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Abstract 
Many approaches were explored in recent years to introduce 
principles of metacognition and meta-learning into cognitive 
architectures, yet none of them resulted in a scalable human-
like learner. This work presents an approach intended to fill 
the gap between human self-regulated learners and artificial 
learners by introducing a new spin of the familiar core 
cognitive architecture paradigm, taking it to a meta-level. 
The resultant architecture enables in artifacts exclusively 
human higher cognitive and learning abilities: specifically, 
deliberative new knowledge construction. Model predictions 
agree with results of a pilot study with human subjects. 

Traditional Cognitive Architecture Paradigm 
and Its Limitation   

A cognitive architecture is a computational model that 
describes functional components of a complete intelligent 
agent and their interactions (Newell, 1990; SIGArt, 1991; 
Pew and Mavor, 1998; Ritter et al., 2003; Gluck and Pew, 
2005; Gray, 2007). Traditionally, cognitive architectures 
emerge as blueprints of agents capable of intelligent 
behavior when embedded in a proper environment that 
may include other artificial and/or human agents. For this 
and other reasons, cognitive architectures are frequently 
human-inspired. E.g., their main structural components 
include the basic memory systems found in humans: 
procedural, working, semantic, episodic (e.g., Laird, 2008, 
cf. Cohen and Eichenbaum, 1993). Cognitive architectures 
are usually characterized and compared to each other based 
on these components plus general functional capabilities 
(e.g., http://members.cox.net/bica2009/cogarch/).  
 Another, equqlly important characteristic of a cognitive 
architecture is its top-level dynamic cycle. It is less used 
for comparison or characterization, because most cognitive 
architectures are based on one and the same standard 
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template – essentially, a cycle of three fast-alternating 
phases of information processing: 

(i) sensory perception,  
(ii) cognition and decision making,  
(iii) behavioral action. 

For example, the execution cycle in Soar consists of (i) 
Input, (ii) Proposal and Decision, and (iii) Application and 
Output (Laird and Congdon, 2009, p. 21). 
 This general paradigm has a limitation: not all examples 
of human intelligent activity are well-captured by the 
above template (i)-(iii). For example, imagine a student 
working on a complex mathematical problem using her 
mind only, without paper or computer. She already 
understood the given data and is exploring various 
approaches. She comes to a solution plan and at the same 
time learns how to solve similar problems, doing all this 
without utilizing phases (i) and (iii). What are we missing?  

A Metacognitive Architecture Paradigm 
The essence of the concept of metacognition (or 
metareasoning, which is understood more narrowly: Cox 
and Raja, 2007) is captured by Figure 1. It involves at least 
two levels of cognitive representations in the system: 
“object” and “meta” levels. Figure 1 clarifies the similarity 
between cognitive and metacognitive levels: the two cycles 
of information processing are organizationally equivalent. 
 

 
Figure 1. The general framework for metacognition in a cognitive agent 
architecture (from Cox and Raja 2007). 
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Indeed, introspective monitoring at the meta-level appears 
to be analogous to perception at the object level, and 
metacognitive control appears to be a counterpart of 
behavioral action selection. Both cycles are consistent with 
the template (i)-(iii), which at the meta-level becomes:  

(iv) introspective monitoring,  
(v) metacognition and self-instruction,  
(vi) metacognitive self-control. 

 
The detailed interpretation of Figure 1 may vary (Russel 
and Welfad 1991, Cox and Ram 1999, Raja and Lesser 
2007), yet the question remains: does this scheme explain 
the above example with the student?  
 It seems that an explanation of this sort would suffer 
from the same problem: the functioning of the object level, 
which is necessarily involved in problem solving, 
according to Figure 1 depends on continuous perception 
and action in the physical environment, contrary to the 
example. In addition, Figure 1 does not capture the process 
of learning (while in principle it has room for it). 

Self-Regulated Learning Paradigm 
Could it be that the key to understanding what happens in 
student’s mind in the above and similar examples is the 
notion of self-regulated learning (SRL)?  
 Self-regulation refers to the degree to which a learner is 
a metacognitively, motivationally, and behaviorally active 
participant of his or her learning process (Zimmerman, 
2002). SRL is a critical strategic thinking process for 
supporting students’ abilities to learn and solve problems. 
The concept of SRL plays the central role in modern 
educational science. In general, SRL involves a complex 
set of techniques and strategies employed by learners for 
deliberate regulation of their learning processes (Winne 
and Perry, 2000; Winne and Nesbit, 2009).  
 According to Zimmerman (1990, 2000, 2008), SRL 
includes 3 phases that appear to be analogous to the 
aforementioned phases (i)-(iii). They are known as  

(a) Forethought: understanding the task, setting goals 
and attitudes, selecting strategies, planning steps…  

(b) Performance: executing the plan, trying out 
strategies under self-monitoring and self-control… 

(c) Reflection: self-evaluation, causal attribution of 
outcomes, conflict resolution, adaptation, etc.  

 
The essential difference between (i)-(iii) and (a)-(c) is in 
their targets: the environment in the case of (i)-(iii) and the 
knowledge of how to solve problems in the case of (a)-(c). 
This knowledge is being actively constructed by the agent 
in working, semantic and episodic memory systems, 
possibly without interaction with the environment. The 
difference between (a)-(c) and (iv)-(vi), in addition to the 
targets, is in the level of cognition at which the main 
information processing occurs. The similarities between all 
3 examples are in the functional organization of the cycles. 

A Unifying Architecture 
Based on the intuitive analogy between the cycles (i)-(iii), 
(iv)-(vi) and (a)-(c), it is possible to construct an 
architecture that unifies them. The idea is to introduce a 
new spin of the familiar core cognitive cycle template. The 
blueprint of a metacognitive architecture proposed in the 
previous work (Samsonovich, 2009) is used here as a 
prototype. The result is shown in Figure 2. 
 
 

 
Figure 2.  Generic cognitive architecture design consistent with the SRL 
paradigm. The design allows for support of metacognition, imagery, 
emotional and social intelligence.  A: The main cycle of information 
processing, (i)-(iii).  B: the metacognition cycle (iv)-(vi). The loops B, C, 
and D together implement the SRL cycle (1)-(3) that implements (a)-(c). 
A may not be involved in self-regulated problem solving. Some of the 
remaining arrows are potentially replaceable with similar cycles. 

 
 In order to implement the SRL cycle (a)-(c), it is 
necessary to understand that the main target of (a)-(c) 
viewed as a learning process belongs to the declarative 
long-term memory systems: episodic and semantic, and not 
to the environment or working memory. Therefore, the 
template (a)-(c) should be modified for implementation in 
a cognitive architecture as follows: 

(1) retrieval and selection of relevant semantic 
knowledge and episodic memories,  

(2) metacognitive construction of new goals, strategies, 
schemas and self-instructions, and  

(3) the updating of episodic memories, semantic 
knowledge, meta-knowledge, self-image, the 
personal system of values, goals and attitudes, and 
conflict resolution.  

 
 It is interesting to note the analogy between memory 
retrieval / formation in (1)-(3) and perception / action in 
(i)-(iii). If this analogy applies to human cognition and 
learning, then human SRL in problem solving should 
resemble cognitive models of active perception, 
deliberative cognition and controlled voluntary action.  
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 Traditionally, in cognitive architectures such as Soar and 
ACT-R (Anderson and Lebiere, 1998; Anderson et al., 
2004) memory retrieval is done automatically at a lower 
cognitive level and without an explicit involvement of 
deliberation. Similarly, traditional forms of machine 
learning such as reinforcement learning or chunking do not 
involve the top cognitive level in the process of memory 
storage. In this context, the above analogy hypothesis may 
seem counterintuitive. It predicts that SRL processes that 
occur during problem solving in the human brain should 
not be similar to stochastic rule matching, but should 
resemble organized goal-directed behavior of an agent. 

Example: A Pilot Study 
In order to test the analogy hypothesis, the following study 
was conducted with 19 undergraduate student subjects who 
took the college course in linear algebra Math 203 at 
George Mason University. An idea of the study was to 
extract from the student mind the process of creation of a 
schema of solving a given kind of a problem. Example of a 
problem: determine whether a given set of 5 matrices spans 
the space of 2x2 matrices. Students worked in a computer-
based learning setup designed based on the paradigm (1)-
(3) that allowed them to use any of 24 given elements 
(general facts and steps) to construct “a plan” (schema) of 
a solution. This was done before the problem was 
attempted, as follows. First, the working window was 
populated by the student with selected relevant elements. 
Then, the student connected elements by arrows indicating 
their logical dependence and at the same time representing 
the skeleton of a solution. Student actions were recorded 
by the software. All new arrow additions were divided into 
4 categories, depending on how the new arrow was 
adjacent to the previously added arrow: chaining (the new 
arrow starts from the end of the previous arrow), abduction 
(ends at the origin of the previous one), fan-out (starts at 
the origin), convergence (ends at the end) and not adjacent. 
 Results show significant predominance of forward 
chaining (34% of 448 arrow additions performed by all 
students together) compared to abduction (1.8%), fan-out 
(3.9%), and convergence (9.6%). In other words, students 
tend to construct the new schema by sequentially 
connecting given facts and steps into linear chains. 
Students were not instructed to do this, and the correct 
solution corresponds to a converging tree rather than to a 
linear chain.  
 This observation indicates that student SRL is based on 
imaginary perception of relevant knowledge and deliberate 
imagery of the sequence of actions rather than on random 
recognition of relevance and usefulness of selected facts. 

Discussion: Connection to Social Systems 
Social intelligence and social learning are key capabilities 
of social agents, that are also critical for the cognitive 
growth (individual development) of an agent. These 
capabilities rely on the key concepts of the self: the proto-

self, the core, or minimal self, and the narrative, or self-
conscious self (Damasio, 1999; Gallagher, 2000; 
Samsonovich and Nadel, 2005). The latter, narrative or 
self-conscious self, essentially amounts to the changing 
mental perspective of the subject and can be implemented 
in a cognitive architecture using structures called mental 
states (Samsonovich & Nadel, 2005; Samsonovich & De 
Jong, 2005) that populate working and episodic memory 
systems and play the key role in metacognition and SRL 
(Samsonovich, De Jong and Kitsantas, 2009).  
 The key difference between episodic and semantic 
memory systems from the cognitive architecture point of 
view is that episodic memory stores mental states, while 
semantic memory stores schemas (Samsonovich & De 
Jong, 2005). The notion of episodic memory in psychology 
also depends on the notion of a mental state and on the self 
concept (Tulving, 1983), and is much broader than the 
notion of memory of past events. Episodic memory stores 
personal experiences of all kinds and includes prospective 
and retrospective memories, goals, plans, dreams and 
imagination, etc.  
 Therefore, social capabilities critically depend on 
episodic memory and on the ability of the agent to 
construct episodic memories deliberately – in the manner 
outlined here. The limited volume of this paper does not 
allow discussing further details. The bottom line is that 
principles illustrated in Figure 2 appear to be critical for 
the development and expression of human-level social 
capabilities in intelligent agents – those capabilities that 
today are known to exist in humans only. 

Conclusions 
This work presented an approach that fills the gap between 
natural and artificial learners by introducing a new spin of 
the familiar core cognitive architecture paradigm. The 
three phases (1)-(3) described above and illustrated in 
Figure 2 are analogous to the traditional three phases of 
cognitive architecture dynamics (i)-(iii): perception, 
cognition and action, only now they work at a meta-level, 
with a different target, and critically depend on the concept 
of self as it is known in the human psychology (Gallagher, 
2000; Samsonovich and Nadel, 2005). The outcome is a 
form of learning available for artifacts that currently is 
known to exist in humans only. 
 In conclusion, the challenge of creating a real-life 
computational equivalent of the human mind can be solved 
by designing a cognitive architecture that supports higher 
forms of human learning (Samsonovich, 2007). The 
present work makes a step toward this overarching goal. 
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