
Reducing the Dimensionality of Data Streams
Using Common Sense

Catherine Havasi, Jason Alonso, and Robert Speer
MIT Media Lab

20 Ames Street, Cambridge MA 02139
(havasi, jalonso, rspeer)@media.mit.edu

Abstract

Increasingly, we need to computationally understand
real-time streams of information in places such as news
feeds, speech streams, and social networks. We present
Streaming AnalogySpace, an efficient technique that
discovers correlations in and makes predictions about
sparse natural-language data that arrives in a real-time
stream.

AnalogySpace is a noise-resistant PCA-based inference
technique designed for use with collaboratively col-
lected common sense knowledge and semantic net-
works. Streaming AnalogySpace advances this work by
computing it incrementally using CCIPCA, and keeping
a dense cache of recently-used features to efficiently rep-
resent a sparse and open domain. We show that Stream-
ing AnalogySpace converges to the results of standard
AnalogySpace, and verify this by evaluating its accu-
racy empirically on common-sense predictions against
standard AnalogySpace.

Introduction

Many approaches to machine learning of semantics are
batch methods, requiring that all of their input data be avail-
able before they can make conclusions. This is sufficient
for some applications, but it is mismatched with many inter-
active applications, which need to be able to learn on the fly
without starting from scratch every time the input is updated.

AnalogySpace is a technique for performing inference
over a semantic network, which has the property that it can
fill in a node’s semantic relations “by analogy” to the rela-
tions that other nodes participate in. The existing definition
of AnalogySpace, however, requires performing an eigen-
vector computation over all of the known data at once, mak-
ing it unwieldy to update this result to take new data into
account.

Streaming AnalogySpace is a novel technique that builds
on candid covariance-free incremental principal component
analysis (CCIPCA) (Weng, Zhang, and Hwang 2003) in-
stead of singular value decomposition (SVD) to discover se-
mantic correlations, enabling its results to be updated incre-
mentally as new data comes in. This enables discovering
patterns in and drawing conclusions from semantic data that

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

changes over time, whether it is because the model is con-
tinually learning from new examples, or because the state of
the world that the data describes is itself changing.

AnalogySpace

The Open Mind Common Sense (OMCS) project has been
gathering common sense from volunteer users on the Inter-
net, collecting over one million pieces of common sense
knowledge to date. This knowledge focuses on the connec-
tions between objects in the world, on goals and affectual
information, and on events. This user-created resource is
designed to form the connections, or glue, that other AI sys-
tems need to make sense of relationships in the intuitive way
people do (Havasi et al. 2009).

The information in OMCS is processed and released as
ConceptNet, a freely available and well supported semantic
network (Havasi, Speer, and Alonso 2007). Concepts from
OMCS, such as “horse”, “take picture”, and “sadness”, are
connected by a set of relations such as “MotivatedByGoal”,
“PartOf”, and “UsedFor”. Each of these connections has a
strength that increases with the number of OMCS website
contributors who approve of each piece of knowledge.

AnalogySpace (Speer, Havasi, and Lieberman 2008) is a
noise-resistant principal component analysis (PCA)-based
inference algorithm designed for use with common sense
information and semantic networks. It was developed as a
technique for learning from ConceptNet, but is applicable to
other semantic networks as well. In AnalogySpace, a matrix
representation of a semantic network is “smoothed” using
dimensionality reduction. Broadly, this generalizes from the
known information, inferring new connections in strongly-
connected areas of the network, and de-emphasizing connec-
tions which are poorly supported and likely to be noise.

To create the “canonical” AnalogySpace, which uses Con-
ceptNet as its input data, one expresses the knowledge in
ConceptNet as a matrix of concepts and the features that
hold true for them, such as “. . . is part of a house” or “Eating
is motivated by . . . ”.

Reducing the dimensionality of this matrix using trun-
cated singular value decomposition has the effect of describ-
ing the knowledge in ConceptNet in terms of its most impor-
tant correlations. The truncated SVD produces a lower-rank
approximation of the concept-feature matrix, which has the
effect of filling in its gaps with generalizations based on sim-

14



Figure 1: Red Fish Blue Fish displays topics being discussed by liberals (left) and conservatives (right) on January 21, 2010.

ilar concepts and features, and dampening the effect of noisy
assertions that are not supported by other similar assertions.
It also provides a vector space that represents the concepts
and the features simultaneously.

This vector space can be used for inference; this is done
by looking up concepts and features that are similar to or as-
sociated with a given concept. Thus, concepts and features
that point in similar directions, and therefore have high dot
products, are good candidates for statements that can be in-
ferred by analogy.

Blending

To increase the applicability of AnalogySpace, one uses a
technique called Blending (Havasi et al. 2009) to integrate
information from other resources into the SVD decompo-
sition. Blending is a way to perform the AnalogySpace
process over multiple data sets, creating a vector space
were concepts and features from each resource can be com-
pared. In Blending, before the AnalogySpace process is per-
formed, the multiple data sets are combined into one new
matrix, weighted using a parameter called the blending fac-
tor (Havasi et al. 2009). This parameter, which can be cal-
culated using a heuristic or specified manually, provides a
way to balance the matrices’ relative weights in the blend, so
that the resulting dimensionality-reduced space takes infor-
mation from all of them into account. A well-chosen blend-
ing factor produces an AnalogySpace that can learn from all
the different data sets.

Applying Streaming AnalogySpace to Twitter

and Blogs

We currently have two main applications developed using
Streaming AnalogySpace: Twittermap and Red Fish Blue
Fish. In Twittermap, we examine streams of Twitter mes-
sages to create a visual map of the topics currently being
discussed. In Red Fish Blue Fish, shown in Figure 1, we
analyze the words and phrases appearing on liberal and con-
servative blogs. The output of Streaming AnalogySpace
can be examined using some visualization process such as

Landmark MDS (de Silva and Tenenbaum 2004), SVDView
(Speer et al. 2010), or a self-organizing map.

In Red Fish Blue Fish, we have applied same principle to
political blogs and RSS feeds. This allows us to track dif-
ferent political issues or “loaded words” to see if they align
more with liberal or conservative bloggers.

Modifying CCIPCA

To continue evolving the AnalogySpace process, we must
create an algorithm based on the same principles but can pro-
cess continuous information. As our base, we have chosen
Candid Covariance-free Incremental Principal Component
Analysis (CCIPCA), an incremental PCA algorithm.

CCIPCA is an incremental PCA algorithm that has been
shown to be statistically efficient (Weng, Zhang, and Hwang
2003) and has excellent running time and space character-
istics. SVD, as well as other PCA and even IPCA meth-
ods without the “covariance-free” characteristic, requires the
ability to compare every input sample against every other in-
put sample. By selecting a covariance-free algorithm, we
only need to keep the table of principal components and an
iteration counter. Also of importance, the “candid” charac-
teristic, as described in (Weng, Zhang, and Hwang 2003),
reflects that the learning parameters of the algorithm do not
need to be tailored to the particular data set to be analyzed.

The Algorithm

The algorithm we give here is slightly different from that
published in (Weng, Zhang, and Hwang 2003). We at-
tached a mean-subtraction algorithm that was indicated but
not specified in the published algorithm. We also introduced
two minor parameters, “remembrance” and “bootstrap”, that
control when CCIPCA takes effect. We subtly changed
the interpretation of the “amnesic” parameter, and we intro-
duced some minor changes for dealing with sparse informa-
tion. Our variation of the algorithm is given in Figure 2.

Mean-subtraction The original CCIPCA paper assumes
that input vectors have zero mean and that “the mean may

15



Compute the first k dominant eigenvectors, v1(n), v2(n),
..., vk(n), directly from u(n), n = 1, 2, ..., given “boot-
strap” parameter nB , “remembrance” parameter nR, and
“amnesic” parameter l.

begin
v0(1)⇐ u(1)
for n ⇐ 2, 3, ... do

u0(n) ⇐ u(n)
(wold, wnew)⇐ weights(n, l, nB, nR)
v0(n) ⇐ woldv0(n− 1) + wnewu0(n)
u1(n) ⇐ u0(n)− v0(n)
for i ⇐ 1, 2, ..., min(k, n); do

if i = n
then vi(n) ⇐ ui(n)
else

(wold, wnew)⇐ weights(n, l, nB, nR)
v′i(n) ⇐ (ui(n) · v̂i(n− 1))ui(n)
vi(n) ⇐ woldvi(n− 1) + wnewv′i(n)
ui+1(n)⇐ ui(n)− (ui(n) · v̂i(n))v̂i(n)

fi; od; od
where funct weights(ngiven, l, nB, nR) ≡

n ⇐ min(ngiven, nR)
if n < nB

then wold ⇐ (n− 1)/n
wnew ⇐ 1/n

else wold ⇐ (n− l)/n
wnew ⇐ l/n

fi

(wold, wnew) .
end

Figure 2: The CCIPCA variant used in this paper, aside from
the feature queue.

be incrementally estimated and subtracted out.” For our pur-
poses, we introduced “eigenvector 0” v0, which serves as an
incrementally-estimated sample mean. For consistency with
the rest of the algorithm, we chose to use the same averaging
method used in the later PCA stages.

Remembrance and bootstrap We found that CCIPCA
fails to converge and produces degenerate results on
many randomly-generated vector systems if the published
CCIPCA algorithm is allowed to run as originally specified
on early iterations (n ≤ l + 1, in the original interpreta-
tion of l). The degenerate results are obvious on inspection
of the algorithm: the weights wold and wnew have negative
and/or zero values during those iterations. We implemented
a minimum iteration number, which we call the “bootstrap
parameter” nB , before which the we do not use the amnesic
parameter, explained in the next paragraph. We also set an
upper limit on the iteration number, which we call the “re-
membrance parameter” nR, above which the eigenvectors
become moving averages. Though neither of these param-

eters appear in the original CCIPCA publication, variations
of them appear in a publicly-accessible MATLAB file posted
by one of the CCIPCA authors (Weng and others 2005).

Amnesic parameter The amnesic parameter controls the
degree of influence new samples have over past samples
when updating eigenvectors. Our amnesic parameter l is
a constant offset from the parameter described in (Weng,
Zhang, and Hwang 2003). This gives l an intuitive descrip-
tion: l is the effective number of samples each new input
represents for computing the moving average. It should be
noted that only the ratio of the amnesic parameter to the re-
membrance parameter l/nR impacts the eigenvector learn-
ing rate after the iteration number passes the remembrance
parameter, when n ≥ nR. As such, the amnesic parameter
only has meaning when nB ≤ n < nR, and the parameter
should only be seen as something to tune to help the eigen-
vectors converge faster.

Sparse information The input that AnalogySpace works
with is generally sparse; of all the possible entries in the
concept/feature matrix, most of them are zero. Representing
all of these zeros in a dense matrix would require an unrea-
sonably large amount of memory. Standard AnalogySpace
deals with this sparsity by using the Lanczos SVD algorithm,
which generates a truncated SVD efficiently from sparse in-
put. The sparsity of the input is less of an inherent problem
for CCIPCA, because it does not store the entire input at
once, but CCIPCA nevertheless converges to a dense matrix
that grows continuously as new features appear. To prevent
performance loss and unbounded memory requirements, we
put an upper bound on the matrix size by using a “feature
queue”, described further in the next section.

Methodology

In terms of input and output data, Streaming AnalogySpace
is roughly the same as standard AnalogySpace. If we create
an AnalogySpace from the data in ConceptNet, as is typical
for standard AnalogySpace, we would begin with a sparse
matrix whose rows represented concepts drawn from Con-
ceptNet (like “a house”) and whose columns represented fea-
tures that could be possessed by those concepts (like “. . . is
located in a neighborhood” or “a garage is part of . . . ”). In
the case of Streaming AnalogySpace, however, we simply
present feature vectors to CCIPCA, which then updates its
eigenvector table. Once CCIPCA updates its eigenvector ta-
ble, we use the table to calculate the feature vector’s pro-
jection into the lower-dimensional space, which is the final
AnalogySpace vector.

When updating a CCIPCA, we can obtain inferences that
correspond to the inferences that AnalogySpace makes when
it reconstructs the A matrix. As a side effect of the update
step of CCIPCA, we calculate the correlation of the concept
we are updating with each eigenvector. We can then recon-
struct the concept as a linear combination of these eigenvec-
tors, producing the same kind of rank-k smoothing as the
truncated SVD.

16



Why run a streaming AnalogySpace over the relatively
static data in ConceptNet? One reason is that the data is not
entirely static; ConceptNet learns by interacting with peo-
ple on the Web and asking them questions (Havasi, Speer,
and Alonso 2007). Paired with a system that can learn from
new knowledge immediately after someone enters it, Con-
ceptNet could increase the interactivity and feedback of its
Web interface, by showing the user what new inferences the
new knowledge led to, and using those inferences to ask rele-
vant follow-up questions. Even though ConceptNet changes
slowly as a whole, the times when it changes are the most
interesting times to do inference.

Including other data sources

As described above, Blending is a way of automatically com-
bining different data sources in standard AnalogySpace. In
Streaming AnalogySpace, we can perform Blending in a
similar way. We alternate which source we are currently
accepting new data from, in order to intersperse the differ-
ent sources of data in time. Thus far, there is no estab-
lished heuristic for choosing the weights of the different data
sources incrementally; instead, we suggest running a small
batch SVD over a sample of the data to calculate a blend-
ing factor heuristically, and using that same blending factor
in Streaming AnalogySpace. In the future, we would like to
create a method for automatically tuning the blending factor.

The Feature Queue

The CCIPCA algorithm expresses both concepts and prin-
cipal components as vectors of features, but particularly in
natural language applications, the set of features that can ap-
pear is not necessarily known beforehand or even bounded
in size. A new feature could appear in the input at any time.

As is the case in standard AnalogySpace, our represen-
tation needs to include a mapping from features to vector
indices. We keep our CCIPCA variant efficient by using a
priority queue to determine which features are mapped to in-
dices. Features that have not appeared in the input for a long
time are dropped from the mapping.

The feature queue is a priority queue supporting the
extract-min operation. The priority of each feature in the
queue indicates the last time-step at which it appeared. In
this way, we can select the feature to discard simply by ex-
tracting the minimum element from the priority queue.

Initially, the feature queue fills up to a specified size, as-
signing indices to features in order. After the queue is full,
every new feature that arrives usurps the index of the least
recently used feature. When this happens, the column of the
eigenvector matrix representing the contributions of the old
feature to each principal component is set to zero.

Equivalence to AnalogySpace

The CCIPCA algorithm is defined to calculate a result
that converges to the largest eigenvalues and corresponding
eigenvectors of the sample covariance matrix, without hav-
ing to calculate the covariance matrix itself (Weng, Zhang,
and Hwang 2003). The CCIPCA eigenvector matrix V ,
which can be constructed trivially from vectors v1 . . . vk ,

contains these multiplied together. V can easily be factored
into an orthonormal eigenvector matrix, Uc, and a diagonal
matrix of eigenvalues, Σc.

The singular value decomposition A = UΣV T , mean-
while, calculates U as the eigenvectors of the self-similarity
matrix AAT , and Σ as its eigenvalues. In a truncated SVD,
these can be truncated a rank-K product, A ≈ UkΣkV T ,
with only the largest k eigenvalues and corresponding eigen-
vectors represented.

If the input matrix A is normalized to contain unit vectors
(as it traditionally is in AnalogySpace), then AAT will be
a covariance matrix. This makes CCIPCA’s ideal Uc and
the truncated SVD’s Uk equivalent to each other. Therefore,
given the same input data, Uc will converge to Uk over time.

A difference in the actual implementation of standard An-
alogySpace and streaming AnalogySpace, however, is that
CCIPCA makes efficient mean subtraction possible, as dis-
cussed in the next section. This introduces a difference from
standard AnalogySpace, yielding somewhat different results
that we will examine empirically.

Improvements on AnalogySpace

The most significant improvements brought by Streaming
AnalogySpace are that it can update rapidly according to
new data, and that it can adapt to a shifting or unknown prob-
lem domain.

Keeping a feature queue (or concept queue), and stream-
ing in the concepts (or features) one at a time, means that we
do not need to limit the knowledge we can represent in it to
a set that is known in advance. The domain can adapt over
time, which is very relevant in open domains such as general
knowledge and natural language.

The built-in mean subtraction helps to focus on the in-
puts that are interesting because they differ from the general
trend, even though we may not know from the start what this
trend is.

The clearest gain is in its efficiency over streaming data.
A batch SVD using Lanczos’ algorithm, computing k eigen-
vectors of an m × n matrix, has a time complexity of
O(kmn) (Zhang et al. 2005). Each step of CCIPCA,
using the algorithm on page 2, has a time complexity of
Θ(km). The time required to process n input vectors is still
Θ(kmn), but when new data arrives, it requires only Θ(km)
time to update the matrix. Among other applications, this
means that newly-obtained knowledge can update Analogy-
Space live and provide immediate feedback, and the existing
knowledge does not have to be explicitly reconsidered.

In practical terms, using one core of a 2.8 GHz Mac Pro,
our Python/C implementation of Streaming AnalogySpace,
with a feature queue of size 10,000 and 50 eigenvectors, re-
quires an average of 36.5 milliseconds per update. For com-
parison, a 10,000 by 100,000 batch SVD with 50 eigenvec-
tors, using Doug Rohde’s SVDLIBC, requires 1.87 seconds
per update.

Setting up the CCIPCA is, of course, an investment of
time. At this rate of update, it takes around an hour to get
an amount of initial data into the CCIPCA that is equivalent
to the batch SVD. But this state can be saved, and once it

17



has been computed it gives the payoff of updates that are 50
times faster.

Related Work

There is very little work applying CCIPCA to natural lan-
guage processing. In (Li, He, and Zhao 2008), the authors
apply CCIPCA to LSA in Chinese, showing that it outper-
forms dense SVD, though we note that Lanczos-based meth-
ods were not considered.

CCIPCA is more often used in graphics and sensor pro-
cessing. In, (Zhang, Weng, and Zhang 2002), the authors ap-
ply CCIPCA to computer vision, wherein CCIPCA is used
multiple times in a hierarchical configuration to build a sen-
sory mapping method inspired by early visual pathways in
humans. Also on the topic of machine vision, the authors
of (Assassa, Mursi, and Aboalsamh 2009) use CCIPCA for
face recognition.

Another example of incremental PCA being used in a nat-
ural language processing context is in (Gorrell and Webb
2005), where the Generalized Hebbian Algorithm (GHA) is
used to do LSA over word and letter bigrams.

GHA (Sanger 1989) and Stochastic Gradient Descent
may also be used to accomplish incremental PCA, but
CCIPCA outperforms those algorithms in statistical effi-
ciency, given by its rapid convergence, and computational
efficiency, given by its computations per iteration (Weng,
Zhang, and Hwang 2003). We also observe that our data
sets are well-suited to presenting complete vectors for PCA
at once, whereas GHA requires processing each matrix entry
individually.

Evaluation

Since the goal of a common-sense inference mechanism is to
create inferences which are valid and understandable to peo-
ple, we have chosen human approval as an evaluation mech-
anism. In the original AnalogySpace paper (Speer, Havasi,
and Lieberman 2008) the authors evaluate AnalogySpace by
testing people’s opinions on the validity of the inferences it
produces. This procedure was repeated and here we com-
pared to, amongst other things, the original AnalogySpace
which had been evaluated in the previous study.

Our subjects were 78 people of varied ages and genders
who completed this evaluation on a webpage. No compensa-
tion was offered and none of our subjects knew the sources
of our assertions. Each subject viewed 40 assertions, con-
verted from OMCS’ internal representation to English sen-
tences using the standard OMCS procedure (Havasi, Speer,
and Alonso 2007).

These assertions were created from four sources that were
randomly shuffled together, so that participants in our study
were doing a blind comparison:

1. 25% of them were existing assertions in ConceptNet, en-
tered by human contributors, sampled randomly from all
those with a confidence score of at least 2.

2. 25% were sampled from standard AnalogySpace’s predic-
tions about concepts having at least 10 assertions in Con-
ceptNet. This set of predictions includes, for each con-

 0

 20

 40

 60

 80

 100

Random Streaming
AnalogySpace

AnalogySpace ConceptNet

%
 o

f t
ot

al

Breakdown of ratings in user evaluation

Generally true
                     Sometimes true

Don’t know / Opinion
Not true

Nonsense

Figure 3: The breakdown of scores that users assigned to
statements from the different sources.

cept, its top 10 predictions that did not already exist in
ConceptNet.

3. 25% were sampled from streaming AnalogySpace’s pre-
dictions, again from the top 10 predictions for each in-
cluded concept. The CCIPCA was first trained with a sin-
gle iteration over the contents of the ConceptNet database,
and then these predictions were output on the second iter-
ation.

4. 25% of the assertions were nonsense, generated from ran-
dom combinations of concepts and features.

Unlike previous evaluations of AnalogySpace, we did not
weight the predictions by their score in order to choose
higher-scored predictions more often. Because Streaming
AnalogySpace made it easy to subtract out the mean of the
data, an important PCA operation that was not supported in
the existing AnalogySpace code, we could not guarantee that
the scores of predictions would be distributed in the same
way.

Instead, we sampled uniformly from the ten strongest pre-
dictions over all concepts. It includes many concepts for
which AnalogySpace produces lower-scored, less confident
predictions. This greatly expands the domain that is tested,
but the expanded domain produces fewer correct inferences
than in previous evaluations.

For each assertion, participants selected a choice from
the list of “Generally true”, “Sometimes / Somewhat true”,
“Don’t know / Opinion”, “Generally false”, “Doesn’t make
sense”, and “Not true but amusing” (an option suggested by
participants in a previous study). These ratings were mapped
to a numeric scale as follows: “Generally true” was worth 2,
“Sometimes / Somewhat” worth 1, “Don’t know / Opinion”
worth 0, and all other options were worth -1. The ratings
that users gave to statements from each source are shown in
Figure 3.

The average results of this evaluation over all 78 partici-
pants were:

18



Source Mean score Std. err.

Random -0.539 0.039
Streaming AnalogySpace 0.110 0.051
Batch AnalogySpace 0.089 0.049
ConceptNet 1.266 0.045

Because different participants in the study apply a differ-
ent subjective scale when evaluating assertions, we analyze
the significance of these results with a correlated-samples
one-way ANOVA. The correlated samples are the mean
scores assigned to each source by each participant.

The ANOVA shows that there is a highly significant differ-
ence across the sources (F (3, 231) = 331.44, p < .0001). A
Tukey HSD test, giving HSD[.01] = 0.18, shows which dif-
ferences are significant: both inference methods were rated
significantly better than random assertions (p < .01), and
ConceptNet assertions were rated significantly better than
the inference methods (p < .01), but there was no signifi-
cant difference in score between the inference methods.

We conclude from this experiment that Streaming Anal-
ogySpace is a reasonable way to infer new connections in
a semantic network in practice as well as in theory. After
being trained on only two passes through the ConceptNet
database, its inferences performed similarly to the existing
SVD-based AnalogySpace.

Future Directions

In the future, we plan to explore how we can use this tech-
nique to process incoming text to create models in a real-
time fashion. We see many applications and research direc-
tions in this area.

The AnalogySpace-powered opinion-mining tool Lumi-
noso (Speer et al. 2010) is a tool that uses common sense
and blending to better understand opinions and feedback ex-
pressed in free text such as customer reviews. It creates a se-
mantic space from the ideas in a set of documents, including
common-sense background information, and allows interac-
tive exploration. If Luminoso were combined with Stream-
ing AnalogySpace, we could look at consumer-related infor-
mation as it is created — during a focus group or chat ses-
sion. This instant feedback could even guide a group leader
during discussion.

As AnalogySpace, Streaming AnalogySpace, and com-
mon sense in general were designed to be noise resistant, an
interesting future direction of research is to see how Stream-
ing AnalogySpace would work with the output of a speech
recognition system. Doing this would enable semantic rep-
resentations that are grounded in human speech, and could
enable new forms of visualization, such as creating an artis-
tic representation of speeches or events as they are going on.

References

Assassa, G. M.; Mursi, M. F. M.; and Aboalsamh, H. A.
2009. Evolutionary eigenspace learning using ccipca and
ipca for face recognition. World Academy of Science, Engi-
neering and Technology 53.

de Silva, V., and Tenenbaum, J. 2004. Sparse multidimen-
sional scaling using landmark points. Stanford University
Technical Report.

Gorrell, G., and Webb, B. 2005. Generalized hebbian al-
gorithm for latent semantic analysis. Proceedings of Inter-
speech 2005.

Havasi, C.; Speer, R.; Pustejovsky, J.; and Lieberman, H.
2009. Digital intuition: Applying common sense using di-
mensionality reduction. IEEE Intelligent Systems.

Havasi, C.; Speer, R.; and Alonso, J. 2007. ConceptNet
3: a flexible, multilingual semantic network for common
sense knowledge. In Recent Advances in Natural Language
Processing.

Li, X.-F.; He, H.-B.; and Zhao, L.-L. 2008. Chinese text
categorization based on ccipca and smo. In Proceedings of
the 2008 International Conference on Machine Learning
and Cybernetics.

Sanger, T. 1989. Optimal unsupervised learning in a single-
layer linear feedforward neural network. IEEE Transac-
tions on Neural Networks 459–473.

Speer, R.; Havasi, C.; Treadway, N.; and Lieberman, H.
2010. Finding your way in a multi-dimensional semantic
space with Luminoso. In Proceedings of Intelligent User
Interfaces.

Speer, R.; Havasi, C.; and Lieberman, H. 2008. Analo-
gySpace: Reducing the dimensionality of common sense
knowledge. Proceedings of AAAI 2008.

Weng, J., et al. 2005. ccipca.m. Downloadable source file
for MATLAB. http://www.cse.msu.edu/˜weng/
research/ccipca.m, accessed 12-May-2009.

Weng, J.; Zhang, Y.; and Hwang, W.-S. 2003. Candid
covariance-free incremental principal component analysis.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 25(8):1034–1040.

Zhang, S.; Wang, W.; Ford, J.; Makedon, F.; and Pearl-
man, J. 2005. Using singular value decomposition approx-
imation for collaborative filtering. In CEC 2005. Seventh
IEEE International Conference on E-Commerce Technol-
ogy, 257–264.

Zhang, N.; Weng, J.; and Zhang, Z. 2002. A developing
sensory mapping for robots. International Conference on
Development and Learning 13.

19


