
Automatic Inference in BLOG

Nimar S. Arora and Stuart Russell
University of California, Berkeley
{nimar,russell}@ cs.berkeley.edu

Erik Sudderth
Brown University

sudderth@cs.brown.edu

Abstract

BLOG is a powerful language to express models with an un-
known number of objects and identity uncertainty. Current
inference engines for BLOG are either too slow or require
users to write a model-specific proposal distribution. We de-
scribe here, ongoing work to design a new, fast, generic infer-
ence engine for BLOG called blogc. The new implementation
uses Gibbs sampling for finite-valued variables and performs
an analysis of the model to generate customized sampling
code in C. We describe our algorithms and methods in the
context of various commonly used models and demonstrate
significant performance improvement.

1 Introduction
The BLOG language (Milch et al. 2005) is a first-order,
open-universe probabilistic language which makes it very
easy to write models with an unknown number of objects
and identity uncertainty. A typical example is the Balls and
Urn model in Figure 1. In this model, there are an unknown
number of balls in an urn. The color of each ball can be
either blue or green with equal probability. In each draw,
one of the balls is sampled uniformly at random with re-
placement and its color is observed with some probability of
observing the wrong color. Now, given the observed colors
of some number of draws we need to infer the distribution
of the number of balls.

The most general method for inference in BLOG mod-
els is based on MCMC over partial worlds; each such world
is constructed from the minimal self-supporting set of vari-
ables relevant to the evidence and query variables (Milch and
Russell 2006). Generality has a price, however: BLOG’s
Metropolis-Hastings inference engine samples each variable
conditioned only on its parents, which is unacceptably slow
for many commonly used models. BLOG also provides the
users the ability to write model-specific proposal distribu-
tions but this limits the widespread usage of the language.

In this paper we describe a new implementation of BLOG,
called blogc, which is based on the premise that efficient
inference in BLOG should be possible without user assis-
tance. blogc is a compiler for BLOG. Given a model, the
observations, and the queries, blogc generates C code for

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The Balls and Urn example in BLOG

MCMC inference in the given model. The generated in-
ference code always does Gibbs sampling (Geman and Ge-
man 1984) for all finite-valued variables. For example, the
TrueColor(b) of each ball (see Figure 1) can be Gibbs sam-
pled. In some cases, structurally related variables are block
sampled for faster convergence. Number variables are sam-
pled with birth and death moves. Again, in the Balls and
Urn example, birth and death moves propose new balls or
delete existing ones. Finally, the compiler determines the
children variables by analyzing the model. For example,
the analysis would conclude that ObsColor(d) is a child of
TrueColor(b) if and only if BallDrawn(d) = b.

The rest of the paper is organized as follows: In Section 2
we describe the overall sampling algorithms in blogc while
in Section 3 we describe the model analysis and the design
of the generated code which allow the sampling to run ef-
ficiently. Finally, in Section 4 we present results on a few
models.

2



Figure 2: A Contingent Bayes Net for radar detection of
blade flash.

Figure 3: Results on the Alarm Bayes Net

2 Sampling Partial Worlds
Although Gibbs sampling is well understood for Bayes Net
or closed-world models in general, there are subtle issues
which arise in open-universe models. In open-universe mod-
els since inference is done over self-supporting partial in-
stantiations, there may arise a situation where changing the
value of a variable may make the instantiation no longer self-
supporting. Consider the following simplified example:

Example 1 An aircraft of unknown WingType – Helicopter
or FixedWingPlane – is detected on a radar. Helicopters
have an unknown RotorLength and depending on this length
they might produce a characteristic pattern called a Blade-
Flash (Tait 2009) in the returned radar signal. A FixedWing-
Plane might also produce a BladeFlash. (see Figure 2).

Now, assume that we have observed that BladeF lash is
True and we are trying to query the WingType. Assume
further that our current state is the minimal self-supporting
instantiation – [BladeF lash = True,WingType =
FixedWingP lane]. Clearly, we can’t immediately ap-
ply Gibbs sampling for WingType since we would
have to compute the probability of BladeF lash given
WingType = Helicopter, which in turn requires the value
of RotorLength, a variable missing from our current in-
stantiation. One solution is to use the auxiliary variable
method as used for Gibbs sampling in Dirichlet Process

Figure 4: Results on the Balls and Urn model.

Figure 5: Example of galaxy velocities with a Gaussian dis-
tribution around the cluster velocity.

Mixture Models (Neal 2000) and add the auxiliary vari-
able RotorLength first. However, if we were to sample
RotorLength with the current value of WingType, i.e.
FixedWingP lane, then we would only get null which
would prevent the chain from mixing since helicopters al-
ways have non-null RotorLength.

The solution that we have adopted in such cases is to do
Gibbs sampling over partial instantiations, σ0 . . . σn−1, con-
structed for each value of the sampled variable, WingType.
Variables needed to make a σi self-supporting are sam-
pled in σi. For example, in the partial instantiation
[WingType = Helicopter, BladeF lash = True] the
variable RotorLength is sampled with its distribution given
WingType = Helicopter to make the instantiation self-
supporting. In general, Gibbs sampling over partial worlds
may also require re-instantiating some of the variables. Full
details of the algorithm and the proof of correctness for arbi-
trary Contingent Bayes Nets (CBN) are described in (Arora
et al. 2010). In blogc, for each variable we look for child

3



Figure 6: Results on the Galaxy dataset

variables whose existence in the minimal partial instanti-
ation is contingent upon the value of the variable. Such
child variables are automatically re-sampled when Gibbs
sampling the variable. In the radar example, RotorLength
was a child of WingType whose existence in a mini-
mal self-supporting world was contingent upon the value
of WingType. Hence RotorLength is always resampled
when Gibbs sampling WingType.

In open-universe models, the ability to change the number
of objects in the instantiation is clearly very critical. In blogc
for each non-guaranteed type whose objects are not all ob-
served, a birth-death move adds or deletes one object of that
type through a Metropolis Hastings move. The added object
has no variable pointing to it. For example, if we are adding
a new Ball in the the Balls and Urn example then none of the
BallDrawn variables point to this ball. Ofcourse, this doesn’t
imply that the new object has no children. In the example
under consideration, all BallDrawn variables are children of
all the Ball objects. This birth move can have low acceptance
probability in the early samples for some models. For exam-
ple, proposing a second Ball would bring down the probabil-
ity of the BallDrawn variables by a factor of 2−10. In order
to facilitate faster mixing, we allow the birth-death moves
to not check child probabilities during the burn-in samples.
We are working on a new birth-death move which simulta-
neously proposes new objects and modifies other variables
to point to it.

3 Code Generation
In order to improve the running time of the sampler, blogc
generates customized C code for each model. The overall
design of the generated code is as follows.
• Each BLOG type gets its own C type.
• BLOG functions are stored as attributes of the C type cor-

responding to the types of the parameters of the BLOG
function. For example, the function TrueColor is stored
as an attribute of the Ball type.

• Each type has a list of objects of other types which point
to it. We will refer to this as a referring list. For instance,
the Ball type keeps a referring list of Draw objects which
point to it through the BallDrawn variable. A type may
have multiple referring lists.

Figure 7: Example of aircrafts generating blips on a radar.

• Guaranteed objects or fully observed objects are stored
as an array while other objects are stored as a linked list
which can be altered by birth-death moves.

• A customized sampler is generated for each BLOG func-
tion and a customized birth-death sampler is generated for
each BLOG type.

• A main driver function parses the command line argu-
ments (for the number of samples etc.), initializes the ob-
served variables and then repeatedly invokes the sampler
for the unobserved variables and birth-death moves for
types with unknown number of objects.
One of the biggest costs in an MCMC sampler is main-

taining and traversing the parent-child dependencies be-
tween variables. In blogc, model analysis is critical to com-
pactly and efficiently maintaining such dependencies. We
describe here how we handle three important types of child
variables.

4



Figure 8: Sample data and query for the model in Figure 7

A variable F is a static child of G if F is a child of G
in all possible worlds. For example, ObsColor(d) is always
a child of BallDrawn(d). Such dependencies don’t need
to be explicitly maintained. The sampler for a variable con-
tains code referring to the static children directly by name.
Another example is that all the BallDrawn(d) variables are
static children of all the Ball objects and this dependency
comes into play during a birth-death move for the Ball ob-
jects.

A variable F is a dynamic child of G if there ex-
ists another variable H and a value O such that F is a
child of G in all worlds where H = O. For example,
ObsColor(d) is a child of TrueColor(b) in all worlds

Figure 9: Results on the Radar model.

where BallDrawn(d) = b. Such dependencies are main-
tained by the referring lists. The sampler for G consults the
referring list to determine all the appropriate children. For
example, the sampler for TrueColor(b) scans all the Draw
objects in the BallDrawn referring list for b to deduce the
ObsColor(d) children.

A variable F is a contingent child of G if F is a static
child of G and all the children of F refer to G before their
first reference of F . For example, RotorLength is a con-
tingent child of WingType. We use the knowledge of this
dependency to resample F in the sampler for G.

4 Results
To demonstrate the improvement in using Gibbs sampling
we compared the performance of the generic Metropolis-
Hastings sampler provided with BLOG (BLOG-MH) with
blogc on a Bayes Net. We used the Alarm network of (Bein-
lich et al. 1989) available from the Bayes Network Repos-
itory1 (Friedman et al. 1997). This is a Bayes Net with 37
discrete random variables of which we observe 9. For one of
the queried variables we measured the variance w.r.t. sam-
pling time. The results are summarized in Figure 3. The im-
portant thing to note is that the variance achieved by blogc
in less than 1 second is much better than that achieved by
BLOG-MH in over 20 seconds.

For the Balls and Urn model we compared the variance of
the posterior average number of balls. Figure 4 demonstrates
the relative convergence speed. Again, blogc converges to a
reasonable value in under a second.

Probabilistic mixture models are often used for the visu-
alization and analysis of scientific data. In the widely stud-
ied galaxy dataset, the number of modes in the distribution
of galaxy velocities has implications for hypotheses about
the universe’s origins (Roeder 1990). Previous Bayesian
analyses of this data have required complex, hand-designed
sampling algorithms to search over mixtures of varying or-
der (Escobar and West 1995; Green and Richardson 2001).
Using the blogc compiler, however, this data can be automat-
ically analyzed based on the high-level model specification
in Fig. 5.

Figure 6 plots the variance in the posterior average num-
ber of clusters versus time.

For the final example, we consider a typical BLOG
model in which objects generate other objects. The BLOG
model is given in Figure 7. In this model, objects of
type AircraftType (Helicopter or FixedWingP lane)
generate objects of type Aircraft. The originating
AircraftType object for each Aircraft object, a, is
recorded in the origin function WingType(a). The BLOG
language also allows one to specify the distribution of the
number of generated objects. In this model, the prior expects
one helicopter and four fixed-wing planes on average. The
Aircraft objects can in turn generate Blip objects through
the Source origin function, where helicopters generate one
blip on average and aircrafts generate two. There is also the
possibility of 2 false blips on average. The blips may also
contain a BladeFlash depending on the type of the aircraft as

1http://compbio.cs.huji.ac.il/Repository/

5



in Example 1. Sample data for the radar model is shown in
Figure 8. In this example there are seven blips. In two of the
blips, b1 and b5, a blade flash was also observed. However,
since blip b5 is located near two other blips it is less likely
to be a helicopter than blip b1. Figure 9 plots the variance in
the posterior average number of aircraft.

BLOG-MH was not able to do inference in the last two
models because it couldn’t construct a feasible world even
after running for over an hour. blogc, on the other hand,
doesn’t require that the initial world be feasible. It relies
on the sampler to quickly get it to a feasible world. All the
results in this section were computed by running the sam-
plers 20 times for varying number of samples. 10% of all
the samples were discarded as burn-in.

5 Conclusions
With a combination of better inference algorithms and
model analysis, blogc has made a significant improvement
in the state of the art for automatic inference in first-order
probabilistic languages.

References
Arora, N. S.; de Salvo Braz, R.; Sudderth, E.; and Russell,
S. J. 2010. Gibbs sampling in open-universe stochastic lan-
guages. Technical Report UCB/EECS-2010-34, EECS De-
partment, University of California, Berkeley.
Beinlich, I.; Suermondt, G.; Chavez, R.; and Cooper, G.
1989. The alarm monitoring system: A case study with two
probabilistic inference techniques for belief networks. In
Proc. 2’nd European Conf. on AI and Medicine. Springer-
Verlag, Berlin.

Escobar, M. D., and West, M. 1995. Bayesian density esti-
mation and inference using mixtures. Journal of the Ameri-
can Statistical Association 90(430):577–588.
Friedman, N.; Goldszmidt, M.; Heckerman, D.; and Rus-
sell, S. 1997. Challenge: Where is the impact of bayesian
networks in learning? In IJCAI.
Geman, S., and Geman, D. 1984. Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of images.
IEEE Trans. on Pattern Analysis and Machine Intelligence
6(6):721–741.
Green, P. J., and Richardson, S. 2001. Modelling hetero-
geneity with and without the Dirichlet process. Scandina-
vian Journal of Statistics 28:355–375.
Milch, B., and Russell, S. 2006. General-purpose mcmc
inference over relational structures. In Proceedings of the
Proceedings of the Twenty-Second Conference Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI-06),
349–358. Arlington, Virginia: AUAI Press.
Milch, B.; Marthi, B.; Russell, S. J.; Sontag, D.; Ong, D. L.;
and Kolobov, A. 2005. Blog: Probabilistic models with
unknown objects. In IJCAI, 1352–1359.
Neal, R. M. 2000. Markov chain sampling methods for
dirichlet process mixture models. Journal of Computational
and Graphical Statistics 9(2):249–265.
Roeder, K. 1990. Density estimation with confidence sets
exemplified by superclusters and voids in the galaxies. Jour-
nal of the American Statistical Association 85(411):617–
624.
Tait, P. 2009. Introduction to Radar Target Recognition. The
Institution of Engineering and Technology, United King-
dom.

6


