IsisWorld: An Open Source
Commonsense Simulator for AI Researchers

Dustin Smith and Bo Morgan
{dustin, neptune}@media.mit.edu
MIT Media Lab
20 Ames St
Cambridge, MA 02139 USA

Abstract

A metareasoning problem involves three parts: 1) a set of
concrete problem domains; 2) reasoners to reason about the
problems; and, 3) metareasoners to reason about the reason-
ers. We believe that the metareasoning community would
benefit from agreeing on the first two problems. To support
this kind of collaboration, we offer an open source 3D sim-
ulator containing everyday, commonsense problems that take
place in kitchens. This paper presents several arguments for
using a simulator to solve commonsense problems. The pa-
per concludes by describing future work in simulator-based
unified generative benchmarks for Al

Introduction

Metareasoning is when a reasoner reasons about a reason-
ing system and is an important operation for solving prob-
lems with limited information and computational resources
(Russell 1997), (Cox and Raja 2008). Metareasoning is also
viewed as a useful, if not essential, property of systems that
are able to solve a wide range of problems. A metareasoning
system involves three components:

1. a set of concrete problem domains, and

2. areasoner, or ensemble of reasoners, that reasons to solve
problems, and

3. a metareasoner, or ensemble of metareasoners, that rea-
sons about the reasoner.

Traditionally the reasoner and metareasoner are layered, al-
though there is nothing preventing a meta-circular arrange-
ment (Schmill et al. 2008) nor the addition of other metarea-
soning layers (Minsky 2007), (Singh 2005). Reasoners can
operate in serial or parallel.

With the explicit goal of building intelligent agents, we con-
sider the reasoner to be a planning system that works to se-
lect its next action (Russell and Wefald 1991). Although
there are many ways to formulate a planning problem, in
general, problems of planning can be described as “design-
ing controllers that can map sequences of observations into

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

54

actions so that certain goals are achieved (Bonet and Geffner
2001).” Using this planning terminology, metacognition has
many uses: deciding which problems to solve, reorganiz-
ing knowledge of actions or the world state, reasoning about
learning strategies, adding or removing actions, recognizing
a missing skill, adding a goal of acquiring a skill, prioritizing
goals, and reasoning about schemes of selecting methods to
solve problems.

As there is no consensus about the particular planning sys-
tem nor the problem domain, there is a major communica-
tional challenge for metacognition researchers; though see
attempts at constructing a unified view (Anderson and Oates
2007) (Cox 2005). Seymour Papert said, “You cannot think
about thinking, without thinking about thinking about some-
thing,” suggesting that one should only study problem solv-
ing processes in tandem with concrete problems. It’s simple
to repurpose Papert’s wisdom to metareasoning: you cannot
think about metareasoning, without thinking about metarea-
soning about something.

We take Papert’s advice as a harbinger of what is missing in
the research of metacognition: a shared problem domain.

Using simulators to study Al problems

Although there are many fields that study human intelli-
gence, the field of Al is characterized by its engineering goal
of making computers behave intelligently. We argue that
using a commonsense simulator can be useful for pursuing
Al’s goal because of the following reasons:

e Understanding the problems better by engineering a
mind: We believe that the aggregate knowledge about hu-
man intelligence contains enough “pieces of the puzzle”
that we should begin to build a integrated mind. Just as
with a puzzle, we may need to start building it before we
can detect how various fragments are connected and if any
pieces are missing.

e Seeing the whole mind at once: While a linguist may
focus on understanding how a sentence is constructed, an
Al researcher must also explore why that sentence was
generated, and what information it is trying to communi-
cate (Schank and Birnbaum 1994). As the field stands, it



is difficult for a researcher in, say, the sub-field of plan-
ning to understand how his solutions constrain or other-
wise influence another researcher’s model in the sub-field
of language processing or scene understanding.

e Resource constraints are what make meta-reasoning
important: Consider the differences in how a super-
human Al with gigabytes of memory could learn the mul-
tiplication table for all 3 digit numbers by simply mem-
orizing a table containing ~ 10° assertions, versus a hu-
man, for whom memorization is more costly, who would
represent equivalent knowledge by learning a process that
could compute the solution digit by digit— albeit much
more slowly than table-lookup. On top of storage required
for the procedural description, the human then only needs
to learn the outcomes for ways to multiply all 10 x 10
single digits—100 facts— or 50 rather, if the learner' ex-
ploits a symmetry: A x B =B x A.

e Variable environment complexity: Scene understand-
ing and object recognition are unsolved problems, but
simulators allow varying sensory and motor control
granularities—to pretend these hard problems have been
solved. If there is a “chicken and egg scenario”, for
instance when higher-level cognition depends on object
recognition and object-recognition depends on higher-
level cognition, then the solution may require alternating
between development of both and meeting in the middle.

e Thinking about meta-reasoning about something:
Again, using Papert’s advice, having a particular problem
domain facilitates clear thinking. Further, using every-
day common tasks as problems allows researchers from
different backgrounds to be able to easily describe their
problems and solutions using a common language.

e Visual representation for debugging: Al ultimately is
a large software engineering challenge: requiring lots of
programming and debugging cycles. A 3D simulation can
convey a lot of information about the character’s behavior.
This helps a programmer to test the performance of his
software and communicate the results to other people.

Picking a reasoning problem

Our goal is to build human-level intelligence and we are
not bothered by not carefully distinguishing “human intel-
ligence” from “intelligences in general”. Because we are
interested in building Als that are capable of understanding
natural languages, which we take to be inexorably linked to
human cognition, our approach demands at least the ability
to simulate human linguistic and conceptual competencies.
These, we believe, are acquired in service of solving and
communicating descriptions about traditional commonsense
problems. Furthermore, if the simulated world’s problem
domains are too far removed from “the kinds of tasks hu-
mans generally solve”, then our natural languages may not
give the agent the right words with which to label its experi-
ences.

ISee a related discussion at http://web.media.mit.
edu/ "minsky/OLPC-1.html.

55

Our problem domain for the simulator involves problems
that are familiar to most cultures: domestic tasks that take
place in a kitchen, such as cooking and eating. Conse-
quently, there is no learning curve in between a researcher
and his or her understanding of the problem domain.

In summary, we chose problem domains that we believe
cut across the everyday “commonsense” reasoning problems
that people experience. We believe this is appropriate for
building intelligences that solve human problems and can
describe them using human languages.

What is a commonsense reasoning problem?

Commonsense reasoning involves thinking about many dif-
ferent types of problems, which requires a large amount of
approximate knowledge and knowledge about when it can
be used. Also, a commonsense reasoner must decide when
to stop pursuing one problem solving strategy in order to try
another, or to reorganize goals in general.

Our simulator emphasizes multiple problem domains
amenable to studying commonsense reasoning:

e Body movement and dexterous manipulation: Path
planning in the simulator is necessary for moving an
agent’s body over and around physical obstacles in the
environment; for example, to go through doors, around
counters, and up and down stairs. When using arms and
hands, tactile and visual feedback are required.

e Problem solving in a relational domain: Objects in the
kitchen, such as the loaf of bread and knife are programed
with ways that they can be “used” together: a primitive
action that requires one of the objects to be in the agent’s
hand. For example, when the knife is used with the loaf of
bread, a slice of bread appears in the agent’s other hand.
In this way, the agent can learn how to accomplish simple
cooking tasks by experimenting with objects.

e Multi-agent social communication: Our primary agent,
Ralph, does not exist in the simulation alone. He is ac-
companied by other agents, including his mother. The
presence of a caregiver allows us to model the ubiquitous
but complicated learning situation where a child learns in
the context of a parent.

e Dominion of objects: When multiple agents are solving
problems in the simulation, problems of dominion can
arise. Who owns or controls an object is a complicated
problem because some objects are destroyed in order to
accomplish goals. For example, when Ralph’s mother
makes a piece of toast for herself and Ralph wants it to
satisfy his hunger, she could choose to tell him to make
his own piece of toast.

e Visual reasoning: Although the simulation is not meant
to be a photo-realistic model of the physical world, there
are many higher-level visual reasoning problems that
could be studied in this simulator, including object per-
manence: when one object is seen and then passes behind
another occluding object.



As we have elaborated, there are many different problem
realms involved with even “simple” social and cooking
tasks. In the field of Al, each of these different problems
realms are studied independently, often by different people.
We hope to see the tools of metacognition and reflective
control used to organize and control a variety of problem
solvers. Specifically, we see our physical simulation em-
ploying metacognition and reflective learning to achieve:

o Transfer learning: A skill or knowledge that is involved
with one problem domain sometimes can be applied to
other domains. For example, bodily knowledge is ex-
ploited in the service of reasoning about space: the front
of a kitchen corresponds to a ‘face’, and the rear cor-
responds to its ‘back’. English speakers extend spatial
knowledge to time; consider some analogies: before eat-
ing, through the week, by today. Evidence of bodily word
knowledge being used to describe increasingly abstract
ideas such as space, time and mental states has been doc-
umented across languages (Deutscher 2005).

e Knowing what knowledge is relevant: Commonsense
reasoning involves a lot of knowledge, so a reasoner must
be selective about which knowledge it uses to solve a par-
ticular problem. Being able to select what knowledge is
available to a planner is a metacognitive problem.

o Reflective debugging of plans: When planning under un-
certainty, the credit assignment problem becomes neces-
sary to solve from a metacognitive reasoner outside the
planner.

e Mental self-models and stories: Because the world in-
volves multiple agents that perceive and act in simi-
lar ways, they will accumulate shared experiences and
knowledge. Problems that require multiple agents will
benefit from using mental models of other agents. With
a metareasoner, an agent can exploit his own self-models
and episodes to reason about other agents’ mental states.

e Personality and self-reflection: Knowledge about an
agent’s own abilities, mental and physical, are useful for
coordinating multiple expert agents for solving hard prob-
lems and recognizing when new skills need to be ac-
quired.

Introducing the simulator

Our simulator exists in a 3D world with basic physics of
gravity and collision detection.

The simulator uses the open-source Panda3D game engine
and is written in Python. The source code repository is pub-
lic.?

Perceptual and motor interfaces with the simulator

By default, the simulator is paused, and no physical simu-
lation can take place. The simulator can be unpaused and
stepped, advanced incrementally, or run continuously. The

21t is hosted on GitHub.

56

character in the simulator, “Ralph”, can be controlled di-
rectly in the simulator using key commands or separately
through a programmed agent (a client). The environment
and agent are temporally decoupled. In this section, we re-
view the agent-environment interface in terms of a percep-
tual frame and primitive actions.

Perceptual Frame The agent can sense the environment,
which returns a perceptual frame containing:

Object Information All names of the ifems in the charac-
ter’s field of vision; each item’s center’s relative = and
y coordinates on the frustum: the 2D plane representing
the projected 3D region of the character’s field of vision
3. the item’s area of the entire field of vision; the item’s
distance; and the item’s global orientation.

Proprioceptive Information The character’s global posi-
tion (,y, z) and orientation (h, p,r) in the environment
as well as the relative positions and orientations of the
character’s head and limbs with respect to its body; and
the names of the items within each of the character’s
hands (if any).

Linguistic Information A buffer representing all of the
text entered by the user since the last time the sense com-
mand was executed.

While the granularity of actions and perceptions can be re-
fined when necessary, we chose this level of abstraction to
focus explicitly on solving everyday tasks and commonsense
reasoning.

Primitive actions The character has a set of primitive ac-
tions that can be taken including: moving forward, back-
wards, left, and right; looking in four directions; turing in

3(0,0) denotes the center of the field of vision, where x and y
are values in (—1,1)

IsisWorld v0.3

ESC: quit
a,5: Rotate world camera

Figure 1: The simulator showing the agent’s monocular field
of vision in the lower right corner’s picture-in-picture.



four directions; moving arms; picking up objects in either
hand; rotating objects; dropping objects; and ‘using’ objects
with one another.

Many actions can be performed simultaneously. Their com-
positional constraints can be encoded by a first-level rea-
soner (i.e., a planner) or discovered through experimenting
and learning the effects of the actions, detecting when ac-
tions conflict, by a metareasoner.

Obtaining and running the simulator

Binaries and instructions for obtaining the simulator are
available* along with a simple agent implementation. Bina-
ries are currently supported for all major operating systems.

Going forward

AT has fragmented into many sub-fields and lacks a unified
goal. The specific sub-fields of Al: classification in machine
learning, object recognition, inductive logic programming,
and so forth have all made progress in their own research
communities. How can they be brought back together?

Generative canonical tasks within a simulator?

Al would benefit from some canonical and all encompass-
ing problems that require syntheses between many different
lines of work. Canonical tasks always run the risk of divert-
ing resources away from other research, so designing them is
a large responsibility. From past tasks, we know the task de-
signers must assume that the researchers will “overfit” their
solutions to meet the task’s requirements—that the solutions
will not generalize to other tasks, despite the original inten-
tions behind creating the task (e.g., (Shannon 1950)). Fur-
ther, if the task is too challenging or does not decompose
into smaller parts (e.g., (Turing 1950)) researchers will have
difficulty making progress.

How could we come up with a task that would prohibit short-
cut solutions, which only solve the task but do nothing else?
The task could be designed to make systems fail at many
levels of problem solving (motor controls, perceptual lim-
itations, goal conflicts, bad/incomplete information, aban-
doning some problem after spending too long on it, etc) to
encourage flexibility. One possible way to do this is by con-
tinuously changing the task: e.g., keep adding more con-
straints at runtime. Another way is to make the problem not
a particular task, but a space of tasks, where each particular
task is drawn from a task generator.

Example of a cross-cutting task generation pipeline
With the goal of an integrated simulator for studying plan-
ning, problem solving, and communication, we have come
up with possible multi-step approach to generating tasks:

1. Select parameters and generate a simulated world.

4See http://web.media.mit.edu/ dustin/
simulator_setup

57

2. Make the agent learn how to label things and states in the
world, perhaps by automatically providing examples and
counter examples.

3. Make the agent learn how to describe changes in states,
induce changes in states, and learn which are desirable.

4. Make the agent communicate this knowledge to another
agent, either human or simulated.

5. Evaluate this entire system on the quality of the commu-
nicated information, quantified by how well the recipient
of the information was able to use it to accomplish a task.

Though we may be far from this stage, getting several dif-
ferent researchers to work together on a shared simulator
environment is a start. Sharing tasks and evaluation metrics
using the shared simulator are next steps.

References

Anderson, M., and Oates, T. 2007. A review of recent
research in metareasoning and metalearning. Al Magazine
28(1):12.

Bonet, B., and Geffner, H. 2001. Planning and control in
artificial intelligence: A unifying perspective. Applied Intel-
ligence 14(3):237-252.

Cox, M., and Raja, A. 2008. Metareasoning: A manifesto.
Proceedings of Metareasoning: Thinking about Thinking.

Deutscher, G. 2005. The unfolding of language: an evolu-
tionary tour of mankind’s greatest invention. Macmillan.

Minsky, M. 2007. The emotion machine: Commonsense
thinking, artificial intelligence, and the future of the human
mind. Simon and Schuster.

Russell, S., and Wefald, E. 1991. Principles of metareason-
ing. Artificial intelligence 49(1-3):361-395.

Russell, S. 1997. Rationality and intelligence. Artificial
intelligence 94(1-2):57-77.

Schank, R., and Birnbaum, L. 1994. Enhancing intelligence.
72-106.

Schmill, M.; Oates, T.; Anderson, M.; Fults, S.; Josyula, D.;
Perlis, D.; and Wilson, S. 2008. The Role of Metacognition
in Robust Al Systems.

Shannon, C. 1950. Programming a computer to play chess.
Philosophy Magazine 41:256-275.

Singh, P. 2005. EM-ONE: An Architecture for Reflective
Commonsense Thinking. Ph.D. Dissertation, Massachusetts
Institute of Technology.

Turing, A. 1950. Computing machinery and intelligence.
Mind.



