
Exploiting Logical Structure in
Lifted Probabilistic Inference

Vibhav Gogate and Pedro Domingos
Computer Science & Engineering

University of Washington
Seattle, WA 98195, U.S.A.

{vgogate,pedrod}@cs.washington.edu

Abstract

Representations that combine first-order logic and probability
have been the focus of much recent research. Lifted inference
algorithms for them avoid grounding out the domain, bring-
ing benefits analogous to those of resolution theorem proving
in first-order logic. However, all lifted probabilistic inference
algorithms to date treat potentials as black boxes, and do not
take advantage of their logical structure. As a result, infer-
ence with them is needlessly inefficient compared to the logi-
cal case. We overcome this by proposing the first lifted prob-
abilistic inference algorithm that exploits determinism and
context specific independence. In particular, we show that
AND/OR search can be lifted by introducing POWER nodes
in addition to the standard AND and OR nodes. Experimental
tests show the benefits of our approach.

Introduction

Recent years have seen much interest in using first-
order logic to compactly specify large probabilistic models
(Getoor and Taskar 2007; Domingos and Lowd 2009). For
example, Markov logic uses a set of weighted first-order for-
mulas to define a Markov network, with a feature for each
possible grounding of each formula with objects in the do-
main (Domingos and Lowd 2009). Initially, only the rep-
resentation of a model benefited from the compactness of
first-order logic; inference was still carried out by ground-
ing out the entire network and applying standard techniques.
However, since the size of the network is exponential in the
number of objects, this seriously limited scalability.

More recently, a number of techniques for exact lifted in-
ference in first-order probabilistic models have been pro-
posed (Poole 2003; Milch et al. 2005; Braz, Amir, and
Roth 2005; 2006). Lifted inference treats sets of objects that
are indistinguishable given the evidence as single units, and
can provide very large speedups, analogous to those obtain-
able by resolution in first-order logic. The only approach to
date is first-order variable elimination (FOVE) (Poole 2003;
Braz, Amir, and Roth 2005; 2006). FOVE, like proposi-
tional variable elimination, has exponential space complex-
ity, which limits its applicability to realistic domains. Also,
it does not take advantage of the structure of the logical
formulas to define potentials, treating them as black boxes.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Since large cliques are very common in first-order proba-
bilistic models, this can make FOVE impractical even in
cases where efficient inference is otherwise possible. In
particular, one can take advantage of the local structure in
the models specified using logical formulas such as context-
specific independence (Boutilier 1996) and determinism.

The main contribution of this paper is the specification of
a lifted inference scheme that uses the mechanics of search,
Boolean constraint propagation and pruning, to better ex-
ploit the local structure of the formulas. In particular, we de-
fine the AND/OR/POWER search space for lifted graphical
models, which adapts and extends the recently introduced
AND/OR search spaces for propositional graphical models
(Dechter and Mateescu 2007). The AND/OR search space
contains two types of nodes: AND nodes which correspond
to problem decomposition and OR nodes which correspond
to conditioning. The AND/OR/POWER search space has
two additional node types, which capture properties of lifted
inference: POWER-AND nodes which aggregate decompo-
sition and POWER-OR nodes which aggregate condition-
ing, over groups of random variables.

We begin by briefly reviewing background on Markov
logic and AND/OR search spaces. We then describe our new
framework of AND/OR/POWER search spaces for perform-
ing lifted inference in Markov logic. Finally, we present our
experimental results and conclude.

Background

We denote first order logical variables by small letters x and
y. Constants are denoted by capital letters, e.g., X , Y , A.
A predicate or an atom defined over constants or variables,
or both is denoted by letters R, S and T , e.g., R(x, A),
S(x, y, z) and T (B). Each variable x can take values from
some domain Δx of constant symbols. Sets are represented
by bold letters e.g. x = {x1, . . . , xn} is a set of variables
and X = {X1, . . . , Xn} is a set of constants.

We will consider first order Knowledge Bases (KBs)
which are in conjunctive normal form (CNF). Each formula
in a CNF is a clause in which all variables are universally
quantified, where a clause is a disjunction over predicates,
constants or their negation. A predicate or a formula is
grounded by replacing all its variables by constants. Propo-
sitionalization or grounding is the process of replacing a
first-order KB by an equivalent propositional formula. A

19

Clauses Weight Domains

R(x, y) ∨ ¬S(x) 1.4 Δx = {A, B}
S(x) ∨ T (x, z) 1.1 Δy = {A, B}

Δz = {A, B}

Figure 1: Example Markov Logic network.

RAA SA TAA RAB SB TBA

RAB TAB RBB TBB

Figure 2: Primal Graph of a PropMRF obtained by grounding
the MLN shown in Figure 1.

first-order KB is said to be satisfiable if its equivalent propo-
sitional KB is satisfiable. A first-order KB represents hard
constraints over the domain. Any truth assignment to the
grounded propositional variables that does not satisfy one or
more clauses is invalid or has zero probability. The basic
idea in Markov logic networks is to soften these constraints
by associating weights with the formulas.

Before defining Markov Logic networks (MLNs), we
introduce propositional MRFs or PropMRF in short. A
PropMRF, denoted by M , is a set of pairs (Fi, wi)
where Fi is a propositional clause and wi is a real num-
ber. Let X̄ be an assignment to all variables in M ,
then the probability distribution represented by M is given
by: Pr(X̄) = 1

Z
exp

(∑
i wiFi(X̄V (Fi))

)
where Z =∑

X̄ exp
(∑

i wiFi(X̄V (Fi))
)

is called the partition func-

tion, X̄V (Fi) is the projection of the full assignment X̄ to the

variables V (Fi) of Fi and Fi(X̄V (Fi)) is a function which is

1 if X̄V (Fi) evaluates Fi to True and 0 otherwise. The pri-
mal graph of a PropMRF has variables as its vertices and
an edge between any two nodes that are involved in the same
clause. It is known that any Bayesian or Markov network
can be encoded as a PropMRF, such that the probability
distributions represented by the two are the same (Chavira
and Darwiche 2008).

DEFINITION 1 (Markov Logic networks). A Markov logic
network (MLN) L is a set of pairs (Fi, wi) where Fi is a
clause in first order logic and wi is a real number. Given
a finite set of constants X = {X1, . . . , Xm}, it defines a
PropMRF ML,X as follows. ML,X contains a proposi-

tional variable for each possible grounding of each predi-
cate appearing in L. ML,X contains a weighted proposi-

tional clause, with weight wi, for each possible grounding
of each weighted formula Fi in L.

EXAMPLE 1. Figure 1 shows a MLN defined by three predi-
cates R, S and T and two weighted first order logic clauses.
The primal graph of the ground MLN is shown in Figure 2.

Important queries over a MLN L are computing the par-
tition function of M

L,X and computing the probability of a

formula given evidence, where evidence is an instantiated
subset of variables in M

L,X. Because the latter query type

is a special case of the former, in the sequel, we define infer-
ence algorithms for computing the partition function only.

×

SA

T

e2.2
× 22

RAA

T

e1.4

F

1

RAB

T

e1.4

F

1

F

e2.8
× 22

TAA

T

e1.1

F

1

TAB

T

e1.1

F

1

SB

T

e2.2
× 22

RBA

T

e1.4

F

1

RBB

T

e1.4

F

1

F

e2.8
× 22

TBA

T

e1.1

F

1

TBB

T

e1.1

F

1

1977 × 1977 = 3.91E6

1977 1977

25.6 16 25.6 16

5.1 5.1 4 4 5.1 5.1 4 4

Figure 3: AND/OR search space for the MLN shown in Figure 2.
For brevity, variable S(A) is abbreviated as SA, similarly variable
T (A,B) is abbreviated as TAB etc.

AND/OR search spaces for Ground MLNs

The partition function of a MLN can be computed by ap-
plying any known probabilistic inference scheme such as
variable elimination (Zhang and Poole 1994) or recursive
conditioning (Darwiche 2001) over its ground PropMRF.
These algorithms are instances of performing a depth-first
search with or without caching over the AND/OR search
space for graphical models (Dechter and Mateescu 2007).
Since the PropMRF is specified using logical formulas, it
lends itself naturally to various Boolean constraint propaga-
tion and pruning techniques available in the literature (Sang,
Beame, and Kautz 2005; Chavira and Darwiche 2008). We
will therefore deviate slightly from the original description
of AND/OR search spaces in (Dechter and Mateescu 2007),
to account for Boolean constraint propagation and pruning.

Given a PropMRF M and its primal graph G, the associ-
ated AND/OR search tree, has alternating levels of AND and
OR nodes, starting with a dummy AND node × (see Fig-
ure 3 for an example in which the AND nodes are squares
and OR nodes are ovals). Each node is associated with a
current PropMRF. The PropMRF associated with the root
AND node × is M . The OR nodes correspond to the vari-
ables. Each OR node has two or more child AND nodes
corresponding to the value assignments from the domains
of the variables. Each AND node has one or more child
OR nodes (except leaf AND nodes which have no children),
where each child OR node corresponds to a variable from
a unique connected component of the primal graph of the
PropMRF associated with its parent. Semantically, the OR
nodes represent conditioning whereas the AND nodes rep-
resent problem decomposition.

The PropMRFs associated with child OR nodes
{n1, . . . , nk} of a parent AND node n are obtained as fol-
lows. Let Mn,1, . . . , Mn,k be the (disjoint) components of
the PropMRFMn (corresponding to the dis-connected com-
ponents of the primal graph of Mn) associated with n, then
Mn,i is the PropMRF associated with ni. The PropMRF
at an AND node n is obtained by adding its corresponding
value assignment to the PropMRFMp at its parent OR node
p and simplifying Mp using Boolean constraint propagation
and pruning. We illustrate it via the following example.

EXAMPLE 2. Consider the primal graph of the ground MLN
shown in Figure 2. A possible AND/OR search space for

20

this problem is shown in Figure 3. The root AND node ×
has two child OR nodes S(A) and S(B), corresponding to
a variable from each component of the primal graph shown
in Figure 2. After we condition on S(A) = True, we can re-
move the clauses containing T (A, A) and T (A, B), because
they evaluate to True. Also, we can simplify the clauses con-
taining R(A, A) and R(A, B) by removing the literal S(A)
from them. Thus, the PropMRF associated with the AND
node corresponding to S(A) = True contains only two
weighted clauses (R(A, A), 1.4) and (R(A, B), 1.4), which
are disjoint. We can decompose this PropMRF into two
components: R(A, A) and R(A, B), and so on, yielding the
AND/OR search tree given in Figure 3.

Given an AND/OR search space for a PropMRFM , it was
pointed out in (Dechter and Mateescu 2007) that the par-
tition function can be computed by labeling the AND/OR
tree appropriately and recursively computing the value of all
nodes from the leaves to the root, defined next.

DEFINITION 2 (Labels and Values in an AND/OR tree).
Each arc emanating from an OR node n to an AND node
m is associated with a label, denoted by l(n, m). Let Mn

and Mm be the PropMRF associated with n and m re-
spectively. Let (F1, w1), . . . , (Fk, wk) be the clauses that
evaluate to True in Mn because of the assignment corre-
sponding to m and let L be the number of variables that are
present in Mn but not in Mm and which are not assigned to
either True or False (either because of the current assign-
ment or because of Boolean constraint propagation). Then,

l(n, m) = exp
(∑k

i=1 wi

)
×2L. The value of a node n, de-

noted by v(n), is defined recursively from the leaves to the
root as follows. Let chi(n) be the set of child nodes of n . If
n is a leaf AND node then v(n) = 1. If n is an internal AND
node, then v(n) =

∏
i∈chi(n) v(i). If n is an OR node, then

v(n) =
∑

m∈chi(n) v(m) × l(n, m). The value of the root

AND node is equal to the partition function.

EXAMPLE 3. Figure 3 shows an AND/OR search tree in
which each OR to AND arc is annotated with labels derived
from the clauses shown in Figure 1. Each node is annotated
with its value. The partition function is the value of the root
node: 3.9 × 106.

AND/OR/POWER Search for MLNs

Just as in lifted variable elimination, the main idea in
AND/OR/POWER search is to exploit the symmetry present
in the ground PropMRF, and to do so without actually con-
structing it. We consider two such symmetry properties de-
fined previously: inversion (Poole 2003; Braz, Amir, and
Roth 2006) and the counting argument (Braz, Amir, and
Roth 2005), and define them relative to the AND/OR search
space. We begin with an example that illustrates inversion.

EXAMPLE 4. Consider the AND/OR search tree shown in
Figure 3. The value of the OR node S(A) is same as the
value of the OR node S(B). Generalizing, if the domain of
x was {X1, . . . , Xk} instead of {A, B}, then the root node
in Figure 3 would have k children, all of which would have
the same value. Thus, instead of computing each of them

(a)

×

x=A

SA

T

e2.2
× 22

RAA

T

e1.4

F

1

RAB

T

e1.4

F

1

F

e2.8
× 22

TAA

T

e1.1

F

1

TAB

T

e1.1

F

1

2

19772

1977

25.6 16

5.1 5.1 4 4

(b)

×

x=A

SA

T

e2.2
× 22

y=A

RAA

T

e1.4

F

1

F

e2.8
× 22

y=A

TAA

T

e1.1

F

1

19772

1977

2

5.12 42

2 2

5.1 4

Figure 4: Augmenting the AND/OR search space with POWER-
AND nodes.

separately, we could just compute one of them and raise it
to an appropriate power. Figure 4(a) shows how this can
be achieved by introducing a POWER-AND node (x=A), de-
noted by a diamond. The POWER-AND node takes the value
that it receives from its child OR node, raises it to its asso-
ciated power-count of 2 and then passes this new value to
its parent AND node. Notice that R(A, B) and R(A, A)
(similarly T (A, A) and T (A, B)) have the same value as
well. Thus, we could introduce POWER-AND nodes there
too, yielding the search space shown in Figure 4(b).

Next, we illustrate how to apply the counting argument
(Braz, Amir, and Roth 2005) over an AND/OR search tree.

EXAMPLE 5. Consider a MLN having two clauses S(x) and
¬S(x) with weights w1 and w2 respectively. Let Δx =
{A, B, C}. The OR tree (an AND/OR tree in which each
AND node has at most one child OR node) corresponding to
the ground MLN is shown in Figure 5(a) (note that the ex-
ample is for illustration purposes only. We could also apply
inversion here, which will be more efficient). We can trans-
form this OR tree into an equivalent OR tree having just 8
AND nodes by clustering the variables together as shown in
Figure 5(b). Each AND node in Figure 5(b) corresponds to
one of the 8 leaf AND nodes in Figure 5(a). The arc-label
of each arc on the new OR tree in Figure 5(b) is simply the
product of the arc-labels along the path from the root to the
corresponding leaf node in Figure 5(a).

By definition, the value of the OR node denoted by n in the
OR tree of Figure 5(b) is given by: v(n) =

∑
j∈chi(n) v(j)×

l(n, j). The AND nodes marked in double (and triple) boxes
in Figure 5(b) are identical in the sense that they have the
same arc-labels. In general, if x has N constants in its do-

main, then the arc-label would equal wK
1 and wN−K

2 where

K is the number of groundings of S(x) that are True in the
corresponding assignment. If all the AND nodes that have
the same arc-label also have the same value, then we can
group them together as we show next. Let Jn(K) = {j ∈
chi(n)|l(n, j) = eK.w1 × e(K−m).w2} for K = 0 to N . It

is easy to see that |Jn(K)| =
(
N
K

)
. If v(i) = v(j) for all

21

(a)

×

SA

T
ew1

SB

T

ew1

SC

T

ew1

F

ew2

F

ew2

SC

T

ew1

F

ew2

F
ew2

SB

T

ew1

SC

T

ew1

F

ew2

F

ew2

SC

T

ew1

F

ew2

(b)

×

(SA, SB , SC)

7

(ew1)3.(ew2)0

6 5 4 3 2 1 0

(ew1)0.(ew2)3

(c)

×

SA, SB , SC

7

3

3

7

(ew1)3.(ew2)0

3,5,6

3

2

6

(ew1)2.(ew2)1

1,2,4

3

1

4

(ew1)1.(ew2)2

0

3

0

0

(ew1)0.(ew2)3

Figure 5: (a) OR search tree for a ground MLN with two clauses S(x) and ¬S(x) having weights w1 and w2 respectively. The domain of
x is {A, B, C}. (b) Equivalent OR search tree to the tree shown in (a). Some arc-labels are not shown for brevity. Note that the leaf node “0”
corresponds to the assignment (F, F, F) to S(A), S(B), S(C), “1” corresponds to (F, F, T) and so on. (c) Tree obtained by aggregating
similar OR nodes in the tree shown in (b) using POWER-OR nodes (triangles).

i, j ∈ Jn(K), then we can rewrite v(n) as:

v(n) =

N

K=0

N

K
× v(j ∈ Jn(K)) × e

K.w1+(N−K).w2

Graphically, we can represent the above counting argu-
ment using N + 1 POWER-OR nodes, where the Kth node
aggregates the information over all the child AND nodes
contained in the partition Jn(K). Figure 5(c) shows how
POWER-OR nodes, denoted by a triangle can be used to
compactly represent the OR tree given in Figure 5(b).

Next, we will formalize the two symmetries over
AND/OR search trees yielding AND/OR/POWER search
trees. We start with a required definition.

DEFINITION 3 (Domain and Range of a Predicate given a
set of constraints). The domain of a predicate R, denoted
by ΔR, is a subset of the Cartesian product of the domains of
its logical variables that satisfy the given set of constraints.
The range of a predicate R, denoted by ΓR is the set of truth
assignments over all elements in its domain.

Note that the constraints over the domain of a predicate
can be introduced because of evidence or because of condi-
tioning while performing inference. We explain this issue in
the next subsection (handling evidence and shattering).

EXAMPLE 6. Given a predicate R(x, y, z), Δx = Δy =
Δz = {A, B, C} and a constraint x �= y �= z, the domain of
R(x, y, z) is {(A, B, C), (A, C, B), (B, A, C), (B, C, A),
(C, A, B), (C, B, A)} while its range is all possible truth
assignments to all variables in its domain. Thus, the range
of R(x, y, z) has 26 = 64 elements.

The AND/OR/POWER search space consists of alternat-
ing levels of AND, POWER-AND, OR and POWER-OR
nodes, starting with a dummy AND node ×. Each node n
maintains a current MLN Ln obtained by applying its cor-
responding operator to the MLN Lp at its parent p. Each
predicate R in the current MLN Ln is associated with a set
of constraints CR on its domain. The operators for each
node type are defined as follows.

Let n be an AND node and R be a predicate in Ln. Let
ΔR,1, . . . ,ΔR,K (K ≥ 1) be a partition of the domain ΔR

of R subject to the constraints CR such that ∀i, j i �= j,

given �XR,i ∈ ΔR,i and �XR,j ∈ ΔR,j , the propositional

variables R(�XR,i) and R(�XR,j) lie in different components
of the primal graph of the ground Markov network of Ln.
Let ΔR,m,1, . . . ,ΔR,m,L be a partition of ΔR,m such that

∀i, j i �= j, given �XR,m,i ∈ ΔR,m,i and �XR,m,j ∈ ΔR,m,j ,

the propositional variables R(�XR,m,i) and R(�XR,m,j) lie
in different components of the primal graph of the ground
Markov network of Ln and the MLN θR,m,iLn is equiva-
lent (isomorphic) to the MLN θR,m,jLn subject to a renam-
ing of the variables and constants, where θR,m,i is a substi-
tution that summarizes the partition ΔR,m,i and θR,m,iLn

is the MLN obtained by applying θR,m,i to Ln. θR,m,iLn

can be obtained from Ln by unifying θR,m,i with all pred-
icates that share a formula with R and updating their do-
mains accordingly. Then, n has K child POWER-AND
nodes n1, . . . , nK , where each node nm is associated with
the MLN θR,m,iLn and the substitution θR,m,i.

Let n be a POWER-AND node and R be a predicate in
Ln. The child node of n is an OR node m corresponding to
R and Lm is same as Ln.

Let n be an OR node corresponding to a predicate R. Let
ΓR,1, . . . ,ΓRK

be a partition of the range ΓR of R sub-

ject to the constraints CR such that given X̄R,i,a ∈ ΓR,i,

X̄R,i,b ∈ ΓR,i, X̄R,i,a �= X̄R,i,b, the MLN Ln,X̄R,i,a
is

equivalent (isomorphic) to Ln,X̄R,i,b
, where Ln,X̄R,i,a

is a

MLN obtained by adding the assignments corresponding to
X̄R,i,a to Ln. Then, n has K child POWER-OR nodes
n1, . . . , nK where each node nm is associated with the MLN
Ln and the partition ΓR,m.

Let n be a POWER-OR node and X̄ be an assignment
from the partition Γn of the range of R associated with n.
The child node of n is an AND node m corresponding to X̄ .
The MLN Lm is obtained by adding the assignments cor-
responding to X̄ to Ln and simplifying, using for example,
Boolean constraint propagation and pruning.

The partition function of the MLN can be computed by
defining arc and node labels over the AND/OR/POWER
search space and then performing value computations.

22

DEFINITION 4 (Arc label, node label and value of a node).
The AND/OR/POWER search space has two types of arc-
labels, two types of node labels and a value associated with
each node. The label of a node n is denoted by s(n) and
its value is denoted by v(n). The arc-label of an arc from a
node n to a node m is denoted by l(n, m).

Each arc from an OR node n to its child POWER-OR node
m is labeled with the number of ground OR arcs that it cor-
responds to. These can be derived using multi-nomial coef-
ficients based on the size of the range of the predicate asso-
ciated with n, see for example (Braz, Amir, and Roth 2005;
Ng, Lloyd, and Uther 2008). Each arc from the POWER-OR
node n to the AND node m is labeled with a pair 〈pt, pf〉
where pt and pf are the exponentiated sum of the weights of
first-order clauses satisfied by assigning the predicate asso-
ciated with n to True and False respectively.

Each POWER-AND node is labeled with the number of
solutions of the constraints on the substitution that it repre-
sents, which in turn equals the number of ground AND arcs
that it infers across. Each POWER-OR node n is labeled
with a pair 〈nt, nf 〉, where nt and nf are the number of
propositional variables that are assigned to True and False
respectively, where each propositional variable corresponds
to a possible grounding (namely an element of the domain)
of the predicate associated with n.

The value of a node is defined recursively from the leaves
to the root as follows. The value of all leaf AND nodes
is initialized to 1. The value of an AND node n is given
by: v(n) =

∏
i∈chi(n) v(i). The value of a POWER-AND

node i is the value of its child OR node j raised by its la-
beled power-count, namely v(i) = v(j)s(i). The value of
a POWER-OR node i labeled by s(i) = 〈nt, nf 〉 having a
child AND node j, such that l(i, j) = 〈pt, pf 〉 is given by

v(i) = v(j) × pnt

t × p
nf

f . The value of a OR node i is given

by v(i) =
∑

j∈chi(i) v(j) × l(i, j).

We can prove that the value of the root AND node
× equals the partition function of the MLN. The proof
follows from the formal properties of the inversion and
counting arguments given in (Braz, Amir, and Roth 2005;
Ng, Lloyd, and Uther 2008), and the correctness of the
AND/OR search space transformations. In summary,

THEOREM 1. Given an AND/OR/POWER search space for
a MLN L, with its nodes and arcs labeled according to Def-
inition 4, the value of the root AND node computed using
Definition 4 is equal to the partition function of L.

The partition function can be computed by using only lin-
ear space, by traversing the AND/OR/POWER search space
in depth-first manner.

Handling Evidence and Shattering

In this subsection, we discuss the need for shattering (Braz,
Amir, and Roth 2005; 2006) and handling evidence, where
evidence is a truth assignment to a set of ground predicates.
We demonstrate the ideas using the following example:

EXAMPLE 7. Consider the MLN given in Figure 1. If we
change the domains to Δx = Δy = Δz = {A, B, C, D},
then the AND/OR/POWER search space shown in Figure

4(c) (with the power-counts changed to 4) can still be used
to compute the partition function. However, given evidence
S(A) = True, we cannot use it because the value re-
ceived from the child OR node corresponding to S(A) in
the AND/OR search tree will be different from the values re-
ceived from the other three child OR nodes. The solution
in such cases is to shatter the MLN. The idea in shattering
is to split the domain (or range) of S(x) into multiple par-
titions, such that the inversion or the counting arguments
can be applied to each partition. In our example, given
S(A) = True, we can split the domain of S(x) into two
partitions: {A} and {B, C, D} and create POWER-AND
nodes for each partition. Alternatively, we can represent this
split by enforcing constraints on the domain of S(x), namely
S(x) subject to x = A, and S(x) subject to x �= A.

Note that shattering may be needed, even when no evi-
dence is present. One could apply shattering over the full
MLN in advance or just shatter the MLN w.r.t. the predicate
that is chosen to be conditioned next. The latter approach,
which is also called as splitting as needed, was shown to be
more efficient (Kisynski and Poole 2009).

Evaluation

We compared the performance of AND/OR/POWER search
with an implementation of FOVE in BLOG (available
at http://people.csail.mit.edu/milch/blog/index.html) on the
following problem, which is parameterized with five inte-
ger constants: n, m, s, e and c. We assume that we have
just one typed logical variable {x} that has c values in
its domain. We have n predicates Ri(x) for i = 1 to n.
We generate m clauses by randomly selecting s predicates
and negating each with equal probability. A clause over
s predicates {R1(x), . . . , Rs(x)} has the following form:
R1(x) ∨ . . .∨Rs(x). For each random problem, we choose
e ground atoms as evidence, each of which is set to either
True or False with equal probability.

For our experiments, we set n = m and tried three val-
ues for them {30, 40, 50}. We varied the size of the clauses
from 3 to 9 in increments of 2. Figure 6 shows the im-
pact of increasing the clause size s on the average perfor-
mance of FOVE and AND/OR/POWER search. The time
is averaged over 10 problems generated using the random
model with parameters: e = 10, c = 50, with s and
n = m varied. Each algorithm was given a time-bound
of 20 minutes. From Figure 6, we can see that for small
clause size s = 3, the time required by FOVE is much
smaller than AND/OR/POWER search. However, as s in-
creases beyond 5, AND/OR/POWER search is much faster
than FOVE, which times out on all instances. This is be-
cause large clauses aid in Boolean constraint propagation
and pruning, which FOVE does not take advantage of. For
small clause sizes, however, Boolean constraint propagation
and pruning does not help and FOVE is much faster.

Summary and Discussion

To summarize, we presented a framework called
AND/OR/POWER search spaces, for performing
lifted search in first order graphical models. The

23

(a) n=m=30 (b) n=m=40 (c) n=m=50

Figure 6: Figure showing the impact of increasing problem size and clause size on AND/OR/POWER search and FOVE on the problem
generated using the random model with parameters: (n=m ∈ {30, 40, 50}, e=10,c=50, s is varied). Timeout used was 1200s.

AND/OR/POWER search space augments the usual
OR (sum) and AND (product) nodes in the AND/OR search
spaces for graphical models with the (lifted) POWER-AND
and POWER-OR nodes that reason across a group of
random variables. Performing a depth-first search traversal
of this space yields the first lifted search scheme to date that
can harness the power of logical techniques to better exploit
the local structure of the formulas.

The specification of AND/OR/POWER search space is
also important in the context of approximate inference be-
cause it lends itself immediately to lifted importance sam-
pling (Gogate and Domingos 2010), a first lifted sampling
approach to date. Lifted importance sampling can be un-
derstood as a partial exploration of the AND/OR/POWER
search space, just as importance sampling can be under-
stood as a partial exploration of the AND/OR search space
(Gogate and Dechter 2008). Because the AND/OR/POWER
search space is more compact, we can show that the es-
timates generated by lifted importance sampling will have
smaller variance than the ones generated by first grounding
the MLN, and then performing importance sampling over it.

Our work can be extended in several ways. For exam-
ple, we could AND/OR/POWER space to perform propo-
sitional inference as well, by identifying and encoding sym-
metries in propositional graphical models, similar to the way
in which lifted BP (Singla and Domingos 2008) was general-
ized over over propositional models (Kersting, Ahmadi, and
Natarajan 2009). Finally, an interesting future work is to de-
velop lifted caching approaches similar to those developed
for propositional models (Sang, Beame, and Kautz 2005;
Dechter and Mateescu 2007).

Acknowledgements

This research was partly funded by ARO grant W911NF-08-
1-0242, AFRL contract FA8750-09-C-0181, DARPA con-
tracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-
06-C-0025, HR0011-07-C-0060 and NBCH-D030010, NSF
grants IIS-0534881 and IIS-0803481, and ONR grant
N00014-08-1-0670. The views and conclusions contained
in this document are those of the authors and should not be

interpreted as necessarily representing the official policies,
either expressed or implied, of ARO, DARPA, NSF, ONR,
or the United States Government.

References
Boutilier, C. 1996. Context-specific independence in Bayesian
networks. In UAI, 115–123.

Braz, R. d. S.; Amir, E.; and Roth, D. 2005. Lifted first-order
probabilistic inference. In IJCAI, 1319–1325.

Braz, R. d. S.; Amir, E.; and Roth, D. 2006. MPE and Partial
Inversion in Lifted Probabilistic Variable Elimination. In AAAI,
1123–1130.

Chavira, M., and Darwiche, A. 2008. On probabilistic inference
by weighted model counting. Artificial Intelligence 172(6-7):772–
799.

Darwiche, A. 2001. Recursive conditioning. Artificial Intelligence
126(1-2):5–41.

Dechter, R., and Mateescu, R. 2007. AND/OR search spaces for
graphical models. Artificial Intelligence 171(2-3):73–106.

Domingos, P., and Lowd, D. 2009. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan and Claypool.

Getoor, L., and Taskar, B. 2007. Introduction to Statistical Rela-
tional Learning. The MIT Press.

Gogate, V., and Dechter, R. 2008. AND/OR Importance Sampling.
In UAI, 212–219.

Gogate, V., and Domingos, P. 2010. Exploiting logical structure
in lifted probabilistic inference. Technical report, University of
Washington, Seattle.

Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting Belief
Propagation. In UAI, 277–284.

Kisynski, J., and Poole, D. 2009. Constraint processing in lifted
probabilistic inference. In UAI, 293–302.

Milch, B.; Marthi, B.; Russell, S. J.; Sontag, D.; Ong, D. L.; and
Kolobov, A. 2005. Blog: Probabilistic models with unknown ob-
jects. In IJCAI, 1352–1359.

Ng, K. S.; Lloyd, J. W.; and Uther, W. T. 2008. Probabilistic
modelling, inference and learning using logical theories. Annals of
Mathematics and Artificial Intelligence 54(1-3):159–205.

24

Poole, D. 2003. First-order probabilistic inference. In IJCAI, 985–
991.

Sang, T.; Beame, P.; and Kautz, H. 2005. Solving Bayesian net-
works by weighted model counting. In AAAI, 475–482.

Singla, P., and Domingos, P. 2008. Lifted first-order belief propa-
gation. In AAAI, 1094–1099.

Zhang, N., and Poole, D. 1994. A simple approach to bayesian
network computations. In Proceedings of the Tenth Canadian Con-
ference on Artificial Intelligence, 171–178.

25

