMLC-
WPL in different weather scenarios.

Figure 7: Average Quality of No-MLC, AHH and MMLC-
WPL, for percentPinpointing to be 20%, 60% and 90%.

In Figure 6, MMLC-WPL performs significantly (p <
0.05) better than No-MLC on Negotiation Time (p values are
0.041, 0.029 and 0.0071. MMLC-WPL spent, on average,
4.8, 7.4 and 7.3 less time than No-MLC.) for each weather
scenario. MMLC-WPL uses least time on Negotiation phase
and achieves highest Average Quality in each weather sce-
nario. This shows that adaptive meta-level control allows for
effective use of the heartbeat i.e. by ensuring that meta-level
control parameters are coordinated so that negotiations con-
verge quickly, more time can be spent on data processing.
AHH does not perform better than No-MLC on all weather
scenarios (It spends more Negotiation Time than No-MLC

12



Figure 8: Average Quality of No-MLC, AHH and MMLC-
WPL, for number of tasks to be 80, 160 and 200.

in LRHS scenarios) since AHH is not as adaptive as MMLC-
WPL in dynamic conditions.

We vary percentPinpointing (setting it to 20%, 60% and
90%) and run test cases on all the three weather scenar-
ios. In Figure 7, we see that Average Quality increases with
the increase of the percentage of pinpointing tasks to all
tasks for No-MLC, AHH and MMLC-WPL. More pinpoint-
ing tasks occurring in the boundary regions between MCCs
would increase the utilities for scanning pinpointing tasks so
as to increase Average Quality of all the scanning tasks. In
all percentPinpointing settings (20%, 60% and 90%), AHH
performs better than No-MLC and MMLC-WPL achieves the
best performance.

In Figure 8, we scale up the number of total tasks to 160
and 200 and compare the performance with that of 80 tasks
(percentPinpointing is fixed at 60%). Average Quality in-
creases substantially with the increase of number of tasks
for all three methods. MMLC-WPL performs significantly
(p < 0.05) better than No-MLC (p values are 0.038, 0.014
and 0.00043. MMLC-WPL improved, on average, 8.0, 18.2,
and 19.8 on Average Quality than No-MLC.) and AHH (p
values are 0.029, 0.0033 and 0.005. MMLC-WPL improved,
on average, 5.3, 11.4, and 12.3 on Average Quality than
AHH.) on Average Quality.

Conclusion and Future Work

In this paper, we describe a multiagent meta-level control
model that coordinates decentralized markov decision pro-
cesses and implements a RL-based algorithm to learn the
policies of the individual MDPs. Previous work in the Ne-
tRads domain (Krainin, An, and Lesser 2007) showed that a
decentralized technique at the deliberation-level with a low
number of required optimizations improved tasked alloca-
tion in the time-constrained domain. In this paper we show
that MMLC reasons about the deliberative-level approach
and coordinates the deliberation across agents leads to im-
provement in performance.

MMLC equips each agent to carefully choreograph the

progression of what deliberations agents should do and
when. It also makes agents account for what could happen
as deliberation plays out. In our approach, policies for ab-
stract meta-level scenarios are learned offline and each agent
adopts the policy appropriate to its scenario at runtime. Em-
pirical evaluation shows that multiagent meta-level control
is an efficient way to allocate resources and reorganize the
network with the goal of improving performance in the con-
text of a multiagent tornado tracking application. Our model
can be applied to other domains such as meeting scheduling
and sensor networks where two agents with different views
of policies for negotiation need to be reconciled.

Our current implementation guarantees optimal policies
for each agent from a local perspective. Conflicting agent
actions cannot be handled efficiently. Although this wasn’t
an issue in our 3-agent setup, we plan to extend our MMLC
approach and make it more scalable. As future work, we will
compare action choices using marginal utilities and use as
input to a global optimization algorithm that will guarantee
global optimality of meta-level policies.

References

Abdallah, S., and Lesser, V. 2006. Learning the Task Al-
location Game. In Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multi-Agent
Systems, 850–857. Hakodate, Japan: ACM Press.
Abdallah, S., and Lesser, V. 2007. Multiagent Rein-
forcement Learning and Self-Organization in a Network of
Agents. In Proceedings of the Sixth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems,
172–179. Honolulu: IFAAMAS.
Bernstein, D.; Zilberstein, S.; and Immerman, N. 2000. The
complexity of decentralized control of markov decision pro-
cesses. In Proceedings of the Sixteenth Conference on Un-
certainty in Artificial Intelligence(UAI), 32–37.
Bowling, M., and Veloso, M. 2002a. Multiagent learning us-
ing a variable learning rate. Artificial Intelligence 136:215–
250.
Bowling, M., and Veloso, M. 2002b. Scalable Learning in
Stochastic Games. In Proceedings of AAAI 2002 Workshop
on Game Theoretic and Decision Theoretic Agents.
Cox, M., and Raja, A. 2008. Metareasoning: A Manifesto.
In Proceedings of AAAI 2008 Workshop on Metareasoning:
Thinking about Thinking, 1–4.
Krainin, M.; An, B.; and Lesser, V. 2007. An Application of
Automated Negotiation to Distributed Task Allocation. In
2007 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology (IAT 2007), 138–145. Fremont, Cal-
ifornia: IEEE Computer Society Press.
Raja, A., and Lesser, V. 2007. A Framework for Meta-level
Control in Multi-Agent Systems. Autonomous Agents and
Multi-Agent Systems 15(2):147–196.
Russel, S. J., and Norvig, P. 2006. Artificial Intelligence A
Modern Approach. Pearson Education.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing. MIT Press.

13


