
Leveraging Ontologies for Lifted Probabilistic Inference and Learning

Chloé Kiddon and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{chloe, pedrod}@cs.washington.edu

Abstract

Exploiting ontologies for efficient inference is one of the most
widely studied topics in knowledge representation and rea-
soning. The use of ontologies for probabilistic inference,
however, is much less developed. A number of algorithms
for lifted inference in first-order probabilistic languages have
been proposed, but their scalability is limited by the combi-
natorial explosion in the sets of objects that need to be con-
sidered. We propose a coarse-to-fine inference approach that
leverages a class hierarchy to combat this problem. Start-
ing at the highest level, our approach performs inference at
successively finer grains, pruning low-probability atoms be-
fore refining. We provide bounds on the error incurred by
this approach relative to full ground inference as a function
of the pruning threshold. We also show how to learn parame-
ters in a coarse-to-fine manner to maximize the opportunities
for pruning during inference. Experiments on link prediction
and biomolecular event prediction tasks show our method can
greatly improve the scalability of lifted probabilistic infer-
ence.

Introduction
Inference in AI problems is generally intractable. One way
to make it (more) tractable is to exploit ontological infor-
mation (Staab and Studer 2004). This has been studied ex-
tensively, but almost entirely in the context of purely logical
inference. However, the need for it is arguably even greater
in probabilistic inference. Most widely used probabilis-
tic representations are propositional, but in the last decade
many first-order probabilistic languages have been proposed
(Getoor and Taskar 2007). Initially, inference in these lan-
guages was carried out by first converting to propositional
form, but more recently algorithms for lifted inference have
been developed (Poole 2003; de Salvo Braz, Amir, and Roth
2007; Singla and Domingos 2008; Kersting, Ahmadi, and
Natarajan 2009; Kisynski and Poole 2009). While lifting can
yield very large speedups over propositionalized inference,
the blowup in the combinations of objects and relations that
have to be considered still greatly limits its applicability.
One solution is to perform approximate lifting, by group-
ing objects that behave similarly, even if they are not ex-
actly alike (Singla 2009; Sen, Deshpande, and Getoor 2009;
de Salvo Braz et al. 2009).
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ontologies provide a natural hierarchical grouping of sim-
ilar objects. We propose a lifted inference method that
exploits them by first performing inference at the coarsest
level, pruning atoms with probabilities close to 0 or 1 by
treating them as certain, performing inference at the next
finer level, and repeating until the finest level is reached or
all atoms are pruned. This will give good results as long as
the dependences in the domain correlate well with the on-
tology structure, which proper design of the latter should
ensure. We provide bounds on the approximation error as
a function of the pruning threshold and model parameters.
We also propose a parameter learning algorithm that uses
the lower levels of an ontology to refine the parameters at the
higher levels, maximizing the gains from hierarchical lifting.

Our algorithms are formulated in terms of Markov logic
(Domingos and Lowd 2009), but should be applicable to es-
sentially any first-order probabilistic language. They can
be viewed as a generalization of the ideas in coarse-to-
fine parsing (Petrov and Klein 2007). Hierarchical infer-
ence has also been used in vision (e.g., Felzenszwalb and
Huttenlocher 2006). Hierarchical models are widespread in
machine learning and statistics, but almost entirely in the
context of propositional representations (Gelman and Hill
2006). They have also been used in first-order domains (e.g.,
Pfeffer et al. (1999)). Interest in probabilistic ontologies for
the Semantic Web is growing, but most work to date focuses
on representation issues or specific applications (Costa et al.
2008). Our approach incorporates many of the advantages
of lazy inference (Poon, Domingos, and Sumner 2008). It is
also related to non-monotonic reasoning (Pearl (1988), Ch.
10).

We begin with some necessary background and then
present the algorithm and theoretical results. We then report
our experiments on two real-world domains (a social net-
work one and a molecular biology one). These show that our
approach can indeed be highly effective compared to previ-
ous methods like propositional and lifted belief propagation.

Background

Belief Propagation

Graphical models compactly represent the joint distribution
of a set of variables X = (X1, X2, . . . , Xn) ∈ X as a
product of factors (Pearl 1988): P (X=x) = 1

Z

∏
k fk(xk),

40

where each factor fk is a non-negative function of a subset
of the variables xk, and Z is a normalization constant. Un-
der appropriate restrictions, the model is a Bayesian network
and Z = 1. A Markov network or Markov random field can
have arbitrary factors. If P (X=x) > 0 for all x, the distri-
bution can be equivalently represented as a log-linear model:
P (X=x) = 1

Z exp (
∑

i wigi(x)), where the features gi(x)
are arbitrary functions of (a subset of) the state. The fac-
tor graph representation of a graphical model is a bipartite
graph with a node for each variable and factor in the model
(Kschischang, Frey, and Loeliger 2001). (For convenience,
we consider one factor fi(x) = exp(wigi(x)) per feature
gi(x), i.e., we do not aggregate features over the same vari-
ables into a single factor.) Undirected edges connect vari-
ables with the appropriate factors.

The main inference task in graphical models is to compute
the conditional probability of some variables (the query)
given the values of some others (the evidence), by sum-
ming out the remaining variables. If the graph is a tree, the
marginal probabilities of the query variables can be com-
puted in polynomial time by belief propagation (BP), which
consists of passing messages from variable nodes to the cor-
responding factor nodes and vice-versa. The message from
a variable x to a factor f is

μx→f (x) =
∏

h∈nb(x)\{f}
μh→x(x)

where nb(x) is the set of factors x appears in. The message
from a factor to a variable is

μf→x(x) =
∑
∼{x}

⎛
⎝f(x)

∏
y∈nb(f)\{x}

μy→f (y)

⎞
⎠

where nb(f) are the arguments of f , and the sum is over all
of these except x. The messages from leaf variables are ini-
tialized to 1, and a pass from the leaves to the root and back
to the leaves suffices. The (unnormalized) marginal of each
variable x is then given by

∏
h∈nb(x) μh→x(x). Evidence

is incorporated by setting f(x) = 0 for incompatible states
x. This algorithm can still be applied when the graph has
loops by repeating the message-passing until convergence.
Although this loopy belief propagation has no guarantees of
convergence or correctness, in practice it often does and can
be much more efficient than other methods.

Markov Logic

First-order probabilistic languages combine graphical mod-
els with elements of first-order logic, by defining template
features that apply to whole classes of objects at once.
A simple and powerful such language is Markov logic
(Richardson and Domingos 2006). A Markov logic network
(MLN) is a set of weighted first-order clauses.1 Together
with a set of constants representing objects in the domain
of interest, it defines a Markov network with one node per
ground atom and one feature per ground clause. The weight

1In this paper we assume function-free clauses and Herbrand
interpretations.

of a feature is the weight of the first-order clause that orig-
inated it. The probability of a state x in such a network
is given by P (x) = 1

Z exp (
∑

i wigi(x)) = 1
Z

∏
i fi(x),

where wi is the weight of the ith clause, gi = 1 if the ith
clause is true, and gi = 0 otherwise.

Inference in Markov logic can be carried out by creating
the ground network and applying belief propagation to it,
but this can be extremely inefficient because the size of the
ground network is O(dc), where d is the number of objects
in the domain and c is the highest clause arity.

Lifted Belief Propagation

Lifted inference establishes a more compact version of the
ground network in order to make inference more efficient.
In lifted belief propagation (LBP), subsets of components in
the ground network are identified that will send and receive
identical messages during belief propagation (Singla and
Domingos 2008). The subsets of indistinguishable ground
atoms become the supernodes of the lifted network and the
subsets of indistinguishable ground clause become the su-
perfeatures. The size of the lifted network is O(mn) where
n is the number of supernodes and m is the number of super-
features. In the best case, when no evidence is provided, all
ground atoms will behave in the same way and the lifted net-
work will have the same size as the MLN. In the worst case,
the lifted network will be identical to the ground network.
Standard belief propagation can be applied to the lifted net-
work with minor changes to correct for duplicate messages
lost in the lifting process. LBP is guaranteed to give the
same results as BP. The process that constructs the lifted net-
work simulates BP to determine equivalent component sets
and is guaranteed to converge to a minimally lifted network.
If the process is stopped before convergence, the result is an
approximate lifted network (Singla 2009).

Coarse-to-Fine Inference and Learning

Representation

The standard definition of an MLN assumes an undifferenti-
ated set of constants. We begin by extending it to allow for
a hierarchy of constant types.

Definition 1 A type is a set of constants t = {k1, . . . , kn}.
A type t is a subtype of another type t′ iff t ⊂ t′. A type t
is a supertype of another type t′ iff t′ ⊂ t. A refinement of a
type t is a set of types {t1, . . . , tm} such that ∀i,j ti∩ tj = ∅
and t = t1 ∪ t2 ∪ · · · ∪ tm.

Definition 2 A typed predicate is a tuple a =
(a0, t1, . . . , tn), where a0 is a predicate, n is a0’s ar-
ity, and ti is the type of a0’s ith argument. A typed clause is
a tuple c = (c0, t1, . . . , tn), where c0 is a first-order clause,
n is the number of unique variables in c0, and ti is the type
of the ith variable in c0. The set of types in a typed atom or
clause is referred to as the atom’s or clause’s type signature.

Definition 3 A typed MLN M is a set of weighted typed
clauses, {(ci, wi)}. It defines a ground Markov network
with one atom for each possible grounding of each typed
predicate in M, and one feature for each possible grounding

41

Figure 1: Example type hierarchy for an academia domain.

of each typed clause in M with constants from the corre-
sponding types. The weight of a feature is the weight of the
typed clause that originated it.

Definition 4 Given a set of types T, ti ∈ T is a direct
subtype of tj ∈ T iff ti ⊂ tj and �t∈T ti ⊂ t ⊂ tj .
{t1, t2, . . . , tm} ⊂ T is a direct refinement of t ∈ T iff
it is a refinement of t and t1, . . . , tm are direct subtypes of
t. A set of types T is a type hierarchy iff within T, each
type has no subtypes or exactly one direct refinement, and
∀i,j (ti ∩ tj = ∅)∨ (ti ⊂ tj)∨ (tj ⊂ ti). A root type has no
supertypes; a leaf type has no subtypes.

A type hierarchy is a forest of types. It may be a tree, but
an all-encompassing root type will usually be too general to
be useful for inference. An example type hierarchy is given
in Figure 1 for an academia domain.

Inference

We assume that full type information for all objects is
known. That is, given a type hierarchy T, each object is
assigned a set of types {t1, . . . , tn} ⊂ T where t1 is a root
type, ti is a direct subtype of ti−1 for all i > 1, and tn is a
leaf type.

Algorithm 1 shows pseudocode for the OLPI algorithm
(Ontological Lifted Probabilistic Inference). It takes as in-
put a type hierarchy T, a typed MLN MT over types in T, a
database of evidence E, and a pruning threshold γ. OLPI
begins by choosing an MLN M containing the weighted
clauses in MT whose type signatures are composed exclu-
sively of the highest level types chosen for consideration.
These could be root types or a set of types from any cut of the
type hierarchy. For example, in an academia domain, it may
make more sense to consider students and professors sepa-
rately from the start. OLPI then calls a pre-specified lifted
probabilistic inference algorithm to compute the marginals
of all the non-evidence atoms based on M, the constants in
T and the evidence E. Atoms whose marginal is at most γ
are added to the evidence as false, and atoms whose marginal
is at least 1−γ are added as true. The marginal probabilities
of the pruned nodes are stored and returned in the output
of OLPI. Any clauses now valid or unsatisfiable given the
expanded evidence will not affect the results of subsequent
inferences, and are removed from M.

OLPI then refines M, replacing every clause c in M with
the set of clauses obtained by direct refinement of the types

Algorithm 1 Ontological Lifted Probabilistic Inference
inputs: MT, a typed Markov logic network

T, a type hierarchy
E, a set of ground literals
γ, pruning threshold

calls: Infer(), a probabilistic inference algorithm
Refine(), a type refinement algorithm

M ← Coarsest(MT)
repeat

P (x|E) ← Infer(M,T,E)
for each atom xi

if P (xi|E) ≤ γ then E ← E ∪ {¬xi}
else if P (xi|E) ≥ 1 − γ then E ← E ∪ {xi}

M ← M\{valid and unsatisfiable clauses under E}
M ← Refine(M,MT)

until Refine(M,MT) = M
P (x|E) ← Infer(M,T,E)

in c’s type signature. If v is a variable in c, v’s type in a
refined clause is a direct subtype of its type in c, and there
is a refined clause for each possible combination of direct
subtypes for the variables in c. Any leaf types are left un-
refined. In general, it might be useful to refine some types
and leave others unrefined, but this substantially increases
the complexity of the algorithm and is left for future work.
The clauses returned are the direct clause refinements of the
clause c. The process ends when no more direct clause re-
finements are possible on the clauses in M or all atoms have
been pruned; in either case, Refine(M,MT) returns M.

At every step, the MLN grows by refining clauses, but
also shrinks by pruning. The goal is to contain the com-
plexity of inference, while keeping it focused on where it is
most needed: the atoms we are most uncertain about. The
following theorem gives bounds on the approximation error
incurred by this process, relative to using the full typed MLN
MT for inference. (Proofs are included in the full version
of this paper (Kiddon and Domingos 2010).)
Theorem 1 Let γ be the OLPI pruning threshold, ε the max-
imum error in probabilities computed by Infer(), n the total
number of ground atoms, ni the number of ground atoms
pruned at level i, wi the maximum error in weights at level
i, l the level at which OLPI stops, and δ the average error in
the marginals returned by OLPI. Then

δ ≤ (γ + ε)(2nl + 1)
n

l−1∑
i=1

ni(l − i)
γ + ε + (1 − γ − ε)e−2wi

.

Infer() can be any lifted probabilistic inference algo-
rithm (or even propositionalization followed by ground in-
ference, although this is unlikely to scale even in the con-
text of OLPI). However, realistic domains generally require
approximate inference. In this paper we use lifted belief
propagation (Singla and Domingos 2008). We call OLPI
with lifted BP as the inference algorithm OBP (Ontological
Belief Propagation). We now provide an error bound for
OBP. Since lifted BP computes the same marginals as
ground BP, for proof purposes it can be treated as the lat-
ter. We can view the errors in the messages passed during

42

BP in level k of OBP as multiplicative errors on the mes-
sages from factors to nodes at each step of BP, due to weight
approximations at that level and the loss of pruned nodes.

Theorem 2 For a binary node x, the probability estimated
by BP at convergence over the network at level k (pk

x) can
be bounded as follows in terms of the probability estimated
by OBP (p̂k

x) after n iterations of BP where σ− and σ+ are
the sets of low- and high-probability nodes pruned in OBP’s
previous k − 1 runs of BP and γ is the pruning threshold:
For x ∈ σ−: 0 ≤ pk

x ≤ γ
For x ∈ σ+: 1 − γ ≤ pk

x ≤ 1
And for x �∈ σ− ∪ σ+:

pk
x ≥ 1

(ξk,n
x)2[(1/p̂k

x) − 1] + 1
= lb(pk

x)

pk
x ≤ 1

(1/ξk,n
x)2[(1/p̂k

x) − 1] + 1
= ub(pk

x)

where log ξk,n
x =

∑
f∈nb(x) log νk,n

f,x , νk,1
f,x = d(f)2, νk,n

f,x

is defined in the recursive fashion of Theorem 15 of Ihler et
al. (2005), the dynamic range of the outgoing error from a
factor to a node is:

d(εk
f,x) = γ− 1

2 |σ−f |(1 − γ)−
1
2 |σ+

f |e
1
2 αk

f ,

and nodes are only pruned at level k′ when ub(pk′
x) ≤ γ or

lb(pk′
x) ≥ 1 − γ.

If no nodes have been pruned at previous levels, the fixed
point beliefs returned from OBP on its kth level of BP after
n iterations will be equivalent to those returned by BP after
n iterations on the network at that level.

OBP can be made more efficient in a number of ways: the
factor graph can be refined directly from the previous run in-
stead of being recreated from scratch at each level; approxi-
mate lifted network construction through early stopping can
be used to defer exact lifting until more pruning occurs.

Learning

Stronger weights on clauses used in earlier levels of OLPI al-
lows for earlier pruning decisions which speeds up later iter-
ations of inference. To achieve models of this type, we learn
weights in a coarse-to-fine manner through a series of suc-
cessive refinements of clauses guided by a given type hierar-
chy. At each iteration of learning, we fix all weights learned
in preceding iterations, add in all possible direct clause re-
finements, and then learn the weights for these new clauses.
The effect is that the weight learned for a typed clause ct at
iteration i that was created by a refinement of clause ct′ in it-
eration i−1 is the additional weight given to a ground clause
based on having that extra type information. The learned
weights should become successively smaller as the more re-
fined type information becomes less important. Once this
occurs, we do not refine the clause any further. The result of
this is a sparser model which will correspond to fewer pos-
sible refinements during the inference process and therefore
more efficient inference.

Proposition 1 For a typed MLN MT learned in the coarse-
to-fine framework, there is an equivalent typed MLN M′

T

where no clause c ∈ M′
T can be obtained through a series

of direct clause refinements of any other clause c′ ∈ M′
T.

The weight of the feature for a ground clause in M′
T will

be the sum of the weights for all features in MT defined
for the same ground clause. Therefore, the weights learned
for a coarse-to-fine typed MLN MT are equivalent to a
type-flattened MLN M′

T. When Refine(M,MT) replaces a
clause c in M by the set of clauses from MT, c′1, c

′
2, . . . , c

′
n,

obtained by direct refinement of the types in c’s type signa-
ture, the weight of each new typed clause c′i added to M is
actually w + w′

i, where w is the weight of c in M and w′
i

is the weight of c′i in MT. When no more refinements are
possible, the resulting typed MLN will be a subset of M′

T,
accounting for pruned clauses.

Experiments
We experimented on a link prediction task in a social net-
working domain and an event prediction task in a molecular
biology domain to compare the running time and accuracy
of OBP and LBP. We implemented OBP as an extension of
the open-source Alchemy system (Kok et al. 2007). Cur-
rently Alchemy does not allow for duplicate clauses with
different type signatures. Instead we added type predicates
to the formulas in our model to denote the correct type sig-
natures. We compared running OBP over a typed MLN to
running LBP over the equivalent type-flattened MLN. We
ran each algorithm until either it converged or the number of
iterations exceeded 100. We did not require each algorithm
to run for the full 100 iterations since the network shrinkage
that occurs with OBP may allow it to converge faster and is
an integral part of its efficiency that should not be penalized.

Link Prediction

The ability to predict connections between objects is very
important in a variety of domains such as social network
analysis, bibliometrics, and micro-biology protein inter-
actions. We experimented on the link prediction task
of Richardson & Domingos (2006), using the UW-CSE
database that is publicly available on the Alchemy project
website.2 The task is to predict the AdvisedBy relation given
evidence on teaching assignments, publication records, etc.
We created a type hierarchy that corresponded well to the
objects in the domain. The Person type is split into a Pro-
fessor and a Student type, both of which are split further
by area (e.g., AI, Graphics); the Student type is split fur-
ther by point in the graduate program (e.g., Pre-Quals, Post-
Generals). The Class type is split by area followed by level.
We tested on 43 of the 94 formulas in the UW-CSE MLN;
formulas with existential quantifiers were removed and after
the removal of “type” predicates such as Student(x) and Pro-
fessor(x), all duplicate formulas were discarded. The type-
flattened MLN had 10,150 typed clauses from matching the
43 formulas with varying type signatures. The full database
contains ∼4,000 predicate groundings including type pred-
icates. To evaluate inference over different numbers of ob-
jects in the domain, we randomly selected graph cuts of var-
ious sizes from the domain. Figure 2 shows a comparison of

2http://alchemy.cs.washington.edu

43

Algorithm Pruning Threshold Init (sec) Infer (sec) Prune (sec) Avg. CLL # Superfeatures
LBP N/A 3441.59 2457.34 N/A -0.00433 8.2 million
OBP 0.001 2172.45 208.59 0.99 -0.00433 485, 507
OBP 0.01 537.93 2.08 1.15 -0.00431 10, 328

Table 1: Results for the full UW-CSE data set. For OBP, number of superfeatures counts the most used during any level.

Algorithm Pruning Threshold Init (sec) Infer (sec) Prune (sec) Avg. CLL # Superfeatures
LBP N/A 1305.08 846.21 N/A -0.01062 8.5 million
OBP 0.01 415.31 0.40 0.36 -0.01102 3,478

Table 2: Results for GENIA over 150 abstracts. For OBP, number of superfeatures counts the most used during any level.

Figure 2: Total runtime of algorithms over UW CSE.

the runtimes of OBP and LBP for different sized cuts of the
UW-CSE data set. We ran OBP with pruning thresholds of
γ = 0.01 and γ = 0.001. The time represents the sum of
both initialization of the network and the inference itself; the
times for OBP also include the refinement times after each
level. For each cut of the UW-CSE data set, the average con-
ditional log likelihood (CLL) of the results returned by OBP
with either pruning threshold were virtually the same as the
average conditional log likelihood returned by LBP. Table
summarizes the results of the UW-CSE link prediction ex-
periment over the full UW CSE data set. The full data set
contained 815 objects, including 265 people, and 3833 ev-
idence predicates. With γ = 0.01, we achieve an order of
magnitude speedup.

Biomolecular Event Prediction

As new biomedical literature continues to accumulate at
a rapid pace, text mining systems tailored to the domain
of molecular biology are becoming increasingly important.
One important task is the identification and extraction of
biomolecular events from text. Event prediction is a very
challenging task (Kim et al. 2003), and is not the focus of
this paper. Our simplified task is to predict which entities
are the causes and themes of identified events contained in
the text, represented by two predicates: Cause(event,entity)
and Theme(event,entity). We used the GENIA event corpus
which marks linguistic expressions that identify biomedical
events in scientific literature spanning 1,000 Medline ab-

Figure 3: Total runtime of algorithms over GENIA.

stracts; there are 36,114 events labeled, and the corpus con-
tains a full type hierarchy of 32 entity types and 28 event
types (Kim, Ohta, and Tsujii 2008). Our features included
semantic co-occurrence and direct semantic dependencies
with a set of key stems (e.g., Subj(entity, stem, event)).
Global features learned the roles that certain entities tend to
fill. We used the Stanford Parser,3 for dependency parsing
and a Porter stemmer to identify key stems.4 We restricted
our focus to events with one cause and one theme or no cause
and two themes where we could extract interesting seman-
tic information at our simple level. The model was learned
over half the GENIA event corpus and tested on the other
half; abstract samples of varying sizes were randomly gen-
erated. From 13 untyped clauses, the type-flattened MLN
had 38,020 clauses.

Figure 3 shows a comparison of the runtimes of OBP with
γ = 0.01 and LBP. For each test set where both OBP and
LBP finished, the average conditional log likelihoods were
almost identical. The largest difference in average condi-
tional log likelihood was 0.019 with a dataset of 175 ob-
jects; in all other tests, the difference between the averages
was never more than 0.001. Table summarizes the results
of the the largest GENIA event prediction experiment where
both LBP and OBP finished without running out of memory.
This test set included 125 events and 164 entities.

3http://nlp.stanford.edu/software/lex-parser.shtml
4http://tartarus.org/∼martin/PorterStemmer

44

Conclusion and Future Work

We presented a method for scaling up lifted probabilistic in-
ference, by performing it at successively finer levels of an
ontology while pruning nodes with probabilities close to 0
or 1 at each level. We provided bounds on the approxima-
tion error incurred in this way. We also proposed a simple
weight learning method that maximizes the gains obtainable
by this type of inference. Experiments on two domains show
the benefits of our approach. Directions for future work in-
clude: learning ontology refinements from data for use in
OLPI; broadening the types of ontological structure allowed
by OLPI (e.g., multiple inheritance, partly unknown type in-
formation); applying OLPI to other lifted probabilistic infer-
ence algorithms besides LBP; further scaling up OLPI (e.g.,
using more compact data structures), etc.

Acknowledgements

This research was partly funded by ARO grant W911NF-08-
1-0242, AFRL contract FA8750-09-C-0181, DARPA con-
tracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-
06-C-0025, HR0011-07-C-0060 and NBCH-D030010, NSF
grants IIS-0534881 and IIS-0803481, and ONR grant
N00014-08-1-0670. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of ARO, DARPA, NSF, ONR,
or the United States Government.

References

Costa, P. C. G.; Ladeira, M.; Carvalho, R. N.; Laskey,
K. B.; Santos, L. L.; and Matsumoto, S. 2008. A first-
order bayesian tool for probabilistic ontologies. In Proc.
FLAIRS–08, 631–636.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2007. In L.
Getoor and B. Taskar, ed., Lifted first-order probabilistic
inference. In Getoor, L., and Taskar, B., eds., Introduction
to Statistical Relational Learning, 433–450. MIT Press.
de Salvo Braz, R.; Natarajan, S.; Bui, H.; Shavlik, J.; and
Russell, S. 2009. Anytime lifted belief propagation. In
Proc. SRL–09.
Domingos, P., and Lowd, D. 2009. Markov Logic: An
Interface Layer for Artificial Intelligence. Morgan Kauf-
mann.
Felzenszwalb, P. F., and Huttenlocher, D. P. 2006. Efficient
belief propagation for early vision. International Journal
of Computer Vision 70(1): 41–54.
Gelman, A., and Hill, J. 2006. Data Analysis Using Re-
gression and Multilevel/Hierarchical Models. Cambridge
University Press.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Sta-
tistical Relational Learning. MIT Press.
Ihler, A. T.; III, J. W. F.; and Willsky, A. S. 2005. Loopy
belief propagation: Convergence and effects of message
errors. Journal of Machine Learning Research 6: 905–936.
Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Count-
ing belief propagation. In Proc. UAI–09, 277–284.

Kiddon, C., and Domingos, P. 2010. Lifted probabilistic in-
ference and learning over a hierarchy of classes. Technical
report, Department of Computer Science and Engineering,
University of Washington, Seattle, WA.
Kim, J.-D.; Ohta, T.; Tateisi, Y.; and Tsujii, J. 2003.
GENIA corpus–semantically annotated corpus for bio-
textmining. BMC Bioinformatics 19(1): 180–182.
Kim, J.-D.; Ohta, T.; and Tsujii, J. 2008. Corpus anno-
tation for mining biomedical events from literature. BMC
Bioinformatics 9(1): 10.
Kisynski, J., and Poole, D. 2009. Lifted aggregation in
directed first-order probabilistic models. In Proc. IJCAI–
09, 1922–1929.
Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Lowd, H.
P. D.; and Domingos, P. 2007. The Alchemy system for
statistical relational AI. Technical report, Department of
Computer Science and Engineering, University of Wash-
ington, Seattle, WA. http://alchemy.cs.washington.edu.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001.
Factor graphs and the sum-product algorithm. IEEE Trans-
actions on Information Theory 47: 498–519.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. Morgan Kaufmann.
Petrov, S., and Klein, D. 2007. Learning and inference for
hierarchically split PCFGs. In Proc. AAAI–07, 1663-1666.
Pfeffer, A.; Koller, D.; Milch, B.; and Takusagawa, K. T.
1999. SPOOK: A system for probabilistic object-oriented
knowledge representation. In Proc. UAI–99, 541–550.
Poole, D. 2003. First-order probabilistic inference. In
Proc. IJCAI–03, 985–991.
Poon, H.; Domingos, P.; and Sumner, M. 2008. A general
method for reducing the complexity of relational inference
and its application to MCMC. In Proc. AAAI–08, 1075–
1080.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62: 107–136.
Sen, P.; Deshpande, A.; and Getoor, L. 2009. Bisimulation-
based approximate lifted inference. In Proc. UAI–09, 496–
505.
Singla, P., and Domingos, P. 2008. Lifted first-order belief
propagation. In Proc. AAAI-08, 1094–1099.
Singla, P. 2009. Markov Logic: Theory, Algorithms and
Applications. PhD in Computer Science & Engineering,
University of Washington, Seattle, WA.
Staab, S., and Studer, R. 2004. Handbook on Ontolo-
gies (International Handbooks on Information Systems).
SpringerVerlag.

45

