Probabilistic Programming for Planning Problems

Ingo Thon and Bernd Gutmann and Guy Van den Broeck

Abstract

Probabilistic programing is an emerging field at the intersec-
tion of statistical learning and programming languages. An
appealing property of probabilistic programming languages
(PPL) is their support for constructing arbitrary probability
distributions. This allows one to model many different do-
mains and solve a variety of problems. We show the link be-
tween probabilistic planning and PPLs by introducing a trans-
lation that allows one to map probabilistic planning prob-
lems onto parameter learning in PPLs. The advantage of
our approach is twofold. Firstly, having the expressivity of a
programming language simplifies modeling compared to us-
ing existing planning languages such as PPDDL. Secondly,
there exist effective general-purpose learning algorithms that
— having the correct encoding — can readily be used to learn
optimal policies. In this paper we use ProbLog — a proba-
bilistic version of Prolog — as programming language, but our
approach can be applied on any other PPL as well.

Introduction

Planning is one of the oldest problems in artificial intelli-
gence, and yet it is still a very active field of research. This
is partly due to the very general definition of planning, but
also due to the fact that modern computers are fast enough to
solve large real world problems. In this paper, we show how
planning problems can be represented using the probabilistic
programming language (PPL) ProbLog. The use of a PPL is
appealing because it can represent domains having more or
less arbitrary properties. Modeling of partial observability,
random processes of the environment, concurrent actions,
with different and even conflicting goals, fit naturally. Af-
terwards, we show how to solve the planning problem using
existing methods, although not the ones expected. Finally,
we discuss further improvements to the existing methods to
specialize them for the planning task.

Planning

A very basic definition of planning is: given a set of ac-
tions, an initial state and a set of desired goal states, find a
sequence of actions such that performing this sequence start-
ing in the initial state will reach the goal state. In this basic
setting many algorithms that can find satisfying plans have

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

98

been developed. Many instances of planning problems can
be solved in reasonable time. But classical planning makes
the crucial assumptions that (a) the domain model is spec-
ified in advance and (b) the actions are deterministic. This
encourages us to push boundaries and move to more gen-
eral planning problems. Probabilistic planing, for example,
is situated in domains where the outcome of an action is
not completely determined but follows a certain distribu-
tion, violating assumption (b). Planning problems violat-
ing (a) were formalized within model-lite planning (Yoon
and Kambhampati 2007), which does not rely on a complete
model of the domain. This is slightly different from Rein-
forcement Learning in that it (i) does not consider utilities
or costs, but just sets of possible goal states, it (ii) assumes
that the structure of the domain is known and (iii) that the
agent has to achieve the goal exactly once. To tackle do-
mains with costs and utilities, Van den Broeck et al. (2010)
recently developed DTProbLog, a decision theoretic exten-
sion of ProbLog. W.r.t. requirement (ii), we believe that in
most domains, it is easy to define the preconditions and pos-
sible effects of an action, but hard to specify the exact prob-
ability distributions in the model. =~ Some existing proba-
bilistic planners like FF-Replan (FFR) (Yoon, Fern, and Gi-
van 2007), typically violate requirement (iii). They might
choose actions where a deadlock state might be the outcome
like illustrated in the following. Simply speaking, FFR (all-
outcomes determinization) replaces the action operators by
a set of deterministic ones, which are used to find a plan us-
ing FF. During execution, the system monitors the state and
whenever the result is unexpected, it re-plans - hence the
name. This approach has an obvious shortcoming not repre-
sented in the IPC planning competition domains, which are
the standard benchmark. Consider a domain with two ac-
tions: one leading to the goal with above average probabil-
ity and otherwise killing the agent, one having a high prob-
ability that the agent stays in the current state but otherwise
reaching the goal state. After applying the determinization
approach the agent would blindly select the most dangerous
action. Naive approaches to solve this problem, such as
altering the action operators or hindsight optimization might
require complicated inference. This is due to the fact that
the deadlock is in general not an immediate consequence of
executing a certain action. Avoiding this behavior is one of
the central aspects in our research, as it is an important prob-



lem in many domains, like for example robotics. A vacuum
cleaning robot facing a descending staircase should use the
safest escape plan or even not move at all. Due to the lack of
space, we will not discuss learning the actions. It was shown
how to learn action outcomes in planning domains, for ex-
ample by the means of CPT-L (Thon et al. 2009). A straight-
forward mapping onto ProbLog exists. This paper also de-
scribes how the well known planning language PPDDL can
be mapped to CPT-L. This implies that it is possible to gen-
erate plans for PPDDL by means of ProbLog. The idea of
compiling probabilistic models described in one language
into a second one has received a lot of attention in recent
years. As described above this also works for the widely ac-
cepted planning language PPDDL. We belief that most other
formalism can be compiled into the language described be-
low. This approach has the advantage that representational
questions like the frame problem and composition of actions
can be solved in a high level language, while the solution can
be computed using the low level language.

Probabilistic programming

A PPL consists of a set of elementary random predi-
cates/procedures (ERP) and a deterministic program writ-
ten in a host language. This program specifies how the joint
distribution can be calculated starting from the ERPs as a
generative process. While this definition covers all exist-
ing PPLs, we focus on ProbLog which is an extension of
Prolog. More specifically, we will use the DTProbLog vari-
ant. Next to the ERPs, DTProbLog adds constructs to the
ProbLog language that model choices or actions the agent
can decide upon. We will use the term elementary choice
(EC) to denote these constructs. We illustrate our setting on
a simple example where an agent can choose between either
throwing two coins or one thumbtack. The goal is to obtain
heads up (h). The ERPs coin and thumbt are combined

0.5 :: coin(X, t). 0.4 :: thumbt(t).
coin(X) :- if((coin(1,t),coin(2,t)),X = t,X = h).
thumbt(h) :- not thumbt(t).

by stating that if both coin tosses yield tail the result will be
tail, otherwise head. For planning problems we also have
to specify the decisions the agent has, by giving the dis-
tribution over the available choices, which is indicated by
? :: decide(thumbt). The following subprogram

result(X) :- if(decide(thumbt), thumbt(X), coin(X)).
combines the choice with the distributions to form the ex-

pected result. Additionally, we take into account that throw-
ing a thumbtack has a low probability of injuring the agent:

0.1 :: badluck. blind :- decide(thumbt),badluck.

Finding Plans

It has been proposed (Yoon and Kambhampati 2007) to use
the Most Probable Explanation (MPE) of the goal to find the
best plan. The MPE of result(h) in the previous example
will maximize over all ERPs and ECs. This would lead to an
explanation containing thumb(t), decide(thumbt) which
has an explanation probability of 0.6. This is because all
explanations containing not decide(thumbt) have expla-
nation probability 0.25. But on the other hand it is clearly a

99

wrong decision as the joint probability of a successful out-
come for tossing coins is the sum of those, which is 0.75.
Finding the proof with the highest explanation probability
by maximizing over the ECs and marginalizing the ERPs
out is non-trivial. The corresponding algorithm is used as
first step in the exact solution algorithm for DTProbLog. In-
stead, the solution is to find probabilities 6 that maximize
the chance of reaching the goal P(goal|f). These proba-
bilities correspond to the choices the agent can make in or-
der to reach the goal. This can be solved using a gradient
descent method, developed for ProbLog as Learning from
Entailment (LFE) (Gutmann et al. 2008), where the learner
gets a set of training examples consisting of facts and the
target probability. In out setting, the example is the goal
with target probability 1.0, such that LFE maximizes the
probability of the goal while the probabilities of the ERP
are fixed in advance. This solves normal probabilistic plan-
ning. It might, however, be desirable to avoid certain propo-
sition, such as blind in the previous example, or to avoid
certain actions when the agent has not yet collected enough
information. Therefore, we adapted the LFE setting as fol-
lows. A goal for our algorithm is a set of tuples consist-
ing of a probability bound on a query and a weight, e.g.
{(result(head) >= 1.0, 1), (blind < 0.1,10)}, specify-
ing that we want to achieve heads with a risk of injury that
is below 0.1, where the latter is ten times more important
than the former. This is an new problem setting — Learning
from partially bounded examples or probabilistic linear pro-
gramming — where each constraint specifies in which range
the probability of a certain fact should be.

Conclusion

We argued that modeling planning problems in ProbLog is
straightforward but the choice of the right algorithm often
non-obvious. The solution we propose extends ProbLogs
Learning from Entailment setting towards learning probabil-
ity values consistent with given probability bounds, a special
case of the inference problem introduced by Nilsson for his
probabilistic logics (Nilsson 1986).

References

Gutmann, B.; Kimmig, A.; De Raedt, L.; and Kersting, K.
2008. Parameter learning in probabilistic databases: A least
squares approach. In ECML PKDD.

Nilsson, N. J. 1986. Probabilistic logic. AI 28(1):71-87.

Thon, I.; Gutmann, B.; van Otterlo, M.; Landwehr, N.; and
Raedt, L. D. 2009. From non-deterministic to probabilistic
planning with the help of statistical relational learning. In
ICAPS 2009 - Workshop on Planning and Learning.

Van den Broeck, G.; Thon, I.; Van Otterlo, M.; and
De Raedt, L. 2010. DTProbLog: A decision-theoretic prob-
abilistic Prolog. In AAAL

Yoon, S., and Kambhampati, S. 2007. Towards Model-lite
Planning: A Proposal For Learning & Planning with Incom-
plete Domain Models. In ICAPS.

Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In ICAPS.



