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Abstract 
The success of autonomous vehicles has made path 
planning in real, physically grounded environments an 
increasingly important problem. In environments where 
speed matters and vehicles must maneuver around 
obstructions, such as autonomous car navigation in hostile 
environments, the speed with which real vehicles can 
traverse a path is often dependent on the sharpness of the 
corners on the path as well as the length of path edges.  We 
present an algorithm that incorporates the use of the turn 
angle through path nodes as a limiting factor for vehicle 
speed. Vehicle speed is then used in a time-weighting 
calculation for each edge. This allows the path planning 
algorithm to choose potentially longer paths, with less turns 
in order to minimize path traversal time. Results simulated 
in the Breve environment show that travel time can be 
reduced over the solution obtained using the Anytime D* 
Algorithm by approximately 10% for a vehicle that is speed 
limited based on turn rate. 

1Introduction  
The speed with which real vehicles can traverse a path is 
often dependent on the sharpness of the corners on the path 
as well as the path length.  For environments where speed 
matters and vehicles must maneuver around obstructions, 
such as autonomous car navigation in hostile 
environments, UAV close range maneuvering, or high 
speed robot arm planning, we investigate an algorithm that 
incorporates turn angles into path planning and show that it 
produces faster travel times in simulation than algorithms 
that only consider edge traversal time. 
 The traditional approach to autonomous vehicle path 
planning uses algorithms based on A*, D*, or Anytime D*. 
Typically, the search algorithm is designed to find an 
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optimal path, consisting of connected edges in a pre-
determined graph of a space. The optimal solution path 
minimizes the cost incurred by travelling the chosen route. 
 Costs can be assigned or calculated for each edge; either 
based on the length of the edge, an estimate of the time for 
the vehicle to travel that particular edge, or some 
combination that relates to fuel or energy usage.  
 Using pre-determined estimates for the time required to 
traverse an edge of a graph is sufficient for many 
applications. In cases where edges are long with respect to 
the size of the vehicle and to the total length of the path, 
the transitions between edges may not make up a large part 
of the traversal time and can be ignored. In many cases, 
robots following a path may have a limited range of speeds 
they can travel at, so that sharp corners do not hinder their 
progress significantly.  However, in applications that 
require short edge lengths in order to maneuver around 
close obstructions, and involving vehicles with wide speed 
ranges, time optimization of a path can depend on the 
combination of edges chosen in addition to the sum of the 
time required to traverse the edges. The maximum turn rate 
of any type of high speed land or air vehicle is dependent 
on how fast it is going, and therefore traversal time is 
dependent on the turning angles formed by the 
combination of edges that make up a solution path. For 
example, a car is limited by either the lateral traction the 
tires can hold, or by the maximum lateral acceleration that 
will not cause the vehicle to roll. In either case, if the path 
consists of short, straight edges, the angles between the 
edges will play a significant role in determining the speed 
at which they can be travelled. 
 This paper presents an edge-weighting scheme that takes 
into account the angles between edges.  We incorporate 
this weighting scheme into the Anytime D* algorithm and 
show that it produces improvements in travel time when 
studied in simulation, particularly in highly obstructed 
environments. 
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Background and Related Work 
There have been many efforts to make path planning 
algorithms more practical for real vehicle use. 
 D* [Stentz, A. 1994] improves upon A* by searching 
backwards from the goal to the starting point.  This allows 
for dynamic re-planning – because the path is searched 
backwards, changes to graph weights require much less re-
planning and many of the existing back-pointers can still 
be used.  Since 1994, others have simplified D* [Koenig, 
S., and Likhachev, M. 2002] and made additional 
improvements.  Anytime D* [Likhachev, M., et al. 2005] 
recognizes that a real vehicle may have limited time to plan 
a path, so it computes sub-optimal paths first, and 
improves the path as the vehicle travels.  This may allow a 
vehicle to continue moving when it would otherwise have 
to wait for the optimal route to be calculated. 
 Subsequent improvements have been to incorporate 
moving objects into the map.   In [Van Den Berg, J., et al. 
2006], Anytime D* is implemented with a time assigned to 
each map position.  This allows the search to avoid moving 
obstacles, and to find a path that gets to the destination in 
the shortest time, with the assumption that the vehicle can 
travel at a roughly constant speed. 
 Several integrated path planning systems have been 
implemented that make use of either D* or Anytime D* as 
part of a system for finding a real steering solution for a 
vehicle [Stentz, A., and Herbert, M. 1994] [Podsedkowski, 
L., et al.  2001] [Seder, M. et al. 2005].  One approach is to 
use D* to find the general path through an area, then use a 
separate module to compute a smooth path through it.  The 
Anytime D* algorithm was used in a vehicle that 
successfully completed the DARPA Offroad Challenge 
[Strum, S., et al. 2006].  Their method took into account 
turn rates when computing its graph by verifying that each 
potential successor edge was within the capabilities of the 
vehicle. The maximum safe speed was then calculated 
based on the resulting path curvature and other parameters. 
This method keeps the solution path near the given road, 
and ensures that the vehicle is capable of traversing it 
within its physical capabilities.  It does not optimize the 
path curvature for most efficient travel, or take into 
account the combination of edges chosen within the path-
planning algorithm itself.  Our contribution is unique in 
that the path curvature is used as the weight, so that the 
path curvature can be optimized within the graph search 
algorithm.  
 Our algorithm uses concepts from all of these D*-based 
path planners in an attempt to find faster paths by taking 
into account the speed at which a real-world vehicle can 
traverse the path, recognizing that a longer path may 
reduce travel time in some instances.  Our approach is 
most closely modeled after the Anytime D* 
implementation in dynamic environments [Van Den Berg, 
J., et al. 2006]. However, we have not incorporated 
Anytime processing or re-planning into our evaluation, 

since those components are not required to show the 
improvements we are making. 

Approach 

Algorithm 
The goal is to base the cost of a path on both the costs of 
the individual edges, as well as the costs of combinations 
of adjacent edges along the path.  In the model used here, 
the maximum speed at which a vehicle can traverse any 
node in a path will depend on the turning angle formed by 
the two edges joined by the node.  Vehicle speed varies 
between 0.1 and 1.0.  The vehicle can travel at 1.0 if the 
turning angle is zero, and the maximum speed linearly 
decreases toward zero for turning angles from 0 to 90 
degrees.  The maximum allowed speed for a node has a 
minimum value of 0.1 for turn angles close to 90 degrees.  
It will be assumed that as the vehicle travels between two 
nodes, the vehicle speed varies linearly between the 
maximum speeds at each node.   
 In this way, the time the vehicle takes to travel on a 
given edge will depend on the maximum speeds allowed at 
the edge end nodes, and also on the angles formed by 
edges at the nodes.  This requires a modification in the way 
edge costs are calculated in the Anytime D* algorithm.  
Normally, the cost of an edge depends on the positions of 
the two nodes at either end of that edge.  In the method 
presented here, the travel time of a given predecessor edge 
also depends on the angle formed with the next edge after 
that, which will not yet be known at the time a predecessor 
edge is chosen.   
 The solution resulting from the D* path planning 
algorithm consists of a back-pointer assigned to each node 
that determines the next node that should be travelled on 
the solution path.  In other words, each position on the map 
is encoded with information about where the vehicle 
should go next.  As a result, each node does not know 
where the path came from to get to that point, because the 
algorithm actually worked in the opposite direction - goal 
toward start - to arrive at the solution.  This means that 
each node does not know anything about the combination 
of edges that it joins, and cannot determine the turning 
angle through itself.   Each node can, however, know the 
relationship between two other edges; the edge from itself 
to its back-pointer, and the edge from its back-pointer to its 
back-pointer’s back-pointer.  In Figure 1, point A is closest 
to the goal, and point C is closest to the start.  The speed at 
point B is a function of the turning angle ABC.  When the 
cost from A to B is being calculated in the search 
algorithm, the position of C, and therefore the angle ABC, 
is not yet known. 
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Figure 1- Turning angle on path from C to A. 
 
When the search algorithm reaches point B, it obtains a list 
of predecessors to be evaluated next, one of which is C.  
The difficulty is that the turning angle through a node B 
depends on the specific predecessor C that the vehicle is 
traveling through on its way to B, which is not known until 
the entire path search is complete.  To overcome this, the 
relationship (in this case, angle) between edges at B is 
stored in node C.  Edge cost due to travel time between B 
and A can then be added to the edge cost of CB.  This 
means that the travel time cost for one edge is getting 
stored with the previous edge.  This method is valid 
because the algorithms decision of which predecessor to 
choose determines what this cost will be, regardless of 
where the cost is actually encountered while travelling the 
course.  The path planner still has an opportunity to choose 
from each combination of edges based on the total cost of 
that combination.   Figure 2 shows how the ‘nextspeed’ of 
each node really contains the maximum speed of the back-
pointer of that node, i.e. nextspeed(s) is the maximum 
speed at s’ if the path goes through node s.  The time to 
travel between nodes s’ and s’’ is different for each node s 
that could be chosen.  Each node s computes this travel 
time and adds it to its own edge cost from s to s’. 
 

 

Figure 2- Maximum speed at s’ is determined by s. 
 
The Anytime Dynamic planning algorithm computes the 
cost of an edge with (1). 
 
 ( , ) ( ) ( , )t c rc s s w t t w c s s           (1) 
 
Where tw  and cw  are weights, and rc  is the cost of the 
edge from points s to s’, which are reached at times t and t’ 
respectively.    The predecessor function in D* computes a 
list of possible points that could have been visited before 
the current node as the vehicle travels.  For each 
predecessor, our modified algorithm will compute the 

additional turn-angle based time-weighting that would be 
incurred if that predecessor ends up being travelled.   
During the search, the cost that the turning angle incurs on 
travel time for each predecessor will be added to the cost 
of that edge when determining the total cost as in (2). 
 

( , ) ( , | ) ( , )t r c rc s s w t s s s w c s s           (2) 
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Equation (3) represents the edge travel time between s’ and 
s’’ given that predecessor s is chosen, which is then 
included in the cost calculated for edge s to s’.  The travel 
time is based on a linearly varying speed between vinit and 
vfinal.  When the path is actually being travelled, the 
vehicle will look at the node it is currently passing to get 
the maximum allowable speed for the next node, and it will 
adjust its speed accordingly.  

Modification to D* 
In addition to the modified edge cost function, the 
predecessor function used in this simulation is based on the 
‘velocity vector’ of a node, which is the same as the back-
pointer of a node, and determines the direction that the car 
will be travelling when it arrives at a node.  The 
predecessor set consists of a node continuing in the same 
direction, and nodes that would be reached by turning at a 
selection of cardinal angles away from the velocity vector. 
 As a result of the structure of the predecessor function, 
this method does not use a pre-determined set of grid 
points, which has advantages and drawbacks.  It allows for 
more natural curved paths that give a little more flexibility 
in navigating an area, but when the algorithm runs into an 
obstruction, backtracking is difficult because it generates a 
large number of nodes with slightly different positions in a 
very small area, and this increases the processing time 
required to find a path.  When each predecessor location is 
computed, the algorithm searches for any existing node 
instances within a small radius so that predecessors are 
‘snapped’ to existing predecessors in that area.  This is 
implemented in the simulation with a hash function that 
links node coordinates with the actual node data structure.  
Snapping the nodes also assures that only one node object 
is created for each map position.  In addition to path cost, 
the AD* algorithm for dynamic environments  [Van Den 
Berg, J., et al. 2006] uses a heuristic based on time and 
distance to the start.  In this implementation, time values 
are not assigned to each node, so the heuristic is based 
entirely on distance to the start. 
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Implementation 
To evaluate the performance of the modified cost function 
against the normal D* implementation, a simulation was 
created using the Breve environment 
[www.spiderland.org].  Breve is a fairly powerful 3-d 
simulation tool that can model interactions between 
physical objects using a programming language similar to 
Python.  Several objects were set up to model parts of the 
evaluation environment: 
 
Ground.  The area for the course is a flat, 20 x 20 grid.  A 
“start” marker is setup at {0,0} and the “goal” marker is set 
up at {20,20}, making the objective to cross diagonally 
across the square course. 
 
Vehicle.  The vehicle that traverses the path is displayed as 
a rectangular box.  Vehicle motion is constrained to remain 
on the ground plane, and the velocity of the car is 
constrained to be in the direction it is pointed, similar to 
many wheeled vehicles.  The vehicle contains a controller 
that steers it toward the next node on the solution path, and 
automatically sequences to the back-pointer of the node as 
it reaches each one.  It also adjusts its speed linearly 
between the maximum speeds for the nodes before and 
after its location on the path.  This matches the assumption 
used in the planning algorithm for calculating the travel 
time for path edges.  The vehicle object calls the functions 
required to perform the D* search to obtain the starting 
node position and the subsequent chain of nodes that forms 
the solution path. 
 
Obstructions.  All obstructions are represented as blocks 
of uniform height with random width and length, sitting on 
the ground plane.  They are positioned randomly within the 
square bounded by {5,5}, {5,15}, {15,5}, and {15,15} to 
prevent them from being too close to the start or goal point.  
The positions of the obstructions are also represented in a 
200x200 matrix of the map area (10 matrix locations per 
grid ‘unit’).  The path planner uses this matrix to determine 
if a path section is passable or not due to an obstruction. 
 
Path Planner.  The path planner class contains all of the 
state data of the path search algorithm, along with the 
search functions.  It is initiated by a function call which 
returns a start node that is linked via back-pointers to a 
chain of nodes leading to the goal.   
 
Path State. Each path node is modeled as an instance of 
the path state class.   This class contains data such as the 
back-pointer of the node, the various values used in the D* 
algorithm such as g(s) and rhs(s), as well as the methods to 
get the predecessor and successor lists of a node. 

Evaluation 
The performance of travel-time weighting will be 
evaluated using three metrics: travel time, path distance, 
and average speed. Travel time is calculated by simply 
subtracting the initial simulation time from the time at 
which the car reaches the goal.  The path distance is 
obtained by summing the path edge lengths along the 
route.  Average speed is calculated from path distance and 
travel time as an additional way to visualize the results. 
 Cases were run on maps with varying numbers of 
obstructions, and using various weighting factors.  The 
weight variables wc and wt determine the weighting of 
edge length and edge travel time when searching the graph. 
This is similar to the AD* algorithm [Van Den Berg, J. 
2006], where increasing the wt value causes the search to 
rely more on the travel time of the vehicle across nodes 
based on the turning angle calculation.  If wc is set to 1.0 
and wt is set to 0.0, then the path will be based entirely 
upon path distance, as in D*.  If wt is set to 1.0 and wc is 
set to 0.0, then the path will attempt to optimize travel 
time, but may use a slightly longer path. A combination 
may be used if a balance between the two methods is 
desired, such as if fuel consumption is a concern. 
 The number of obstructions on the map was varied 
between 5 and 11 to see the relationship between map 
complexity and the benefit obtained from time-weighting.  
Maps with too few obstructions sometimes allowed a 
straight path to the goal, while maps with too many 
obstructions sometimes formed a single large obstruction 
in the middle.  Figure 3 and Figure 4 show examples of 
two maps, which have 5 and 11 obstructions respectively.  
The smaller grey box in each image is the vehicle, and the 
branched lines represent back-pointers that form the 
solution path. 
 The full anytime function with increasing levels of 
optimization was not implemented here, but the path 
planner can be set for a constant optimization factor.  The 
optimal factor (eta) of 1.0 often resulted in prohibitively 
large path processing times in our implementation.  Maps 
were tested with a range optimization factors in order to 
understand the impact of this on the expected results of 
using time-weighting.  In a real anytime implementation, 
the optimal path would not be immediately calculated, so 
testing with a constant inflated weighting factor is not 
unrealistic.  Figure 5 shows the average speeds for paths 
through one map vs. time-weighting, for eta values of 1.5, 
1.2, and 1.1.  This shows that the benefit from out method 
grows as the path becomes closer to optimal. 
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Figure 5 – Travel time reduction vs. optimality. 

 

 

Figure 3 - 5 obstructions. 

 

 

Figure 4 - 11 obstructions. 
 
 

 

 

Figure 6 – Travel time at 1.15 optimization factor. 
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Figure 7 – Distance Travelled at 1.15 optimization factor. 

 

 

Figure 8 – Average speed at 1.15 optimization factor. 
 

 Figures 6-8 above show travel time, path distance, and 
average vehicle speed while moving from start to goal on 
the solution path vs the travel-time weighting factor.  All 
values are normalized, so that 100% corresponds to the 
time, distance, and speed of the path resulting from edge 
costs based only on length.  Each plot shows the results for 
twelve cases – each line is the average of three maps with 
the same number of obstructions.  This was repeated for 
maps with 5, 7, 9, and 11 obstructions.  As expected, 
improvements are greater for maps with more obstructions.  
An optimization factor of 1.15 was used for all cases. 
 As expected, there is a trend of increasing average speed 
as the time weighting is increased.  Higher values of wt 
result in less sharp corners in the path, so the vehicle does 
not slow down as often.  The trend in path travel time is 
also as expected, given the trend in average vehicle speed. 
For optimal search solutions, we would expect that the 
shortest path would be found when wt = 0, and that for 
higher values of wt, the path distance would increase. In 
Figure 7, some increase is seen, although the pattern is not 
consistent for 11 obstructions. A few factors could be 
affecting this; primarily, these are not optimal path 
solutions (eta > 1). Also, the effect is very dependent on 
the specific obstacle configuration. Certain configurations 
will have greater tradeoffs between speed and time. 

 Figure 10 shows the velocity profile of a map for two 
different wt values, at a constant eta of 1.1. This gives an 
idea of how the speed of the vehicle varies as it traverses 
the path, and where the increased value of wt is able to 
improve travel time. In the cases where wt=0, the speed 
drops down to around 0.5 in a few places. For for wt = 1.0, 
the speed stays 1.0 for a large portion of the time and drops 
to a lower speed less often. 
 

 

Figure 10 – Speed profile for different weights. 
 

 For the cases shown here, the maximum improvement in 
path travel time is close to 10%, and the trends in Figures 
6-8 suggest that further improvements can be realized in 
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more densely obstrustructed environments.  This is 
significant given that the processing and memory 
requirements of the algorithm are not considerably 
increased.  This algorithm requires some additional 
processing when computing the predecessor function for 
each node, however this is still within a scale factor of 
processing and memory requirements for the original D* 
implementation. 

Conclusions 
This paper has demonstrated a feasible way of computing 
edge costs in a D* graph planning algorithm based on 
relationships between edges. This allows path curvature to 
be taken into account even when the predecessor function 
uses only straight edges between nodes. The method 
demonstrated has shown to consistently produce shorter-
time paths around obstructions than when only edge length 
is considered, with a minimal amount of additional 
processing overhead required.  
 A key part of this method is to store the maximum 
traversal speed for a given node in the predecessor of that 
node. Information is stored in the node on which the 
information depends rather than the node where it will be 
applied.  This highlights the way that a graph search can 
evaluate edge costs based on the decisions that effect that 
cost, which may be applied at a different time from when 
that cost is actually incurred as the path is being travelled. 
Several previous papers cover the tradeoff between path 
distance and speed in search for a path, however many use 
a traditional start to goal method, and don’t apply this to 
the anytime D* algorithm as we do here. 
 Many future applications of this modification are 
available for research. It would be interesting to do a direct 
comparison between this method and an alternate approach 
of using curved edges (and therefore zero angles between 
edges). In addition, there may be cases where the cost of a 
given series of edges depends on more than two edges on 
that path. Furthermore, it would be interesting to put 
together a complete Anytime, Dynamic path planning 
implementation that deals with moving obstructions using 
the method presented here to see the effect in conjunction 
with the physical turning speed limitations of a real 
vehicle.   
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