
Hierarchical Planning for Mobile Manipulation

Jason Wolfe
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

jawolfe@cs.berkeley.edu

Bhaskara Marthi
Willow Garage, Inc.

Menlo Park, CA 94025
bhaskara@willowgarage.com

Stuart Russell
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

russell@cs.berkeley.edu

Humans somehow manage to choose quite intelligently
the 20 trillion primitive motor commands that constitute a
life. It has long been thought that hierarchical structure in
behavior is essential in managing this complexity. Structure
exists at many levels, ranging from small (hundred-step?)
motor programs for typing characters and saying phonemes
up to large (billion-step?) actions such as writing an ICAPS
paper, getting a good faculty position, and so on.

We believe that leveraging hierarchical structure will be
equally important in achieving robust, efficient robotic be-
haviors. While your household robot probably won’t get
tenure anytime soon, even simple domestic tasks still have
many levels of structure, ranging from top-level decisions
such as whether to take out the trash or set the table first,
to the ordering of object manipulations, to choosing base
positions and grasp types, all the way down to selecting par-
ticular paths through configuration space for the arms.

Hierarchical planning has a rich history of contributions,
going back to the seminal work of Tate (1977). The basic
idea is to supply a planner with a set of high-level actions
(HLAs) in addition to the primitive actions. Each HLA ad-
mits one or more refinements into sequences of (possibly
high-level) actions that implement it. Given a hierarchy, a
planner can start with the designated top-level action Act,
and repeatedly replace HLAs with their immediate refine-
ments until a fully primitive refinement is found that reaches
a goal configuration (with low cost).

For example, consider the task of tidying up a room by
putting away objects in a set of target regions. In one pos-
sible hierarchy for this task, Act has recursive refinements
MoveToGoal(o),Act ranging over all objects o that are
not yet in their goal positions, or just the empty refine-
ment if this set is empty. MoveToGoal(o) refines in turn
to GoPick(o),GoPlace(o, p), ranging over positions p in
the goal region of o. These HLAs can be refined further, to
generate the appropriate sequence of base, arm, torso, and
gripper primitives to effect the appropriate pick or place op-
eration. At the bottom of the hierarchy, primitive actions
(e.g., for arm or base movements) can be modeled by call-
ing out to external solvers such as rapidly-exploring random
trees (RRTs). This hierarchy specifies the general structure
of a solution, but leaves open details such as the ordering of
the pick-and-place operations, specific target locations for
each object, base positions, and arm trajectories, which the

planner should fill in to produce a concrete plan that accom-
plishes the goal as quickly as possible.

Planning at multiple levels of abstraction has long been a
staple of the robotics community. For instance, Shakey the
robot used STRIPS for high-level task planning, then called
out to separate low-level planning/control algorithms to ex-
ecute each of the planned actions (Fikes and Nilsson 1971).
This hard separation of levels, where a high-level plan is
chosen before considering low-level details, greatly simpli-
fies the task planning problem. However, the resulting plans
may be inefficient or even infeasible due to missed lower-
level synergies and conflicts. For example, the task planner
might sequence task b before a, unaware that a particular
way of doing a leaves the robot in an ideal configuration to
follow with b, or worse, that every way of doing b renders a
infeasible (e.g., by blocking the only feasible grasp for a).

An alternative strategy, which we advocate, is to inter-
leave planning at all levels of abstraction. Since lower-level
interactions are accounted for, the resulting solutions are
guaranteed to be feasible and of high quality.

Unfortunately, however, the corresponding space of po-
tential kinematic solutions is far too large to search exhaus-
tively. Moreover, the optimized, specialized planners used
to implement the base and arm primitives still require tens
of milliseconds per run, strongly limiting the rate at which
candidate solutions can be evaluated. Our ongoing research
aims to compress and prune this search space in several
ways, making the approach tractable for real problems.

First, in recent work (Wolfe, Marthi, and Russell 2010)
we have designed and implemented a planning system
for room-cleaning tasks as described above, and tested it
on a prototype PR2 robot constructed by Willow Garage,
Inc (Wyrobek et al. 2008). In this work, we assume the
state of the world is known (approximately), and consider
the resulting decision problem. In particular, we search
for the best possible (a.k.a. hierarchically optimal) solu-
tion generated by a finite version of the hierarchy described
above, where continuous choices (e.g., object goal posi-
tions) are made discrete by sampling a finite set of refine-
ments for each HLA. As we sample refinements more and
more densely, the quality of this solution is guaranteed to
approach that of the best plan allowed by the original (un-
sampled) hierarchy.

We also implemented, for each primitive action, a func-

48



Figure 1: Runtimes (averaged over three runs) for SAHTN and
two competing algorithms (which shared our hierarchical problem
formulation) on pick-and-place tasks, as a function of the number
of objects to be moved.

tion to execute it on the PR2. The execution primitives were
responsible for implementing perceptual feedback and re-
turning a success flag, which was used to implement a sim-
ple executive that retried failed actions. A video of the PR2
executing an efficient 4-object plan is available at http://
www.ros.org/wiki/Papers/ICAPS2010_Wolfe.

Several features of the planner contribute to its ability to
(relatively) quickly find high-quality solutions. First, our
hierarchical problem formulation focuses effort on plans
that are likely to work, while leaving open enough options
that optimality is (hopefully) not compromised much. Sec-
ond, it uses a novel hierarchical search algorithm called
SAHTN (State-Abstracted Hierarchical Task Network plan-
ner), which uses subtask-specific irrelevance to dramatically
speed up search within this hierarchy (see Figure 1). For ex-
ample, the best way to move the arm to pick up object 23
depends only on the position of the base, arm, object 23,
and nearby objects, and the results of such planning can
be reused every time this subproblem occurs in the search
space.

One could hope for more, however. Humans routinely
commit to high-level plans such as “take out the trash”
and “run for president” without preplanning the motor com-
mands involved. This ability to commit to high-level plans
(without sacrificing completeness or optimality) before re-
fining them further is called the downward refinement prop-
erty (Bacchus and Yang 1991). Because it lacks this elusive
property, SAHTN must refine a high-level plan all the way
down to the level of primitive motor commands to deter-
mine its feasibility and cost, leading to prohibitively slow
runtimes for tasks involving more than 5 or so objects.

In a separate line of previous work, we proposed an “an-
gelic semantics” for HLAs (Marthi, Russell, and Wolfe
2007; 2008) that provides a principled definition for what
it means to do an HLA. The basic idea is to, along with the
structure of the hierarchy, provide a planning algorithm with
approximate models that specify upper and lower bounds
on the sets of states that can be reached (and corresponding
costs) by each HLA. When chained together, these models
support proofs that a given high-level plan does or does not
have a primitive refinement that (optimally) reaches a goal

Figure 2: Performance of angelic algorithms AHA* and AHSS ver-
sus A*, on “nav switch” problems.

state. The resulting planning algorithms automatically pos-
sess the downward refinement property, and gain significant
speedups from their ability to prune and commit to high-
level plans without further refinement (see Figure 2).

We are currently working on combining these two lines
of work, producing an enhanced version of SAHTN that can
leverage angelic approximate models to reduce computation
time and enable scaling to (much) larger problems. For ex-
ample, angelic models for Act may enable pruning obvi-
ously suboptimal top-level task orderings without refining
them further, and models for Pick may rule out infeasible
grasps before wasting tens of milliseconds calling an exter-
nal arm planner. If we are willing to accept slightly subopti-
mal solutions, angelic models will also allow committing to
high-level plans that are provably “good enough”, and dis-
carding all other plans without refining them further. The
efficiency of these new algorithms may approach that of the
“hard multi-level” algorithms described earlier, while retain-
ing the guaranteed feasibility and high quality of the plans
found by an exhaustive algorithm like SAHTN.

In our previous work on angelic planning, we also consid-
ered HLAs in the online setting, wherein an agent performs
a limited lookahead prior to selecting each action. In this
setting, angelic models enable hierarchical lookahead with
HLAs, which can bring back to the present value informa-
tion from far into the future. Put simply, it’s better to eval-
uate the possible outcomes of taking out the trash first, than
the possible outcomes of moving joint 3 to angle 2.71 first.
Applying these ideas to robotics problems will enable faster
planning algorithms with longer decision horizons, and per-
haps lead to agents that can more easily adapt online to un-
expected changes in the world or tasks at hand.

References

Bacchus, F., and Yang, Q. 1991. The downward refinement
property. In Proc. IJCAI ’91, 262–292.

Fikes, R., and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell. 2:189–208.

49



Marthi, B.; Russell, S. J.; and Wolfe, J. 2007. Angelic
Semantics for High-Level Actions. In ICAPS.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic
Hierarchical Planning: Optimal and Online Algorithms. In
ICAPS.
Tate, A. 1977. Generating project networks. In IJCAI.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined
Task and Motion Planning for Mobile Manipulation. In
ICAPS (to appear).
Wyrobek, K. A.; Berger, E. H.; der Loos, H. F. M. V.; and
Salisbury, J. K. 2008. Towards a personal robotics develop-
ment platform: Rationale and design of an intrinsically safe
personal robot. In ICRA, 2165–2170.

50


