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Abstract

Providing cognitive assistance in smart homes is a field of
research that receives a lot of attention lately. In order to
give adequate assistance at the opportune moment, we need
to recognize the observed behavior when the patient carries
out some activities in a smart home. To address this challeng-
ing issue, we present a formal activity recognition framework
based on possibility theory. We present initial results from an
implementation of this possibilistic recognition approach in a
smart home laboratory.

Introduction

A major development in recent years is the importance given
to research on ambient intelligence in the context of recog-
nition of the activities of daily living. Ambient intelligence
consists of a new approach based on the capacities of mo-
bility and integration of digital systems in the physical en-
vironment, in accordance with ubiquitous computing. This
allows us to glimpse the opportune composition of devices
and services of all kinds on an infrastructure characterized
by a granularity and variable geometry, endowed with facul-
ties of capture, action, treatment, communication and inter-
action (Ramos, Augusto, and Shapiro 2008). One of these
emerging infrastructures is the concept of smart home. To be
considered as intelligent, the proposed home must inevitably
include techniques of activity recognition, which can be con-
sidered as being the key to exploit ambient intelligence.
Combining ambient assisted living with techniques from ac-
tivity recognition greatly increases its acceptance and makes
it more capable of providing a better quality of life in a non–
intrusive way. Elderly people, with or without disabilities,
could clearly benefit from this new technology (Casas et al.
2008). Activity recognition, often referred as plan recogni-
tion (Geib 2007), aims to recognize the actions and goals of
one or more agents from observations on the environmental
conditions. The plan recognition problem has been an active
research topic in artificial intelligence for a long time and
still remains very challenging. It is usually based on a logic
or probabilistic reasoning for the construction of hypothe-
ses about the possible activities, and on a matching process
linking the observations with some activity models (plans)
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related to the application domain. However, most of activ-
ity recognition research has focused on probabilistic models
such as Markovian models and Bayesian networks. One lim-
itation of probability theory and its extensions is its inability
to simultaneously handle the lack of precision and the un-
certainty of incomplete information. In fact, in the context
of cognitive assistance, where the human agent is character-
ized by erratic behaviors, complete ignorance about the spe-
cific dependence between two actions cannot be represented
by classical probability theory. Hence, one of the solutions
to this kind of problem is possibility theory (Dubois and
Prade 2007), devoted to formalizing ignorance about events.
Moreover, it is easier to capture partial belief concerning the
activities’ realizations from human experts, since this theory
was initially meant to provide a graded semantics to natural
language statements (Zadeh 1978).

At the Domus (Giroux et al. 2009) and LIARA labs,
we use possibility theory to address this issue of recogniz-
ing behavior classified according to cognitive errors. These
recognition results are used to identify the various ways a
smart home may help an Alzheimer’s occupant at early–
intermediate stages to carry out his ADLs (Activities of
Daily Living). This context increases the recognition com-
plexity in such a way that the presumption of the observed
agent’s coherency, usually supposed in the literature, can-
not be reasonably maintained. We propose a formal frame-
work for activity recognition based on description logic and
possibility theory, which transforms the recognition problem
into a possibilistic classification of activities. The possibil-
ity and necessity measures on behavior hypotheses allow us
to capture the fact that, according to the observed actions,
an erroneous behavior hypothesis is as possible as a normal
behavior hypothesis when we want to explain the observed
behavior of a patient when he carries out some activities.
Hence, in a complete ignorance setting, both behavior types
are possible, although each type is not necessarily the one
being carried out. So, unlike probability theory, possibil-
ity theory is not additive. The paper is organized as fol-
lows. Firstly, we present our possibilistic activity recogni-
tion model. Thereafter, we present results of our implemen-
tation’s experimentation based on real data from the AIHEC
project at the Singapore’s Institute for Infocomm Research.
Finally, we conclude the paper, mentioning future perspec-
tives of this work.
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Possibilistic Activity Recognition Model

Our activity recognition model is based on possibility theory
and on description logic (DL) (Baader et al. 2007). DL is
a family of knowledge representation formalisms that may
be viewed as a subset of first–order logic, and its expressive
power goes beyond propositional logic, although reasoning
is still decidable. In our model, the activity recognition pro-
cess is separated into two agents: the action recognition
agent and the behavior recognition agent. This separation
will allow us to change the action recognition model or the
activity recognition model without modifying the other part
in order, for instance, to try another approach. Action recog-
nition refers to the recognition of the low–level action that
was carried out in the smart home environment according to
the changes observed in the environment’s state. Accord-
ing to a possibilistic action formalization and to the set of
environment contexts that could represent the observed en-
vironment state resulting from an action realization, the ac-
tion recognition agent selects in the action ontology the most
possible and necessary recognized action that could explain
the environment changes. Behavior recognition refers to
the recognition, according to the sequence of recognized ac-
tions, of the high–level behavior related to the accomplish-
ment, in a erroneous or coherent way, of some activities. By
using the sequence of observed actions and the activity plan
ontology, the behavior recognition agent generates a set of
hypotheses that could explain the observed coherent or erro-
neous behavior, and selects the most possible and necessary
hypotheses in order to send them to an assistive agent, which
will plan a helping task if needed.

Action Recognition

In our model, the observer agent has knowledge concerning
the resident’s environment, which is represented by using
a formalism in description logic. By using the open world
assumption, it allows us to represent the fact that the envi-
ronment is partially observable. The family of DL ALC is
used to represent the environment states. The observation of
the environment’s state with sensors allows us to obtain the
low–level context C of the environment. Since the obser-
vation can be partial, this context can represent a subset of
the environment’s state space S, where states of this subset
share some common environmental properties. More for-
mally, a context C consists of a set of DL assertions where
some states in S are entailed, so that CI ⊆ S is not an empty
state. ·I is an interpretation function that assigns to a con-
text C a subset of the interpretation domain ΔI = S. For
instance, the context where the patient is in the kitchen, the
pantry door is open, and the pasta box is in the pantry can
includes several possible states of the smart home environ-
ment. Also, a set of contexts can be seen as a partition of the
environment’s state space.

In order to infer hypotheses about the observed behavior
of the patient when he carries out some activities in the smart
home environment, we need to recognize the sequence of
observed actions that were performed in order to carry out
the activities. In our model, we formalize action accord-
ing to a context–transition model where transitions between

contexts resulting from an action realization are quantified
with a possibility value.
Proposition 1. A possibilistic action a is a tuple (Cprea

,
Cposta

, πinita
, πtransa

), where Cprea
and Cposta

are con-
text sets and πinita

and πtransa
are possibility distributions

on those context sets.
Cprea

is the set of possible contexts before the action oc-
curs (pre–action contexts), Cposta

is the set of possible con-
texts after the action occurs (post–action contexts), πinita is
the possibility distribution on Cprea that an environment’s
state in a particular context ci ∈ Cprea allows the action to
occur, and πtransa is the transition possibility distribution
on Cprea

× Cposta
if the action does occur.

The action library A, which contains the set of possible
actions that can be carried out by the patient, is represented
by an action ontology, where each action is partially ordered
according to an action subsumption relation �A, which can
be seen as an extension of the concept subsumption relation
� of DL (Baader et al. 2007). This relation, which is transi-
tive, allows us to indicate that a concept is more general than
(subsumes) another concept. In other words, a subsumed
concept is a subset of the subsumer concept.
Proposition 2. Let a, b ∈ A be two action tuples
(Cprea

, Cposta
, πinita

, πtransa
) and (Cpreb

, Cpostb
, πinitb

,
πtransb

). If a subsumes b, denoted by b �A a, then we
have: (i) for each context d in Cpreb

, there exists a context c
in Cprea

where d � c and πinitb
(d) � πinita

(c), (ii) and for
each context e in Cpostb

, there exists a context f in Cposta

where e � f and πtransb
(d, e) � πtransa

(c, f).
In other words, if an action subsumes another one, its

possibility values are at least as possible as the action sub-
sumed. For instance, since OpenDoor subsumes Open-
DoorPantry, then the OpenDoor possibility is greater
or equal than the OpenDoorPantry possibility since
OpenDoor is more general than OpenDoorPantry. With
this action subsumption relation, we can define an action
ontology, which represents all the possible actions that an
observed patient can carry out in the smart home environ-
ment. This action ontology is represented by an ordered set
(A, �A), where A is a set of actions and �A is the action
subsumption relation (order relation). For instance, for the
action set {All, OpenDoor, OpenPantryDoor, Open-
FridgeDoor}, we have the partial order (OpenFridge-
Door �A OpenDoor, OpenPantryDoor �A Open-
Door, OpenDoor �A All).

This action ontology is used when we need to evaluate
the most possible action that could explain the changes ob-
served in the smart home environment resulting from an ac-
tion realization by an observed patient. At the same time,
we evaluate the next most possible action that can be carried
out according to the current state of the smart home envi-
ronment. In order to evaluate the recognition and prediction
possibilities on the action ontology at a time t, we need to
use the observation of the current environment state. An
observation at a time t, denoted by obst, consists of a set
of DL assertions, according to the environment terminology,
that represent the state of the environment resulting from an
action realization at a time t. This observed state can be
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partial or complete according to the information that can be
retrieved from the environment’s sensors. An observation
timestamp t ∈ Ts is associated with a time value ti ∈ T that
indicates the elapsed time (in minutes, seconds, . . . ) since
the start of the recognition process.

From this observation obst, we need to evaluate the set of
contexts ci that are entailed by this observation (obst |= ci).
Since the environment can be partially observable, multi-
ple entailed contexts are possible. Those entailed contexts
are then used to evaluate the possibility distributions for the
prediction and recognition of actions. The action predic-
tion possibility distribution πpret

on the action ontology A
indicates the possibility, denoted by πpret

(a), that a partic-
ular action a ∈ A could be the next one to be carried out
by the observed patient according to the environment state
observed by obst. Thus, πpret is obtained by selecting, for
each action, the maximum value among the initiation pos-
sibilities πinita(ci) for the pre–action contexts ci ∈ Cprea

that are entailed by the observation (obst |= ci).
The action recognition possibility distribution πrect

on A
indicates the possibility, denoted by πrect

(a), that a partic-
ular action a ∈ A was carried out by the observed patient,
according to the environment states observed by obst−1 and
obst. Thereby, πrect is obtained by selecting, for each ac-
tion, the maximum value among the transition possibilities
πtransa

(ci, cj) for the transitions (ci, cj) between the pre–
action contexts ci ∈ Cprea

entailed by the previous observa-
tion (obst−1 |= ci) and the post-action contexts cj ∈ Cposta

entailed by the current observation (obst |= cj).
πrect allows us to evaluate the possibility and necessity

Πrect(Act) and Nrect(Act) that an action a ∈ Act ⊆ A was
observed at a time t. Πrect

(Act) is obtained by taking the
maximum πrect

(a) among the actions a ∈ Act. Nrect
(Act)

is obtained by taking the maximum πrect
(b) among the ac-

tions b ∈ A and subtracting the maximum πrect
(a) among

the actions a ∈ Act, where Act = A \ Act is the comple-
ment of Act. The possibility and necessity measures Πrect

and Nrect
are then used to select the most possible action

that could explain the changes observed in the environment
state described by the current obst.

An observed action at time t, denoted by (a, t), is ob-
tained by selecting the most possible (and necessary) action
a ∈ A according to the Πobst

(a) and Nobst
(a) values. If

there is more than one most possible action, then a is se-
lected among those most possible actions by using the ac-
tion subsumption relation: (i) takes the most specific actions
among those most possible actions, (ii) gets the common
subsumer actions on those specific actions, (iii) and selects
the most specific action among those subsumer actions. For
instance, if the most possible actions are All, OpenTap,
OpenColdTap and OpenHotTap, then OpenTap is se-
lected since it is the most specific common subsumer of
OpenColdTap and OpenHotTap, which are the most spe-
cific actions in the most possible action set.

This new observed action (a, t) is sent to the behavior
recognition agent, which uses the sequence of observed
actions to infer behavior hypotheses concerning the ac-
complishment of the patient’s activities. This sequence,
which is the observed plan Pobst

, consists of a totally or-

dered set (At,≺T ), where (ai, tj) ∈ At denotes that ai

is the most plausible observed action at the time tj , and
≺T ⊆ At × At is a total order (sequence) relation. For
instance, let obs0 and obs1 be two observations where the
time values associated to the timestamps 0 and 1 are 3
minutes and 4 minutes, respectively. Then the observed
plan (OpenDoor, 0) ≺T (EnterKitchen, 1) indicates that
OpenDoor was observed, according to obs0, 3 minutes after
the start of the recognition process and that EnterKitchen
was then observed, according to obs1, 1 minute later. It
should be noted that not only the observed plan is sent to
the behavior recognition agent, but also the possibility dis-
tributions on the action set. This gives more flexibility to the
architecture, since it is possible that the behavior recognition
approach could be substituted with another approach.

Behavior Recognition

The hypotheses about the behavior, which is associated with
the performance of some activities, are made according to
an activity formalization in a plan structure. An activity plan
consists of a partially ordered sequence of actions that must
be carried out in order to achieve the activity’s goals.
Proposition 3. An activity α is a tuple (Aα, ≺α, Crealα ,
πrealα , πerrα

) where Aα ⊆ A is the activity’s set of ac-
tions, which is partially ordered by a temporal relation ≺α⊆
Aα × Aα × πtimeα where πtimeα represents a set of tem-
poral possibility distributions πtimeα,k

, Crealα is the set of
possible contexts related to the activity realization, πrealα is
the possibility distribution on Crealα that a context is related
to a coherent realization of the activity, and πerrα

is the pos-
sibility distribution on Crealα that a context is related to an
erroneous realization of the activity.

Each relation (ai, aj , πtimeα,k
) ∈≺α allows us to de-

scribe the possible delays, according to the temporal dis-
tribution πtimeα,k

, between the carrying out of ai and aj .
The temporal distribution πtimeα,k

on T , which is a set of
time values, indicates for each time value tl ∈ T , the pos-
sibility πtimeα,k

(tl) that tl represents a coherent delay be-
tween the realization of ai and aj . For instance, the ac-
tivity WatchTv can have an activity plan composed of the
actions SitOnCouch, TurnOnTv and TurnOffTv and
the temporal relations (SitOnCouch, TurnOnTv, πtime0)
and (TurnOnTv, TurnOffTv, πtime1), where πtime0

and πtime1 indicates possible delays between the realization
of the actions, according to Figure 1.

Figure 1: Temporal distributions for WatchTv.

This activity formalization allows us to recognize differ-
ent kinds of behavior, such as, for instance, interleaved be-
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haviors (normal realization of multiple activities where their
actions are interleaved in the observed behavior), temporal
errors (normal sequence of the activity’s actions but the time
constraints are not respected), sequence errors (some activ-
ity’s actions are badly ordered), realization errors (irrelevant
actions added to the activity’s actions), and completion er-
rors (unable to complete the activity).

The set P of possible activity plans that can be carried out
by the patient in a smart home is partially ordered according
to an activity subsumption relation �P .

Proposition 4. Let α, β ∈ P be two activity tuples (Aα,
≺α, Crealα , πrealα , πerrα

) and (Aβ , ≺β , Crealβ , πrealβ ,
πerrβ

). If α subsumes β, denoted by β �P α, then we
have: for each context d in Crealβ , there exists a context
c in Crealα where d � c, πrealβ (d) � πrealα(c), and
πerrβ

(d) � πerrα
(c).

In other words, if an activity subsumes another one, its
possibility values are at least as possible than the activity
subsumed. For instance, if CookFood subsumes Cook-
PastaDish, then the CookFood possibility will be greater
or equal than the CookPastaDish possibility, considering
that CookFood constitutes a more general activity and con-
sidering that CookPastaDish implies CookFood. With
this activity subsumption relation �P , we can define an ac-
tivity plan ontology (P, �P) where the set of all possible
activity plans P that can be carried out in the smart home
environment is partially ordered according to �P .

After each observation obst, we need to evaluate the pos-
sibility distributions πrealt and πerrt

on the activity plan
ontology P , which indicates the possibility that the envi-
ronment’s state observed by obst is related, respectively,
to an coherent realization and erroneous realization of the
activity. The coherent activity realization possibility dis-
tribution πrealt on P indicates the possibility, denoted by
πrealt(α) that the environment’s state observed by obst is
related to a coherent realization of the activity plan α ∈ P .
Hence, πrealt is obtained by selecting, for each activity plan
α ∈ P , the maximum value among the context possibilities
πrealα(ci) for the contexts ci ∈ Crealα that are entailed by
the observation (obst |= ci).

The erroneous activity realization possibility distribution
πerrt

on P indicates the possibility, denoted by πerrt
(α) that

the environment’s state observed by obst is related to an er-
roneous realization of the activity plan α ∈ P . Thus, πerrt

is obtained by selecting, for each activity plan α ∈ P , the
maximum value among the context possibilities πerrα

(ci)
for the contexts ci ∈ Crealα that are entailed by the obser-
vation (obst |= ci).

By using the activity plan ontology and the observed plan,
the behavior recognition agent can generate hypotheses con-
cerning the actual behavior of the observed patient when
he carries out some activities. Since multiple activity re-
alizations can explain the observed plan, we need to eval-
uate partial activity realization paths, which represent par-
tial/complete realizations of activities. A partial activity re-
alization path pathj is a tuple (αj , Pobst

, Rpathj
), where

αj ∈ P is the activity that is partially carried out, Pobst
is

the observed plan, and Rpathj
⊆ At × Aαj

is a set of ob-

served actions (ai, tk) ∈ At from the observed plan Pobst

that are associated with actions al ∈ Aαj in the activity
plan αj , so that ((ai, tk), al) ∈ Rpathj

. The observed ac-
tions in Rpathj

must represent a coherent partial realization
of the activity αj , according to the sequence and temporal
constraints defined in the activity plan αj . It should be noted
that if an observed action (ai, tk) is associated with an activ-
ity action al, denoted by ((ai, tk), al) ∈ Rpathj

, then the ob-
served action must subsume the activity action (al �A ai).
For instance, given the observed plan (SitOnCouch, 0) ≺T
(TurnOnElectricalAppliance, 1) and the WatchTv ac-
tivity plan, we can have as partial path the associa-
tions ((SitOnCouch, 0), SitOnCouch) and ((TurnOn-
ElectricalAppliance, 1), TurnOnTv) (since TurnOn-
Tv is subsumed by TurnOnElectricalAppliance).

Since the set of partial paths Path depends on the ob-
served plan Pobst

, we must update Path for each new ob-
served action by extending, removing, or adding new partial
paths: (i) a partial path pathj ∈ Path is extended if the new
observed action subsumes one of the next possible actions in
the activity plan and if the extended partial path respects the
constraints in the activity plan. Also, we must keep a copy of
the original partial path, since it is possible that the new ob-
served action is not associated to the partial path’s activity,
(ii) a partial path pathj ∈ Path is removed if the maximum
delays for the next possible action in the activity plan are
exceeded, (iii) a partial path pathj is added in Path if the
new observed action subsumes one of the activity’s actions
that can be directly carried out.

With this partial activity realization path set Path, we
need to evaluate the possibility distributions πPathC,t

and
πPathE,t

on Path, which indicates the possibility that a
particular partial path is associated, respectively, to a co-
herent behavior or an erroneous behavior. The coherent
partial path realization possibility distribution πPathC,t

on
Path indicates the possibility, denoted by πPathC,t

(pathj),
that a particular partial path pathj ∈ Path is associated
with a coherent behavior according to an observed plan
Pobst

. Thus, πPathC,t
is obtained by considering, for each

pathj ∈ Path, the action prediction possibility for each
action in the activity plan that could be the next one to be
carried out, the action prediction and recognition possibili-
ties for the actions that are in the partial path, the coherent
activity realization possibility for the activity associated to
the partial path, and the time possibilities for the action tran-
sitions in the partial path.

The erroneous partial path realization possibility distri-
bution πPathE,t

on Path indicates the possibility, denoted
by πPathE,t

(pathj), that a particular partial path pathj ∈
Path is associated with an erroneous behavior according to
an observed plan Pobst

. Thereby, πPathE,t
is obtained by

considering, for each pathj ∈ Path, the action prediction
and recognition possibilities for the observed actions not in
the partial path, and the erroneous activity realization possi-
bilities for the activity associated to the partial path.

By considering the set of possible activity plans Pposs ⊆
P that could be partially carried out, which are the activity
plans associated to partial paths in Path, we can generate
hypotheses concerning the observed behavior of a patient
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when he carries out some activities in the smart home envi-
ronment.

Proposition 5. A behavior hypothesis hi consists of a subset
of Pposs where ∀αj ∈ hi, � ∃αk ∈ hi, αi �= αk ∧ αi �P αk.

Thus, a behavior hypothesis hi is an element of the power
set of Pposs where each activity plan in the hypothesis is not
subsumed by another activity plan in the hypothesis. Two
interpretations can be given to a particular hypothesis hi:
coherent behavior and erroneous behavior. hi can be inter-
preted as coherent behavior where the patient carries out the
activities αj ∈ hi. Those activities can, at the current ob-
servation time, be partially realized. hi can be interpreted
as erroneous behavior where the patient carries out some
activities in an erroneous way, while the activities αj ∈ hi

are carried out in a coherent way. Since hi can be empty,
we cover also the case where the patient accomplishes some
activities in an erroneous way without some coherent activ-
ity realizations. Concerning the erroneous behaviors, mul-
tiple error types are possibles (sequence, realization, judg-
ment, initiation, completion, and organization), but the be-
havior recognition is unable to disambiguate the observed
error type. Furthermore, multiple error types can happen at
the same time in the observed behavior.

Since each hypothesis hi in the behavior hypothesis set
Ht for the current observed plan Pobst

can be interpreted in
two ways, we need to evaluate two possibility distributions
on Ht: the coherent behavior possibility distribution πBevC,t

and the erroneous behavior possibility distribution πBevE,t
.

The coherent behavior possibility distribution πBevC,t
on

Ht indicates the possibility, denoted by πBevC,t
(hi), that

a particular hypothesis hi ∈ Ht represents a coherent be-
havior according to the observed plan Pobst . Thus, πBevC,t

is obtained by selecting, for each hi ∈ Ht, the maximum
value among the minimal coherent partial path possibili-
ties for each activity in hi. If some actions in the observed
plan are not in the partial paths of the activities in hi, then
πBevC,t

(hi) is 0.
The erroneous behavior possibility distribution πBevE,t

on Ht indicates the possibility, denoted by πBevE,t
(hi), that

a particular hypothesis hi ∈ Ht represents an erroneous
behavior according to the observed plan Pobst . Thereby,
πBevE,t

is obtained by selecting, for each hi ∈ Ht, the
maximum value among the minimal erroneous partial path
possibilities for each activity in hi. If hi is empty, then
πBevE,t

(hi) is obtained according to the action recognition
possibilities for the actions in the observed plan.

With those two possibility distributions, we can evaluate
the possibility and necessity that each hypothesis represents
a coherent or an erroneous behavior which could explain
the observed actions Pobst . The possibility and necessity
measures that a hypothesis bi ∈ B ⊆ Ht represents co-
herent behavior that could explain the observed plan Pobst

is given by ΠBevC,t
(B) and NBevC,t

(B), which are ob-
tained from πBevC,t

. The possibility and necessity measures
that a hypothesis bi ∈ B ⊆ Ht represents erroneous be-
havior that could explain the observed plan Pobst

is given
by ΠBevE,t

(B) and NBevE,t
(B), which are obtained from

πBevE,t
.

The most possible and necessary hypotheses are then
selected according to the ΠBevC,t

, NBevC,t
, ΠBevE,t

and
NBevE,t

measures on the hypothesis set Ht. The results of
the behavior recognition are then sent to an assistive agent,
which will use it to plan a helping task if needed.

Behavior Recognition Scenario

Let us illustrate the recognition process of our possi-
bilistic model inside a smart home’s kitchen. Sup-
pose that the environment’s sensor events indicate that
a kitchen door was open. According to the action on-
tology A, the entailed contexts, and the action predic-
tion and recognition possibility distributions, there are
three most possible and necessary actions that could
explain the environment changes: OpenKitchenDoor,
OpenPantryDoor and OpenFridgeDoor. According
to the action subsumption relation, the observed ac-
tion that will be sent to the behavior recognition is
OpenKitchenDoor. Let suppose that we observe the ac-
tion TurnOnFoodHeatingAppliance, which subsumes
TurnOnMicrowave and TurnOnStove, 1 minute later.
Thereby, the observed plan is (OpenKitchenDoor, 0) ≺T
(TurnOnFoodHeatingAppliance, 1). According to this
observed plan and the activity plan ontology P , the pos-
sible activities that could be partially carried out are
CookFrozenDish and CookPasta. Then, we have some
behavioral hypotheses: (1) erroneous behavior without co-
herent activity realization, (2) erroneous behavior with co-
herent realization of the CookPasta or CookFrozenDish
activities, and (3) coherent behavior with coherent realiza-
tion of the CookPasta or CookFrozenDish activities. If
the system does not observed the action CloseFridgeDoor
within the specified delays according to the temporal con-
straints defined in the CookFrozenDish activity (time
possibility distribution), the partial paths associated to
CookFrozenDish will be removed in Path. Even if
the system observes CloseFridgeDoor within the speci-
fied delays, the possibility of a coherent behavior with the
CookFrozenDish activity will decrease if the elapsed time
between OpenFridgeDoor and CloseFridgeDoor has a
low possibility according to the time possibility distribution
between the two actions in CookFrozenDish. If the sys-
tem observes the action OpenColdTap, which is associated
to the DrinkWater activity, then we can consider, among
the hypotheses, the interleaved realization of DrinkWater
with CookFrozenDish or CookPasta.

Smart Home Validation
In this section, we present results from our possibilistic
model implementation in the Ambient Intelligence for Home
based Elderly Care (AIHEC) project’s infrastructure at Sin-
gapore’s Institute for Infocomm Research (I2R) (Phua et al.
2009). The AIHEC infrastructure consists of a simulated
smart home environment, which contains stations that rep-
resent smart home rooms (pantry, dining, . . . ). The behavior
of the observed person is monitored by using pressure sen-
sors (to detect sitting on a chair), RFID antennas (to detect
cup and plate on the table and a cupboard nearby), PIR sen-
sors (to detect movement in the pantry and dining areas),
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reed switch sensors (to detect opening and closing of the
cupboard), accelerometer sensors (to detect patient’s hand
movements), and video sensors (mainly to annotate and au-
dit the observed patient’s behavior). Dining and pantry
events were obtained by using a Dynamic Bayesian Network
(DBN) for eating activity recognition (Tolstikov et al. 2008).
Also, the lab environment uses a wireless sensor network.

Figure 2: Simplified Assistance and Activity Recognition
System

Our possibilistic activity recognition model is imple-
mented according to the simplified smart home system ar-
chitecture (Figure 2). The system architecture works as fol-
lows. Basic events related to an action realization are gener-
ated by sensors and are sent to a sensor event manager agent,
which will send the current environment’s state, according to
the sensor events, to a knowledge representation agent. The
knowledge representation agent, which has a virtual repre-
sentation of the environment encoded in a Pellet description
logic system (Sirin et al. 2007), infers which contexts are
entailed by the current environment state. Those entailed
contexts are then sent to an action recognition agent, which
will use a possibilistic action formalization and the action
ontology to select the most possible action that could explain
the observed changes in the environment. This recognized
action is sent to a behavior recognition agent, which will use
the sequence of observed actions (observed plan) and the
activity plan ontology to generate possibilistic hypotheses
about the behavior of the observed patient.

Results

A previous trial was carried out in this simulated smart home
environment, where 6 actors simulated a meal–time scenario
several times (coherent and erroneous behavior) on 4 occa-
sions. This meal–time scenario consists of getting utensils
(plate), food (biscuit) and drink (water bottle) from the cup-
board in the pantry, sitting on the chair to eat and drink, and
putting back the utensils/food/drink in the cupboard. Some
erroneous realizations for this scenario were carried out and
are mainly associated with realization errors (forget an activ-
ity step, add irrelevant actions), where some of them can also
be considered as an initiation error (do not start an activity),
or a completion error (forget to finish the activity). By us-
ing the sensor databases for each observed behavior, a set of
observed sequences of smart home events was recognized,
constituting a set of behavioral realizations. Among those

observed behaviors, we select 40 (10 coherent/30 erroneous)
scenario realizations that are the most representative, since
some of them are similar. The selected coherent realizations
represent a coherent realization, in an interleaved way, of the
activities in the meal–time scenario. The selected erroneous
realizations represent an erroneous realization of the meal–
time scenario, with or without some coherent partial activity
realizations. In those erroneous realizations, there is usually
more than one error type that occurs (realization, initiation
and completion errors). Each selected scenario realization
was simulated in our model implementation by inputting the
smart home events related to each realization, in order to
recognize the sequence of observed actions and to generate
hypotheses concerning the observed behavior, according to
the environment, action and activity ontologies. The main
goal of our implementation experimentation is to evaluate
the recognition accuracy about the observed behavior asso-
ciated with the realization of the meal–time scenario.

Figure 3: Recognition Accuracy of Behavior Recognition:
Standard Recognition, Recognition with Extended Possibili-
ties, Recognition by Considering Generic Erroneous Behav-
iors

Concerning behavior recognition accuracy, our model
was able to recognize 56.7% of the erroneous behaviors and
80% of the coherent behavior (overall 62.5%) when we only
consider the most possible behavior hypotheses according
to the possibility distributions (first part of Figure 3). By ex-
pending the possibility range for the most possible behavior
hypotheses (second part of Figure 3), our model was able to
recognize 63.3% of the erroneous behavior (overall 67.5%).
When we consider the erroneous realizations as generic er-
roneous behavior (erroneous realizations without coherent
activities partially carried out), our model was able to recog-
nize 100% of that erroneous behavior (95% overall) (third
part of Figure 3). One of the main reasons that some be-
havior realizations (coherent and erroneous) are not recog-
nized is related to the rigidity of the action temporal relation,
where the only time constraint is a possibilistic time interval
between actions. In this case, some erroneous or coherent
realizations are instead considered as generic erroneous re-
alizations, since the coherent partial activities’ realizations
are not recognized. Also, in some cases, the sensor config-
uration changes a little bit (mainly the PIR sensor), and that
influences the accuracy of the event recognition system. For
instance, a change in the PIR sensor localization can produce
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a lot of perturbations: zones detected by the PIR sensors be-
come overlapped, while the training on the event recognizer
is made on non–overlapping zones.

Figure 4: Activity Recognition Runtime per Observed Ac-
tion for the Scenario Realizations

Figure 4 plots, for each scenario realization, the system
runtime for each observed action that was recognized by our
possibilistic model implementation. The runtime includes
the interactions with the description logic reasoning system,
the action recognition and the behavior recognition. Since
the focus of the experimentation is the performance of our
behavior recognition implementation, the runtime prior to
the smart home event recognition is not considered. For this
simulation, the runtime is generally between 100 and 200
milliseconds for each action observed. We observe reason-
ably normal distributions, which is an effect that results from
a diminution of the partial activity realization path set’s size.
This size diminution results from the fact that some tem-
poral constraints between actions described in the activity
plans are no longer satisfied, so that subsets of the partial
path set must be removed. It should be noted that the num-
ber of actions carried out and the time between them for each
scenario realization are different from those of another sce-
nario realization, since each scenario realization represents
a specific behavior.

Our possibilistic recognition model is more efficient than
our previous recognition model based on lattice theory and
probabilistic description logic (Roy et al. 2009). In this
previous model, the action formalization is more restrictive
and the hypothesis generation takes more resources, since
it generates specific behavior plans instead of considering
more generic behavior. Because of that, some behavior is
not recognized. For instance, if the first action observed
is not the first one in an activity, the specific hypothesis is
not generated. Also, the previous model does not have tem-
poral constraints; this limits the recognition of temporal er-
rors. For instance, a temporal erroneous behavior, where
time constraints between actions are not respected, will be
recognized as a coherent realization of some activities, since
the observed actions respect the sequence constraints in the
activity plans.

Several previous related work, such as that of
Cook (Cook, Youngblood, and Das 2006) (MavHome
project), Mihailidis (Mihailidis et al. 2007) (Coach project),
Helal (Helal et al. 2005) (Gator Tech Smart House) and

Patterson (Patterson et al. 2007) (Barista system), have
conducted the same kind of experiments that we did,
using synthetic and real data on comparable problems of
similar size. Comparing our experimental results with
these previous one is not a simple task. Some assumptions
about the activity recognition are different, such as the
activity granularity (events, actions, tasks, activities, ADL,
. . . ), the occupant’s cognitive disorder (observed behavior
categories), the modularity of the system (activity recog-
nition with assistive task at the same time), the activity
recognition category (keyhole, intended, adversarial), and
the scope of the recognition (only the actions, only the
activities, the behavior as a whole). For instance, the
experiment of Mihailidis (Mihailidis et al. 2007), as an
example, focused only on the identification of the person’s
current activity step, while assuming to know the current
on–going activity. These two objectives and methods are
quite different and lead to some difficulties in comparing
them. Some adaptations must be made in order to compare
with the previous approaches on a common ground such,
for instance, the recognition accuracy.

Despite the heterogeneous nature of previous works ex-
periments, we can draw some useful comparisons and con-
clusions from the evaluation of their experimental results.
First, most of the previous work exploited a form of prob-
abilistic model (Markovian or Bayesian based). These ap-
proaches seem to give better results in recognizing an on–
going activity and the current activity step with a small plan
library. For instance, the results presented in (Helal, Cook,
and Schmalz 2009) with a Hidden Markov Model give a
recognition accuracy of 98% in identifying the correct activ-
ity among five candidates. Also, this approach was able to
detect, in a qualitative way, the omitted steps of those activ-
ities. The approach of (Patterson et al. 2007), based on Dy-
namic Bayesian Networks, was able to identify the specific
on–going activity with a recognition accuracy higher than
80%. The Markovian model proposed by Mihailidis (Mihai-
lidis et al. 2007) also has shown amazing results in recogni-
tion accuracy. However, this last approach only focused on
monitoring a single activity.

In the light of these experimental results, we can draw
some comparisons. First, despite their good results, these
previous probabilistic models seem to be adapted to small
recognition contexts with only a few activities. It seems
much more difficult to use them on a large scale, know-
ing that each activity must be handcrafted and included in
a stochastic model, while conserving the probability dis-
tribution. Also, the propagation of probabilities following
an observation can be quite laborious while dealing with a
large activity library. Moreover, another important limita-
tion of these probabilistic models is the difficulty of simul-
taneously handling multiple interleaved activities and erro-
neous behavior. Most previous models simply do not take
into account the possibility of recognizing coherent behav-
ior composed of a few activities with their steps interleaved.
They also tend to only identify certain precise types of errors
(ex. missing steps), while avoiding the others. Finally, we
believe that the biggest problem of using a purely probabilis-
tic theory is the inability of handle together the imprecision
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and the uncertainty of the incomplete information. One way
to deal with this difficulty is to use a probabilistic interval,
which means that there are two probability distributions (one
for the minimum values and one for the maximum values).
Our approach based on possibility theory, seems to have
more flexibility and potential, and to be more advantageous
regarding these issues. For instance, by using only one pos-
sibility distribution, we can obtain possibility and neces-
sity measures (the interval) on the hypotheses. It allows us
to capture partial belief concerning the activities’ execution
from human experts, since this theory was initially meant to
provide a graded semantics to natural language statements.
It also allows us to manage a large quantity of activities, to
take into account multiple interleaved plans, and to recog-
nize most types of correct and incorrect behavior. Further-
more, applications based on possibility theory are usually
computationally tractable (Dubois and Prade 2007).

Conclusion

Despite the important progress made in the activity recogni-
tion field for the last 30 years, many problems still occupy a
significant place at a basic level of the discipline and its ap-
plications. This paper has presented a formal framework of
activity recognition based on possibilistic DL as the seman-
tic model of the agent’s behavior. It should be emphasized
that the initial framework and our preliminary results are not
meant to bring exhaustive or definitive answers to the mul-
tiple issues raised by activity recognition. However, it can
be considered as a first step toward a more expressive am-
bient agent recognizer, which will facilitate the support of
imprecise and uncertain constraints inherent to smart home
environments. This approach was implemented and tested
on a real data set, showing that it can provide, inside a smart
home, a viable solution for the recognition of the observed
patient’s behavior, by helping the system to identify oppor-
tunities for assistance. An interesting perspective for the en-
richment of this model consists in conducting an extension
of this framework in order to simultaneously deal with the
vagueness of an activity’s duration and the noises of the sen-
sors. The measurements of necessity and possibility of the
activities will depend on the correlation between these con-
straints, allowing us to further refine the explanation of the
activities. Finally, we clearly believe that considerable fu-
ture work and large scale experimentation will be necessary,
in a more advanced stage of our work, to help evaluate the
effectiveness of this model in the field.
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