

A Travel-Time Optimizing Edge
Weighting Scheme for Dynamic Re-Planning

Andrew Feit, Lenrik Toval, Raffi Hovagimian, Rachel Greenstadt

Deparment of Computer Science, Drexel Univsity
3141 Chestnut Street

Philadelphia, PA 19104
af359@drexel.edu, let37@drexel.edu, rch28@drexel.edu, greenie@cs.drexel.edu

Abstract
The success of autonomous vehicles has made path
planning in real, physically grounded environments an
increasingly important problem. In environments where
speed matters and vehicles must maneuver around
obstructions, such as autonomous car navigation in hostile
environments, the speed with which real vehicles can
traverse a path is often dependent on the sharpness of the
corners on the path as well as the length of path edges. We
present an algorithm that incorporates the use of the turn
angle through path nodes as a limiting factor for vehicle
speed. Vehicle speed is then used in a time-weighting
calculation for each edge. This allows the path planning
algorithm to choose potentially longer paths, with less turns
in order to minimize path traversal time. Results simulated
in the Breve environment show that travel time can be
reduced over the solution obtained using the Anytime D*
Algorithm by approximately 10% for a vehicle that is speed
limited based on turn rate.

1Introduction
The speed with which real vehicles can traverse a path is
often dependent on the sharpness of the corners on the path
as well as the path length. For environments where speed
matters and vehicles must maneuver around obstructions,
such as autonomous car navigation in hostile
environments, UAV close range maneuvering, or high
speed robot arm planning, we investigate an algorithm that
incorporates turn angles into path planning and show that it
produces faster travel times in simulation than algorithms
that only consider edge traversal time.
 The traditional approach to autonomous vehicle path
planning uses algorithms based on A*, D*, or Anytime D*.
Typically, the search algorithm is designed to find an

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved

optimal path, consisting of connected edges in a pre-
determined graph of a space. The optimal solution path
minimizes the cost incurred by travelling the chosen route.
 Costs can be assigned or calculated for each edge; either
based on the length of the edge, an estimate of the time for
the vehicle to travel that particular edge, or some
combination that relates to fuel or energy usage.
 Using pre-determined estimates for the time required to
traverse an edge of a graph is sufficient for many
applications. In cases where edges are long with respect to
the size of the vehicle and to the total length of the path,
the transitions between edges may not make up a large part
of the traversal time and can be ignored. In many cases,
robots following a path may have a limited range of speeds
they can travel at, so that sharp corners do not hinder their
progress significantly. However, in applications that
require short edge lengths in order to maneuver around
close obstructions, and involving vehicles with wide speed
ranges, time optimization of a path can depend on the
combination of edges chosen in addition to the sum of the
time required to traverse the edges. The maximum turn rate
of any type of high speed land or air vehicle is dependent
on how fast it is going, and therefore traversal time is
dependent on the turning angles formed by the
combination of edges that make up a solution path. For
example, a car is limited by either the lateral traction the
tires can hold, or by the maximum lateral acceleration that
will not cause the vehicle to roll. In either case, if the path
consists of short, straight edges, the angles between the
edges will play a significant role in determining the speed
at which they can be travelled.
 This paper presents an edge-weighting scheme that takes
into account the angles between edges. We incorporate
this weighting scheme into the Anytime D* algorithm and
show that it produces improvements in travel time when
studied in simulation, particularly in highly obstructed
environments.

26

Background and Related Work
There have been many efforts to make path planning
algorithms more practical for real vehicle use.
 D* [Stentz, A. 1994] improves upon A* by searching
backwards from the goal to the starting point. This allows
for dynamic re-planning – because the path is searched
backwards, changes to graph weights require much less re-
planning and many of the existing back-pointers can still
be used. Since 1994, others have simplified D* [Koenig,
S., and Likhachev, M. 2002] and made additional
improvements. Anytime D* [Likhachev, M., et al. 2005]
recognizes that a real vehicle may have limited time to plan
a path, so it computes sub-optimal paths first, and
improves the path as the vehicle travels. This may allow a
vehicle to continue moving when it would otherwise have
to wait for the optimal route to be calculated.
 Subsequent improvements have been to incorporate
moving objects into the map. In [Van Den Berg, J., et al.
2006], Anytime D* is implemented with a time assigned to
each map position. This allows the search to avoid moving
obstacles, and to find a path that gets to the destination in
the shortest time, with the assumption that the vehicle can
travel at a roughly constant speed.
 Several integrated path planning systems have been
implemented that make use of either D* or Anytime D* as
part of a system for finding a real steering solution for a
vehicle [Stentz, A., and Herbert, M. 1994] [Podsedkowski,
L., et al. 2001] [Seder, M. et al. 2005]. One approach is to
use D* to find the general path through an area, then use a
separate module to compute a smooth path through it. The
Anytime D* algorithm was used in a vehicle that
successfully completed the DARPA Offroad Challenge
[Strum, S., et al. 2006]. Their method took into account
turn rates when computing its graph by verifying that each
potential successor edge was within the capabilities of the
vehicle. The maximum safe speed was then calculated
based on the resulting path curvature and other parameters.
This method keeps the solution path near the given road,
and ensures that the vehicle is capable of traversing it
within its physical capabilities. It does not optimize the
path curvature for most efficient travel, or take into
account the combination of edges chosen within the path-
planning algorithm itself. Our contribution is unique in
that the path curvature is used as the weight, so that the
path curvature can be optimized within the graph search
algorithm.
 Our algorithm uses concepts from all of these D*-based
path planners in an attempt to find faster paths by taking
into account the speed at which a real-world vehicle can
traverse the path, recognizing that a longer path may
reduce travel time in some instances. Our approach is
most closely modeled after the Anytime D*
implementation in dynamic environments [Van Den Berg,
J., et al. 2006]. However, we have not incorporated
Anytime processing or re-planning into our evaluation,

since those components are not required to show the
improvements we are making.

Approach

Algorithm
The goal is to base the cost of a path on both the costs of
the individual edges, as well as the costs of combinations
of adjacent edges along the path. In the model used here,
the maximum speed at which a vehicle can traverse any
node in a path will depend on the turning angle formed by
the two edges joined by the node. Vehicle speed varies
between 0.1 and 1.0. The vehicle can travel at 1.0 if the
turning angle is zero, and the maximum speed linearly
decreases toward zero for turning angles from 0 to 90
degrees. The maximum allowed speed for a node has a
minimum value of 0.1 for turn angles close to 90 degrees.
It will be assumed that as the vehicle travels between two
nodes, the vehicle speed varies linearly between the
maximum speeds at each node.
 In this way, the time the vehicle takes to travel on a
given edge will depend on the maximum speeds allowed at
the edge end nodes, and also on the angles formed by
edges at the nodes. This requires a modification in the way
edge costs are calculated in the Anytime D* algorithm.
Normally, the cost of an edge depends on the positions of
the two nodes at either end of that edge. In the method
presented here, the travel time of a given predecessor edge
also depends on the angle formed with the next edge after
that, which will not yet be known at the time a predecessor
edge is chosen.
 The solution resulting from the D* path planning
algorithm consists of a back-pointer assigned to each node
that determines the next node that should be travelled on
the solution path. In other words, each position on the map
is encoded with information about where the vehicle
should go next. As a result, each node does not know
where the path came from to get to that point, because the
algorithm actually worked in the opposite direction - goal
toward start - to arrive at the solution. This means that
each node does not know anything about the combination
of edges that it joins, and cannot determine the turning
angle through itself. Each node can, however, know the
relationship between two other edges; the edge from itself
to its back-pointer, and the edge from its back-pointer to its
back-pointer’s back-pointer. In Figure 1, point A is closest
to the goal, and point C is closest to the start. The speed at
point B is a function of the turning angle ABC. When the
cost from A to B is being calculated in the search
algorithm, the position of C, and therefore the angle ABC,
is not yet known.

27

Figure 1- Turning angle on path from C to A.

When the search algorithm reaches point B, it obtains a list
of predecessors to be evaluated next, one of which is C.
The difficulty is that the turning angle through a node B
depends on the specific predecessor C that the vehicle is
traveling through on its way to B, which is not known until
the entire path search is complete. To overcome this, the
relationship (in this case, angle) between edges at B is
stored in node C. Edge cost due to travel time between B
and A can then be added to the edge cost of CB. This
means that the travel time cost for one edge is getting
stored with the previous edge. This method is valid
because the algorithms decision of which predecessor to
choose determines what this cost will be, regardless of
where the cost is actually encountered while travelling the
course. The path planner still has an opportunity to choose
from each combination of edges based on the total cost of
that combination. Figure 2 shows how the ‘nextspeed’ of
each node really contains the maximum speed of the back-
pointer of that node, i.e. nextspeed(s) is the maximum
speed at s’ if the path goes through node s. The time to
travel between nodes s’ and s’’ is different for each node s
that could be chosen. Each node s computes this travel
time and adds it to its own edge cost from s to s’.

Figure 2- Maximum speed at s’ is determined by s.

The Anytime Dynamic planning algorithm computes the
cost of an edge with (1).

 (,) () (,)t c rc s s w t t w c s s (1)

Where tw and cw are weights, and rc is the cost of the
edge from points s to s’, which are reached at times t and t’
respectively. The predecessor function in D* computes a
list of possible points that could have been visited before
the current node as the vehicle travels. For each
predecessor, our modified algorithm will compute the

additional turn-angle based time-weighting that would be
incurred if that predecessor ends up being travelled.
During the search, the cost that the turning angle incurs on
travel time for each predecessor will be added to the cost
of that edge when determining the total cost as in (2).

(,) (, |) (,)t r c rc s s w t s s s w c s s (2)

22(, |)
() ()r

final init next next

s sdistt s s s
v v v s v s

 (3)

Equation (3) represents the edge travel time between s’ and
s’’ given that predecessor s is chosen, which is then
included in the cost calculated for edge s to s’. The travel
time is based on a linearly varying speed between vinit and
vfinal. When the path is actually being travelled, the
vehicle will look at the node it is currently passing to get
the maximum allowable speed for the next node, and it will
adjust its speed accordingly.

Modification to D*
In addition to the modified edge cost function, the
predecessor function used in this simulation is based on the
‘velocity vector’ of a node, which is the same as the back-
pointer of a node, and determines the direction that the car
will be travelling when it arrives at a node. The
predecessor set consists of a node continuing in the same
direction, and nodes that would be reached by turning at a
selection of cardinal angles away from the velocity vector.
 As a result of the structure of the predecessor function,
this method does not use a pre-determined set of grid
points, which has advantages and drawbacks. It allows for
more natural curved paths that give a little more flexibility
in navigating an area, but when the algorithm runs into an
obstruction, backtracking is difficult because it generates a
large number of nodes with slightly different positions in a
very small area, and this increases the processing time
required to find a path. When each predecessor location is
computed, the algorithm searches for any existing node
instances within a small radius so that predecessors are
‘snapped’ to existing predecessors in that area. This is
implemented in the simulation with a hash function that
links node coordinates with the actual node data structure.
Snapping the nodes also assures that only one node object
is created for each map position. In addition to path cost,
the AD* algorithm for dynamic environments [Van Den
Berg, J., et al. 2006] uses a heuristic based on time and
distance to the start. In this implementation, time values
are not assigned to each node, so the heuristic is based
entirely on distance to the start.

28

Implementation
To evaluate the performance of the modified cost function
against the normal D* implementation, a simulation was
created using the Breve environment
[www.spiderland.org]. Breve is a fairly powerful 3-d
simulation tool that can model interactions between
physical objects using a programming language similar to
Python. Several objects were set up to model parts of the
evaluation environment:

Ground. The area for the course is a flat, 20 x 20 grid. A
“start” marker is setup at {0,0} and the “goal” marker is set
up at {20,20}, making the objective to cross diagonally
across the square course.

Vehicle. The vehicle that traverses the path is displayed as
a rectangular box. Vehicle motion is constrained to remain
on the ground plane, and the velocity of the car is
constrained to be in the direction it is pointed, similar to
many wheeled vehicles. The vehicle contains a controller
that steers it toward the next node on the solution path, and
automatically sequences to the back-pointer of the node as
it reaches each one. It also adjusts its speed linearly
between the maximum speeds for the nodes before and
after its location on the path. This matches the assumption
used in the planning algorithm for calculating the travel
time for path edges. The vehicle object calls the functions
required to perform the D* search to obtain the starting
node position and the subsequent chain of nodes that forms
the solution path.

Obstructions. All obstructions are represented as blocks
of uniform height with random width and length, sitting on
the ground plane. They are positioned randomly within the
square bounded by {5,5}, {5,15}, {15,5}, and {15,15} to
prevent them from being too close to the start or goal point.
The positions of the obstructions are also represented in a
200x200 matrix of the map area (10 matrix locations per
grid ‘unit’). The path planner uses this matrix to determine
if a path section is passable or not due to an obstruction.

Path Planner. The path planner class contains all of the
state data of the path search algorithm, along with the
search functions. It is initiated by a function call which
returns a start node that is linked via back-pointers to a
chain of nodes leading to the goal.

Path State. Each path node is modeled as an instance of
the path state class. This class contains data such as the
back-pointer of the node, the various values used in the D*
algorithm such as g(s) and rhs(s), as well as the methods to
get the predecessor and successor lists of a node.

Evaluation
The performance of travel-time weighting will be
evaluated using three metrics: travel time, path distance,
and average speed. Travel time is calculated by simply
subtracting the initial simulation time from the time at
which the car reaches the goal. The path distance is
obtained by summing the path edge lengths along the
route. Average speed is calculated from path distance and
travel time as an additional way to visualize the results.
 Cases were run on maps with varying numbers of
obstructions, and using various weighting factors. The
weight variables wc and wt determine the weighting of
edge length and edge travel time when searching the graph.
This is similar to the AD* algorithm [Van Den Berg, J.
2006], where increasing the wt value causes the search to
rely more on the travel time of the vehicle across nodes
based on the turning angle calculation. If wc is set to 1.0
and wt is set to 0.0, then the path will be based entirely
upon path distance, as in D*. If wt is set to 1.0 and wc is
set to 0.0, then the path will attempt to optimize travel
time, but may use a slightly longer path. A combination
may be used if a balance between the two methods is
desired, such as if fuel consumption is a concern.
 The number of obstructions on the map was varied
between 5 and 11 to see the relationship between map
complexity and the benefit obtained from time-weighting.
Maps with too few obstructions sometimes allowed a
straight path to the goal, while maps with too many
obstructions sometimes formed a single large obstruction
in the middle. Figure 3 and Figure 4 show examples of
two maps, which have 5 and 11 obstructions respectively.
The smaller grey box in each image is the vehicle, and the
branched lines represent back-pointers that form the
solution path.
 The full anytime function with increasing levels of
optimization was not implemented here, but the path
planner can be set for a constant optimization factor. The
optimal factor (eta) of 1.0 often resulted in prohibitively
large path processing times in our implementation. Maps
were tested with a range optimization factors in order to
understand the impact of this on the expected results of
using time-weighting. In a real anytime implementation,
the optimal path would not be immediately calculated, so
testing with a constant inflated weighting factor is not
unrealistic. Figure 5 shows the average speeds for paths
through one map vs. time-weighting, for eta values of 1.5,
1.2, and 1.1. This shows that the benefit from out method
grows as the path becomes closer to optimal.

29

Figure 5 – Travel time reduction vs. optimality.

Figure 3 - 5 obstructions.

Figure 4 - 11 obstructions.

Figure 6 – Travel time at 1.15 optimization factor.

30

Figure 7 – Distance Travelled at 1.15 optimization factor.

Figure 8 – Average speed at 1.15 optimization factor.

 Figures 6-8 above show travel time, path distance, and
average vehicle speed while moving from start to goal on
the solution path vs the travel-time weighting factor. All
values are normalized, so that 100% corresponds to the
time, distance, and speed of the path resulting from edge
costs based only on length. Each plot shows the results for
twelve cases – each line is the average of three maps with
the same number of obstructions. This was repeated for
maps with 5, 7, 9, and 11 obstructions. As expected,
improvements are greater for maps with more obstructions.
An optimization factor of 1.15 was used for all cases.
 As expected, there is a trend of increasing average speed
as the time weighting is increased. Higher values of wt
result in less sharp corners in the path, so the vehicle does
not slow down as often. The trend in path travel time is
also as expected, given the trend in average vehicle speed.
For optimal search solutions, we would expect that the
shortest path would be found when wt = 0, and that for
higher values of wt, the path distance would increase. In
Figure 7, some increase is seen, although the pattern is not
consistent for 11 obstructions. A few factors could be
affecting this; primarily, these are not optimal path
solutions (eta > 1). Also, the effect is very dependent on
the specific obstacle configuration. Certain configurations
will have greater tradeoffs between speed and time.

 Figure 10 shows the velocity profile of a map for two
different wt values, at a constant eta of 1.1. This gives an
idea of how the speed of the vehicle varies as it traverses
the path, and where the increased value of wt is able to
improve travel time. In the cases where wt=0, the speed
drops down to around 0.5 in a few places. For for wt = 1.0,
the speed stays 1.0 for a large portion of the time and drops
to a lower speed less often.

Figure 10 – Speed profile for different weights.

 For the cases shown here, the maximum improvement in
path travel time is close to 10%, and the trends in Figures
6-8 suggest that further improvements can be realized in

31

more densely obstrustructed environments. This is
significant given that the processing and memory
requirements of the algorithm are not considerably
increased. This algorithm requires some additional
processing when computing the predecessor function for
each node, however this is still within a scale factor of
processing and memory requirements for the original D*
implementation.

Conclusions
This paper has demonstrated a feasible way of computing
edge costs in a D* graph planning algorithm based on
relationships between edges. This allows path curvature to
be taken into account even when the predecessor function
uses only straight edges between nodes. The method
demonstrated has shown to consistently produce shorter-
time paths around obstructions than when only edge length
is considered, with a minimal amount of additional
processing overhead required.
 A key part of this method is to store the maximum
traversal speed for a given node in the predecessor of that
node. Information is stored in the node on which the
information depends rather than the node where it will be
applied. This highlights the way that a graph search can
evaluate edge costs based on the decisions that effect that
cost, which may be applied at a different time from when
that cost is actually incurred as the path is being travelled.
Several previous papers cover the tradeoff between path
distance and speed in search for a path, however many use
a traditional start to goal method, and don’t apply this to
the anytime D* algorithm as we do here.
 Many future applications of this modification are
available for research. It would be interesting to do a direct
comparison between this method and an alternate approach
of using curved edges (and therefore zero angles between
edges). In addition, there may be cases where the cost of a
given series of edges depends on more than two edges on
that path. Furthermore, it would be interesting to put
together a complete Anytime, Dynamic path planning
implementation that deals with moving obstructions using
the method presented here to see the effect in conjunction
with the physical turning speed limitations of a real
vehicle.

References

Van Den Berg, J., Ferguson, D., and Kuffner, J. 2006.
Anytime Path Planning and Replanning in Dynamic
Environments. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA)

Klein, J. 2009. Breve: A 3d Simulation Environment for
Multi-Agent Simulations and Artificial Life (Breve 2.7.2).
http://www.spiderland.org (jk@spiderland.org)

Koenig, S., and Likhachev, M. 2002. Improved fast
replanning for robot navigation in unknown terrain. In
Proceeding of the IEEE International Conference on
Robotics and Automation (ICRA)

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and
Thrun, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In Proceedings of the International
Conference on Automated Planning and Scheduling
(ICAPS)

Podsedkowski, L., Nowakowski, J., Idzikowski, M., and
Vizvary, I. 2001. A new solution for path planning in
partially known or unknown environment for
nonholonomic mobile robots. Robotics and Autonomous
Systems 34(2):145-152

Seder, M. et al. 2005. An integrated approach to real-time
mobile robot control in partially known indoor
environments. In Proceeding of the 31st Annual
Conference of the IEEE Industrial Electronics Society
(IECON)

Stentz, A. 1994. Optimal and Efficient Path Planning for
Partially-Known Environments. In Proceedings of the
IEEE International Conference on Robotics and
Automation (ICRA)

Stentz, A., and Herbert, M. 1994. A Complete Navigation
System for Goal Acquisition in Unknown Environments.
Carnegie-Mellon Technical Report CMU-RI-TR-94-7.

Sud, A., Anderson, E., Curtis, S., Lin, M., and Manocha,
D. 2007. Real-time Path Planning for Virtual Agents in
Dynamic Environments. In International Conference on
Computer Graphics and Interactive Techniques

Thrun, S., et al. 2006, The Robot that Won the DARPA
Grand Challenge, Journal of Field Robotics 23:661-692

32

