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Motivation

Traditionally, in the fields of artificial intelligence and
robotics, representations of the self have been conspicuously
absent. Capabilities of systems are listed explicitly by devel-
opers during construction and choices between behavioral
options are decided based on search, inference, and plan-
ning. In robotics, while knowledge of the external world has
often been acquired through experience, knowledge about
the robot itself has generally been built in by the designer.
Built-in models of the robot’s kinematics, physical and sen-
sory capabilities, and other equipment have stood in the
place of self-knowledge, but none of these representations
offer the flexibility, robustness, and functionality that are
present in people. In this work, we seek to emulate forms
of self-awareness developed during human infancy in our
humanoid robot, Nico. In particular, we are interested in the
ability to reason about the robot’s embodiment and physical
capabilities, with the robot building a model of itself through
its experiences.

Grounding in Developmental Psychology

Traditionally, developmental theorists viewed infants as be-
ing born into a state of confusion, devoid of an overall
organization of their perception and action. Infants’ ac-
tions at birth, under this view, are entirely random and
without intent, self-centered and detached from perception
of their environment (Mahler, Pine, and Bergman 1975;
Gergely 2000). Another view of this phase is that infants are
unable to differentiate themselves from their environment.
The basic knowledge is not yet available to the infant to al-
low them to know where they end and the rest of the world
begins. In spite of the state of confusion that they experi-
ence in either scenario, they are able to learn by continuously
making observations about the impact of their actions, and
will develop their sense of self along with other cognitive
capabilities.

Though there are many aspects of this self-understanding
which have been addressed in the literature, we concentrate
on two that encompass the agent’s sensorimotor capabilities
and ability to impact its environment, the ecological self and
self-efficacy. We choose these because the skills represented
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by these facets of the self represent a basic model of percep-
tion and action in which the self is an integral component.

Rochat describes the ecological self as a cohesive, ego-
centric model of the body and its relationship to the environ-
ment arising from coordination between the senses (Rochat
2001). It provides a coherent intersensory model, which
has been demonstrated to exist at birth through a number
of recent experiments. Infants have been demonstrated to
be more likely to exhibit the “rooting reflex”, which as-
sists in breast-feeding, when touched on the cheek, rather
than when they touch themselves on the cheek (Rochat and
Hespos 1997), demonstrating that they understand that it
is their own hand, rather than an external stimulus. They
have also been shown to open their mouth in preparation
to receive their fist, rather than accidentally placing their
fist in their mouth and leaving it there (Rochat, Blass,
and Hoffmeyer 1988), premeditating the act of sucking the
fist. Though these abilities are present at birth, that does
not mean that they are innate. There is evidence that the
capabilities required to support them are learned in the
womb (Mahler, Pine, and Bergman 1975; Gergely 2000;
Rochat, Blass, and Hoffmeyer 1988). We are able, however,
to witness visual and motor capabilities develop after birth
due to lack of visual stimulation in the womb and skeleto-
muscular development after birth.

If the ecological self describes the body, then knowledge
of self-efficacy describes its capabilities. The sense of self-
efficacy describes the causal relationship between motor ac-
tions and the body and objects in the environment (Rochat
2001). Due to their limited motor skills, it was once thought
that infants did not develop a sense of self-efficacy until
much later than is now believed. Experiments that cater
to the limited sensorimotor repertoire of the neonate have
now revealed that infants have the capacity to understand
causal relationships from the time that they are born. Us-
ing pressure-sensitive pacifiers to detect subtle differences in
rate and intensity, newborn infants have been demonstrated
to change the patterns and pressure of their sucking on a
pacifier in order to have their mother’s face, rather than that
of another female appear on a screen (Walton, Bower, and
Bower 1992). Infants have also been demonstrated to move
their heads (Papousek 1992) and legs (Rovee-Collier 2005)
in order to cause mobiles mounted over their cribs to move,
and have demonstrated pre-reaching behaviors that emerge
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before they are strong enough to perform reaching and
grasping behaviors (Rochat and Senders 1991). These re-
sults indicate that infants have an ability to comprehend and
learn causal relationships even within the first few months
of life. It is this understanding of the causal relationship be-
tween their motor behavior, their bodies, and objects in their
environment that their sense of self-efficacy arises from.

Bringing these two concepts into robotics changes the
way that we look at many problems. Traditionally, roboti-
cists have looked at tasks, such as manipulating objects, in
terms of the goal to be carried out. That kind of reason-
ing still plays a role here, but in this work, the robot learns
about the form of its body, and the nature of causal rela-
tionships between its motor actions and the motion of ob-
jects. This knowledge can later be used to reason about such
tasks, rather than learning about tasks directly, or program-
ming primitive actions to be chained together by a higher-
level reasoning system.

Self-modeling in Robotic Systems

The traditional test of self-awareness in humans and animals
is the mirror test (Gallup 1970). In this test, first, a mirror is
placed in the cage with the animal to be tested for a habitua-
tion period. After habituation, the animal is sedated. While
asleep, an odorless, non-tactile mark is placed on its fore-
head. If the animal uses self-directed behavior to inspect the
mark in the mirror, it is considered to be self-aware, if not,
it is not. According to Gallup’s hypothesis (Gallup 1982),
in order to perform this feat, the animal must have a self-
concept against which to compare the image in the mirror.
It is the difference between what the animal expects to see
in the mirror, and what it does see, that prompts the self-
inspection behavior. In a competing theory, Mitchell (1997)
states that mirror self-recognition can be accomplished sim-
ply through a model of kinesthetic-visual matching, and that
no self-concept is necessary. Prior work in our lab (Gold and
Scassellati 2007) explores this subject, allowing our upper-
torso humanoid robot, Nico, Figure 1, to recognize itself in
a mirror using models reminiscent of Mitchell’s hypothesis.

The plan for our current work is to construct a self-taught
robotic model of self, composed of both an ecological model
of self and a model of self-efficacy. The ecological model
of self encompasses the body’s shape, structure, and orien-
tation. It indicates where body parts exist with respect to
each other, including end-effectors such as hands and sen-
sors such as the eyes. The self-efficacy model is a causal
model of the relationship of motor actions to the body, and
the body to its environment. It indicates how motor actions
can change the body’s configuration and how this interacts
with objects in the environment. Together, these form a com-
plete sensorimotor model of the robot. Rather than the typ-
ical approach of having human designers model kinematics
up front, calibrate sensors, and design libraries of manipu-
lation strategies, our model will allow the robot to learn the
relationship of its end-effectors and sensors to each other
and the environment, and the underlying principles of ma-
nipulation and tool use through a process of self-exploration
and interaction with the environment.

Robots provide a unique context for the study of self-
aware reasoning processes in that their embodiment and in-
teractions with the environment are fundamental to the tasks
that they perform. We are able to bring work from devel-
opmental psychology to bear on this problem, modeling hu-
man developmental processes in our hardware. These low-
level self-modeling abilities will serve as a building-block
for later self-referential social cognitive abilities.

The Ecological Self-Model The ecological self-model
will be a combined kinematic-sensory model that represents
the robot’s physical embodiment. In order to do this, we will
develop a model of the robot’s kinematics online, through its
experience. These systems will not rely on external calibra-
tion rigs, nor will they require explicit calibration routines
to be run by a trained operator. Instead, using techniques
inspired by human development, the robot will learn the rel-
evant calibration parameters in an online and self-supervised
fashion. Because it is the most well-developed robotic sense
that is analogous to a human sense, we will concentrate on
the use of vision in this study.

We can think of the process of learning an ecological self-
model as involving three components, though we hope for
these components to be learned concurrently, in a unified
fashion, sensor calibration, kinematic calibration, and de-
velopment of a joint kinematic-sensory model. To put this
in perspective, by sensor calibration we mean the classical
problem of camera calibration, which can be broken into
two components, the intrinsic parameters which describe
the camera itself in terms of the projection that it imposes
on the world, and the extrinsic parameters which describe its
position in space. Similarly, a kinematic model is a model
of the geometry and motion of the robot. Generally, in a
stereo-vision system, the extrinsic parameters of the cameras
are measured with respect to each other, and considered to
be static. In the development of our ecological self-model,
we consider the camera to be a kinematic endpoint whose
motion can be measured along with other objects in the sys-
tem, such as the robot’s hands. This motion correlates to
the motion of the head and eyes in a human. This combined
kinematic-sensory model gives robots the benefits that the
ecological self provides to humans. It allows the robot to
continue to see in 3D after the motion of its cameras, is a
predictive model of the position of end-effectors in the visual
field, and is a continuously-updated kinematic self-model.

In (Hart, Scassellati, and Zucker 2008), we discuss a
method for measuring the motion of the cameras in a stereo
active-vision system with respect to each other in terms of
eye motion. Later in this paper, we discuss our recent work
in which the robot learns a kinematic self-model through ex-
perience. Other current work includes updating the model of
camera motion to be learned similarly, allowing us to com-
bine the two models and measure the motion of the cameras
in a more general way, allowing for head motion, and cali-
brating the intrinsic parameters of the cameras as part of a
general self-calibration process.

The Model of Self-Efficacy Rochat describes self-
efficacy as knowledge of how one’s actions can enact
changes upon their environment (Rochat 2001). We will in-
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stantiate and implement a concrete model of this capability
in a robotic system. We view self-efficacy as beginning with
the motor actions that one can take. These actions change
the configuration of the body, which, in turn, can move ob-
jects, which in turn, can move other objects. We will model
self-efficacy by inferring the causal Bayesian relationship
between the robot’s motor actions, its body, and objects in
the environment. This will be the basis for the robot’s motor
skills, including improvements on self-other discrimination,
manipulating objects, and tool use. These capabilities will
be evaluated through tasks requiring the robot to move itself
and objects in its environment.

In our model of self-efficacy, we plan to start with the
causal relationship between the robot’s motor actions and
its motion. The model from (Gold and Scassellati 2007) is
a simple model of this that doesn’t account for the robot’s
kinematic structure. This model will explicitly account for
the robot’s physical presence in terms of its ecological self,
and will build a causal Bayesian model of the change, in
terms of joint angle, that a motor action enacts on the eco-
logical self. In these terms, it can be viewed as an improve-
ment on the self-other discrimination algorithm from (Gold
and Scassellati 2007), but we will view it as a starting point
for the motor actions that the robot can enact on the world.

If the robot’s kinematic endpoints are objects that are di-
rectly under its control, then the rest of the objects in the
world are only under its control when in contact with these
endpoints. Consider, for instance, the interaction between a
block and the robot’s gripper. While the robot’s gripper is
always under its control, the block is temporarily under the
robot’s control when in the gripper. By modeling the causal
relationship between the gripper and the block, the robot will
be able to learn how it is able to manipulate objects in its en-
vironment. Additionally, objects have causal relationships
between each other. Blocks can be stacked on each other, if
a ball in motion collides with another ball, it will cause that
ball to move. By learning these object to object relations,
the robot can learn not only what manipulations are possi-
ble on its environment, but also, through this chain of causal
relations, tool use.

Kinematic Learning
In prior work, we have learned a simple kinematic model of
the motion of robotic eye-cameras in an active stereo-vision
system (Hart, Scassellati, and Zucker 2008). In more re-
cent work, (Hart et al. 2010), we have learned the kinematic
structure of our robot’s arm by witnessing its motion in its
visual field. Starting with a calibrated stereo vision system,
we reconstruct the 3D position of the robot’s end effector.
Tracking its motion in space, we are able to reconstruct the
kinematic chain that produced it.

We present two basic methods for performing this task.
In the first, we observe that the motion of the end-effector
attached to a revolute joint will move through a circular path
in space. By reconstructing this circle from points observed
to lie along it, by moving a single joint, we are able to re-
cover the Denavit-Hartenberg parameterization of the joint,
which is a conventional description of its kinematics. Hav-
ing more than one joint in the kinematic chain complicates

this relationship, but the solution to this problem is beyond
the scope of this paper. A thorough treatment of the topic is
currently under review (Hart et al. 2010).

The second method for learning this kinematic model be-
gins with a candidate model of the kinematic chain. Mov-
ing the robot’s joints into a random position, we compare
the position that the robot expects the end-effector to appear
in with the position that it actually appears in. We perform
non-linear optimization on the distance between the position
predicted by the candidate forward kinematic model and the
observed position of the end-effector.

One way of dealing with tool use which has been men-
tioned in the kinematic learning literature (Hersch, Sauser,
and Billard 2008), is to model the end-point of a tool in
use by the robot as a change in the robot’s kinematic struc-
ture. Temporarily incorporating a tool into an agent’s kine-
matic structure is a method of dealing with tool use that
is supported in the neurophysiology literature (Yamamoto,
Moizumi, and Kitazawa 2005). While the approach in (Her-
sch, Sauser, and Billard 2008) is to simply retrain the kine-
matic model, treating the tool tip as though the position of
the robot’s hand has moved, our model is capable of both
this approach and an alternative approach of modeling the
tool as an object that is held in the robot’s hand. The latter
model correlates more closely to our model of self-efficacy,
since we view the causal relationship between the hand and
the tool as a mechanism for the extension of the self.

Knowledge of the camera’s intrinsic and extrinsic param-
eters, which have been obtained through classic camera-
calibration techniques, allows us to project our 3D model
of the robot’s end-effector position down into the 2D images
obtained through the robot’s cameras. This is an example
of an intersensory capability provided by our model of the
ecological self, which correlates to the sorts of intersensory
phenomena described by Rochat (2001), by combining the
visual and kinesthetic senses.

We have implemented this model on our robot Nico. To
determine the position of the end-effector as witnessed in
the visual field, we take the centroid of a color segmented re-
gion, which has been marked in red tape on either the robot’s
end-effector or the tool-tip of the held tool. The projection of
the end-effector position from the trained kinematic model
in the visual field is computed. In our experiment, we first
train on the hand, then retrain with either the pen or the ham-
mer, arriving at the model for tool use. See Figure 1. Results
to be reported in an upcoming paper demonstrate the effec-
tiveness of this model. In current work, we are extending
this model to utilize an inverse-kinematic solution that will
allow for the robot to reach for objects in space as it trains
this model. Under this updated model, Nico will attempt to
reach objects in space, refining its ecological self-model as
it does so.

Conclusion
In this paper, we have detailed our current research program
of robotic self-modeling. In this program, we seek to build
models of the ecological self and self-efficacy, early forms
of self-awareness that arise in infants. Our work is inspired
by developmental psychology and neuroscience, and seeks
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(a) Hand (b) Pen (c) Hammer

Figure 1: Images of Nico. The red electrical tape is the marker used to track the motion of the end effector. We replaced the
hand with a ball to track in the first test, cable tied a pen to the arm in the second, and a toy hammer in the third.

to both improve the state-of-the-art in robotics by incorpo-
rating the “self” into robotic reasoning processes, as well as
further our knowledge of metacognition by modeling these
forms that are found in humans. It represents a significant
departure from traditional robotics practice in that, rather
than reasoning only about the task at hand, it reflectively
attempts to learn and reason about the machinery carrying
out the task. Our current progress is promising, and we be-
lieve that this work has the potential to significantly impact
both the robotics and metacognition communities.
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