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Abstract

We argue that probabilistic programming with undirected
models, in order to scale up, needs to open up. That is, in-
stead of focusing on minimal sets of generic building blocks
such as universal quantification or logical connectives, lan-
guages should grow to include specific building blocks for
as many uses cases as necessary. This can not only lead to
more concise models, but also to more efficient inference if
we use methods that can exploit building-block specific sub-
routines. As embodiment of this paradigm we present FAST
FROWARD, a platform for implementing probabilistic pro-
gramming languages that grow.

Introduction

Probabilistic Programming languages for undirected mod-
els, such as Markov Logic and Relational Markov Networks,
are very expressive. Many statistical models of interest can
be readily described in terms of these languages. However,
often the generic inference routines will either be too slow,
too inaccurate, or both. For example, it is possible to use
Markov Logic (Richardson and Domingos 2006) for encod-
ing probability distributions over the set of possible syntac-
tic dependency trees of a sentence. Yet, generic inference in
these models is very inefficient, in particular due to deter-
ministic factors which ensure that the set of predicted edges
forms a spanning tree over the words of the sentence.

Here we argue that probabilistic programming, in order
to scale up, needs to open up. That is, instead of focusing
on minimal sets of generic building blocks such as univer-
sal quantification and logical connectives, languages should
grow to eventually include specific building blocks for as
many uses cases as necessary. For example, we should pro-
vide a spanning tree constraint as part of our language that
can be used whenever we want to extract dependency trees,
or model hierarchical structures in general.

On first sight, this is not more than syntactic sugar. How-
ever, we argue that it can also lead to more efficient inference
if we use inference methods that can exploit building-block
specific sub-routines. For example, Belief Propagation re-
quires summation over the variables of each factor. For a
spanning tree constraint this can be done very efficiently.
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Clearly, we do not want to design a language with all
constructs we could ever need in advance. Instead, we
need to provide the glue for an ever-increasing set of lan-
guage extensions. In the following we will present FAST
FROWARD,1a software library that attempts to provide this
glue.

FAST FROWARD supports user-provided inference rou-
tines akin to the (primarily) imperative language FACTO-
RIE (McCallum, Schultz, and Singh 2009), but does so in
a declarative setting. It is also similar in spirit to recent ap-
proaches such as CHURCH (Goodman et al. 2008) and FI-
GARO (Pfeffer 2009), which support tailor-made proposal
functions. However, these languages focus on generative
models and MCMC.

Domains, Variables, Worlds

The glue that FAST FROWARD provides are object-oriented
interfaces for building blocks, and high level inference rou-
tines that function in terms of these interfaces. We present
the former in Scala, a hybrid functional object-oriented pro-
gramming language.

A Domain[T] contains the (Scala) objects of type T we
want to talk about; it needs to provide an iterator over its
objects, as well as a contains method to indicate Domain
membership. Three built-in types of domains are Values,
representing a user-defined set of objects, Tuples, and
Functions. For example, in

val Tokens = Values(0,1,2,3,4,5)
val Graph = (Tokens x Tokens) -> Bools

the first domain Tokens contains all integers from 0 to 5
(and represent word indices in a sentence), and the second
domain all functions that map token pairs to booleans (and
represent directed graphs over the tokens).

In FAST FROWARD a variable is represented by objects of
the class Var[T] that come with a name and a domain that
specifies which values the variable can possibly take on. For
example, to declare the variable edge as a graph over to-
kens we write val edge = Var(“edge”, Graph).
A binding of such variables is a (possible) World.2 Its core

1see riedelcastro.github.com/fast-froward
2This amounts to possible worlds in Markov Logic for bindings

of function variables that map into booleans.
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method resolveVar(v) returns the object the variable v
is assigned to.

Terms

A term is a symbolic expression that is, given a possible
world, evaluated to an object. In FAST FROWARD a term
is an instance of a Term[T] trait that has to implement
an evaluate(world) method which maps the binding
world to a value of type T. Terms in FAST FROWARD
can serve as boolean formulae (when they evaluate into
booleans). Crucially, when they evaluate into real values
they also serve as probabilistic models.

A simple example term is:

Indicator(FunApp(edge,Tuple(0,5))

Indicator evaluates to 1 if the boolean term inside eval-
uates to TRUE, and 0 otherwise. The FunApp term applies
the result of evaluating the first argument to the result of
evaluating the second. edge refers to the Var object we
defined earlier and evaluates to the function the variable is
bound to. The other terms are defined accordingly. Scala’s
syntactic sugar, and ${·} as the indicator function, can be
used to alternatively write ${edge(0,5)}.

To support abstraction, we provide quantified operations
that are applied to all objects of a given domain. For exam-
ple, to evaluate

Sum(Tokens,i=>${tag(i,VB)->edge(0,i)})

we replace i in the inner term with each possible value in
Tokens, then we evaluate the inner term, get a real value
xi, and sum over all values xi. Note that the term amounts
to the logarithm of a unnormalized MLN that encourages
worlds where verbs are children of the root (by convention
token 0). Generic MLNs can be formulated accordingly.

Crucially, we can also add terms that are not in
Markov Logic. For example: the spanning tree constraint
Tree(edge) for which eval returns 1 if the function
in edge corresponds to a spanning tree over objects in
Tokens, and 0 otherwise.

Inference

Real valued terms also implement a factorize method
that returns a set of terms it factors into. This method, to-
gether with eval, is sufficient to implement most (proposi-
tional) factor graph inference methods such as Sum Product
Belief Propagation and its variants.

However, working purely in terms of eval will often be
very inefficient. For example, calculating outgoing BP mes-
sages for Tree(edge) in this way is intractable because
eval needs to be called for each of the exponential as-
signments to edge. We therefore introduce a bpMessage
method that terms implement if outgoing messages can be
calculated more efficiently. For our tree constraint factor
this is possible in cubic time (Smith and Eisner 2008).

There is a more general paradigm behind inference in
FAST FROWARD: the probabilistic programmer composes
a probabilistic model, and the interpreter composes a global
optimizer for this model using the local optimizers that come

with its building blocks. This technique is appropriate not
only for Sum-Product BP, but also for other methods that
break up the global variational objective into several lo-
cal problems via dual decomposition (Duchi et al. 2007;
Komodakis, Paragios, and Tziritas 2007).

Note that a similar approach can also be used for methods
that do not unroll the full graph. For example, quantified
terms can have a separate method for Cutting Plane In-
ference (Riedel 2008) that returns all factors not maximally
satisfied in a given world.

Conclusion

We have presented FAST FROWARD, an object-oriented li-
brary for probabilistic programming languages that grow.
Crucially, language extensions can come with specialized
inference routines that FAST FROWARD can leverage. We
believe that this approach will make probabilistic program-
ming with undirected models more applicable to real-world
problems.
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