
Motion Planning Algorithms for Autonomous Intersection Management

Tsz-Chiu Au
Department of Computer Science
The University of Texas at Austin

1 University Station C0500
Austin, Texas 78712-1188

chiu@cs.utexas.edu

Peter Stone
Department of Computer Science
The University of Texas at Austin

1 University Station C0500
Austin, Texas 78712-1188

pstone@cs.utexas.edu

Abstract

The impressive results of the 2007 DARPA Urban
Challenge showed that fully autonomous vehicles are
technologically feasible with current intelligent vehi-
cle hardware. It is natural to ask how current trans-
portation infrastructure can be improved when most ve-
hicles are driven autonomously in the future. Dres-
ner and Stone proposed a new intersection control
mechanism called Autonomous Intersection Manage-
ment (AIM) and showed in simulation that intersec-
tion control can be made more efficient than the tra-
ditional control mechanisms such as traffic signals and
stop signs. In this paper, we extend the study by ex-
amining the relationship between the precision of cars’
motion controllers and the efficiency of the intersec-
tion controller. We propose a planning-based motion
controller that can reduce the chance that autonomous
vehicles stop before intersections, and show that this
controller can increase the efficiency of the intersection
control mechanism.

Introduction

Recent advances in intelligent vehicle technology suggest
that autonomous vehicles will become a reality in the near
future (Squatriglia 2010). Today’s transportation infras-
tructure, however, does not utilize the full capacity of au-
tonomous driving systems. Dresner and Stone proposed
a multiagent systems approach to intersection management
called Autonomous Intersection Management (AIM), and in
particular describe a First Come, First Served (FCFS) pol-
icy for directing vehicles through an intersection (Dresner
and Stone 2008). This approach has been shown, in sim-
ulation, to yield significant improvements in intersection
performance over conventional intersection control mecha-
nisms such as traffic signals and stop signs. Despite its im-
pressive performance, we believe that it is possible to make
this intersection control mechanism more efficient by con-
sidering how best autonomous vehicles can utilize the inter-
section management protocol.

In this paper, we present an improved controller for au-
tonomous vehicles to interact with intersection managers in
AIM. First, we leverage Little’s law in queueing theory to

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

understand how the performance of an autonomous vehi-
cle relates to the overall intersection throughput. Then we
identify approaches to improve the motion controllers of au-
tonomous vehicles such that they can plan ahead of time
when they make reservations in the AIM system and tra-
verse the intersection at a higher speed. We used motion
planning techniques to address two problems in making and
maintaining reservations: (1) how a vehicle computes the
best time and velocity for arriving at the intersection such
that it is less likely to stop at the intersection; and (2) how
a vehicle decides whether it can arrive at the intersection at
the time and velocity proposed by the intersection manager,
such that it can cancel the reservation earlier if it knows it
cannot make it. We predict that the use of these planning
techniques can improve the throughput of intersections and
reduce the traversal time of vehicles, thus providing motiva-
tion for autonomous vehicles to adopt these planning-based
controllers.

Autonomous Intersection Management

Traffic signals and stop signs are very inefficient—not only
do vehicles traversing intersections experience large de-
lays, but the intersections themselves can only manage a
limited traffic capacity—much less than that of the roads
that feed into them. Dresner and Stone have introduced a
novel approach to efficient intersection management that is
a radical departure from existing traffic signal optimization
schemes (Dresner and Stone 2008). The solution is based
on a reservation paradigm, in which vehicles “call ahead” to
reserve space-time in the intersection. In the approach, they
assume that computer programs called driver agents control
the vehicles, while an arbiter agent called an intersection
manager is placed at each intersection. The driver agents
attempt to reserve a block of space-time in the intersection.
The intersection manager decides whether to grant or reject
requested reservations according to an intersection control
policy. In brief, the paradigm proceeds as follows.
• An approaching vehicle announces its impending arrival

to the intersection manager. The vehicle indicates its size,
predicted arrival time, velocity, acceleration, and arrival
and departure lanes.

• The intersection manager simulates the vehicle’s path
through the intersection, checking for conflicts with the
paths of any previously processed vehicles.

2



Figure 1: Diagram of the intersection system.

• If there are no conflicts, the intersection manager issues
a reservation. It becomes the vehicle’s responsibility to
arrive at, and travel through, the intersection as specified
(within a range of error tolerance).

• The car may only enter the intersection once it has suc-
cessfully obtained a reservation.
Figure 1 diagrams the interaction between driver agents

and an intersection manager. A key feature of this paradigm
is that it relies only on vehicle-to-infrastructure (V2I) com-
munication. In particular, the vehicles need not know any-
thing about each other beyond what is needed for local au-
tonomous control (e.g., to avoid running into the car in
front). The paradigm is also completely robust to commu-
nication disruptions: if a message is dropped, either by the
intersection manager or by the vehicle, delays may increase,
but safety is not compromised. Safety can also be guaran-
teed in mixed mode scenarios when both autonomous and
manual vehicles operate at intersections. The intersection
efficiency will increase with the ratio of autonomous vehi-
cles to manual vehicles in such scenarios.

The prototype intersection control policy divides the inter-
section into a grid of reservation tiles, as shown in Figure 2.
When a vehicle approaches the intersection, the intersection
manager uses the data in the reservation request regarding
the time and velocity of arrival, vehicle size, etc. to simulate
the intended journey across the intersection. At each simu-
lated time step, the policy determines which reservation tiles
will be occupied by the vehicle.

If at any time during the trajectory simulation the re-
questing vehicle occupies a reservation tile that is already
reserved by another vehicle, the policy rejects the driver’s
reservation request, and the intersection manager communi-
cates this to the driver agent. Otherwise, the policy accepts
the reservation and reserves the appropriate tiles. The inter-
section manager then sends a confirmation to the driver. If
the reservation is denied, it is the vehicle’s responsibility to
maintain a speed such that it can stop before the intersection.
Meanwhile, it can request a different reservation.

Empirical results in simulation demonstrate that the pro-
posed reservation system can dramatically improve the inter-
section efficiency when compared to traditional intersection
control mechanisms. To quantify efficiency, Dresner and
Stone introduce delay, defined as the amount of travel time
incurred by the vehicle as the result of passing through the

(a) Successful (b) Rejected

Figure 2: (a) The vehicle’s space-time request has no con-
flicts at time t. (b) The black vehicle’s request is rejected
because at time t of its simulated trajectory, the vehicle re-
quires a tile already reserved by another vehicle. The shaded
area represents the static buffer of the vehicle.

intersection. According to their experiments, the reserva-
tion system performs very well, nearly matching the perfor-
mance of the optimal policy which represents a lower bound
on delay should there be no other cars on the road (Figure 14
in (Dresner and Stone 2008)). Overall, by allowing for much
finer-grained coordination, the simulation-based reservation
system can dramatically reduce per-car delay by two orders
of magnitude in comparison to traffic signals and stop signs.

Little’s Law

First of all, let us consider factors that affect the maximum
throughput characteristics of intersections. An important re-
sult in queueing theory is Littles law (Little 1961), which
states that in a queueing system the average arrival rate of
customers λ is equal to the average number of customers
T in the system divided by the average time W a customer
spends in the system. In the context of intersection manage-
ment, Little’s law can be written as L = λW , where
• L is the average number of vehicles in the intersection;
• λ is the average arrival rate of the vehicles at the intersec-

tion; and
• W is the average time a vehicle spends in the intersection.
Note that the arrival rate is equal to the throughput of the
system since no vehicle stalls inside an intersection.

Little’s law shows that the maximum throughput (i.e., the
upper bound of λ) an intersection can sustain is equal to the
upper bound of L divided by the lower bound of W , where
the upper bound of L is the maximum number of vehicles
that can coexist in an intersection, and the lower bound of
W is the minimum time a vehicle spends in the intersection.
Thus, Little’s law shows that there are two ways to increase
the maximum throughput: 1) increase the average number
of vehicles in an intersection at any moment of time, and 2)
decrease the average time a vehicle spends in an intersection.

A trivial upper bound on L is the area of the intersec-
tion divided by the average static buffer size of the vehi-
cles. But this bound is rather loose and in practice unachiev-
able. Nonetheless, it provides us some hints about the de-

3



pendence between the maximum throughput and the aver-
age static buffer size of the vehicles. Unfortunately the size
of an intersection is a hard limit and the static buffer sizes
cannot be too small—there is little an intersection manager
can do to squeeze more vehicles into the intersection. There-
fore, we cannot dramatically increase the average number of
vehicles in an intersection at any moment of time.

Little’s law shows that another way to increase the maxi-
mum throughput is to reduce the average time a vehicle takes
to traverse an intersection. In other words, a vehicle should
maintain a high speed during the traversal of the intersec-
tion in order to shorten its traversal time. Vehicle’s velocity
in the intersection depends on two factors: 1) the initial ve-
locity when the vehicle enters the intersection, and 2) the
acceleration during the traversal. In the following sections,
we will present two techniques that allow vehicles to main-
tain a high speed during the traversal.

Optimizing Arrival Times and Velocities via

Planning Techniques

One of the keys to entering an intersection at a high speed is
to prevent vehicles from stopping before entering the inter-
section. FCFS, by itself, reduces the number of vehicles that
stop at an intersection, and therefore it allows vehicles to en-
ter an intersection at a high speed most of the time. In fact, it
is one of the main reasons why FCFS is more efficient than
traffic lights and stop signs (Dresner and Stone 2008). While
FCFS has done a good job in this regard, there is still room
for improvement on the autonomous vehicles’ side such that
driver agents can help by preventing themselves from stop-
ping before an intersection.

There are two scenarios in which an autonomous vehicle
has to stop before an intersection in FCFS. First, the vehicle
cannot obtain a reservation from the intersection manager
and is forced to stop before an intersection. This happens
when the traffic level is heavy and most of the future reser-
vation tiles have been reserved by other vehicles in the sys-
tem. Second, the vehicle successfully obtains a reservation
but later determines that it will not arrive at the intersection
at the time and/or velocity specified in the reservation. In
this scenario the vehicle has to cancel the reservations and
those reservation tiles may have been wasted. The effect
of a reservation cancellation is not only that the vehicle in
question has to stop, but also that temporarily holding reser-
vation tiles may have prevented another vehicle from mak-
ing reservation. Both of these effects lead to a reduction in
the maximum throughput of the intersection.

A poor estimation of arrival times and arrival velocities
can lead to the cancellation of reservations. In previous
work, the estimation of arrival times and arrival velocities
is based on a heuristic we called the optimistic/pessimistic
heuristic, that derives the arrival time and arrival velocity
based on a prediction about whether the vehicle can arrive
at the intersection without the intervention of other vehi-
cles (Dresner 2009). However, this heuristic does not guar-
antee that the vehicle can arrive at the intersection at the
estimated arrival time or the estimated arrival velocity; in
fact, our experiments showed that vehicles are often unable

to reach the intersection at the correct time, forcing them to
cancel their reservations after holding the reservations for
quite some time.

To avoid this problem we propose a new approach to es-
timate the arrival time and arrival velocity. In our approach
when a driver agent estimates its arrival time and arrival ve-
locity, it also generates a sequence of control signals. These
control signals, if followed correctly, ensure that the vehicle
will arrive at the estimated arrival time and at the estimated
arrival velocity. We can formulate this estimation problem as
the following multiobjective optimization problem: among
all possible sequences of control signals that control the ve-
hicle to enter an intersection, find one such that the arrival
time is the smallest and the arrival velocity is the highest.

For an acceleration-based controller, the sequence of con-
trol signals is a time sequence of accelerations stating the ac-
celeration the vehicle should take at every time step. We call
a time sequence of accelerations an acceleration schedule.
Like many multiobjective optimization problems, there is
no single solution that dominates all other solutions in terms
of both arrival time and arrival velocity. Here we choose
arrival velocity as the primary objective, since a higher ar-
rival velocity can allow the vehicle to enter the intersection
at a higher speed. Our optimization procedure involves two
steps: first, determine the highest possible arrival velocity
the vehicle can achieve, and second, among all the accelera-
tion schedules that yield the highest possible arrival velocity,
find the one whose arrival time is the soonest.

We illustrate how the estimation procedure works using a
time-velocity diagram as shown in Figure 3. In this figure,
v1 is the current velocity of the vehicle, t1 is the current time,
D is the distance between the current position of the vehicle
and the intersection, vmax is the speed limit of the road, and
vmax
2 is the speed limit at the intersection. In addition, we

define amax and amin to be the maximum acceleration and
the maximum deceleration (minimum acceleration), respec-
tively. We can see that any function v(·) in the time-velocity
diagram that satisfies the following five constraints is a fea-
sible velocity schedule for velocity-based controllers.

1. v(t1) = v1;

2.
∫ tend

t1
v(t) dt = D, where tend is the arrival time (i.e., the

distance traveled must be D);

3. v(tend) ≤ vmax
2 (i.e., the arrival velocity cannot exceed

the speed limit at the intersection);

4. 0 ≤ v(t) ≤ vmax for t1 ≤ t ≤ tend (i.e., the velocity
cannot exceed the speed limit of the road or be negative at
any point in time); and

5. amin ≤ d
dtv(t) ≤ amax for for 0 ≤ t ≤ tend (i.e.,

the acceleration at any point in time must be within the
limitations).

We call v(·) a velocity schedule, which can be directly used
in velocity-based controllers. A velocity schedule is feasi-
ble if it satisfies the above constraints. Our objective is to
find a feasible velocity schedule v(·) such that v(tend) is
as high as possible while tend is as small as possible. For
acceleration-based controllers, we can compute the corre-

4



sponding feasible acceleration schedule by the derivative of
v(·) (i.e., d

dtv(t)).

(a) Case 1: Area1 + Area3 ≤ D

(b) Case 2: Area1 + Area3 > D

Figure 3: The time-velocity diagrams for the estimation of
the arrival time and the arrival velocity.

We propose an optimization procedure that can find v(·)
with the highest possible v(tend) and smallest tend. The ba-
sic idea of the procedure is as follows. First of all, compute
two values Area1 and Area3 as shown in Figure 3(a). To
compute Area1, find a point (t2, vmax) in the velocity-time
diagram such that (t2, vmax) is an interception of the line
extending from (t1, v1) with slope amax and the horizon-
tal line v = vmax. Let Area1 be the area of the trapezoid
under the line segment from (t1, v1) to (t2, vmax). Sim-
ilarly, to compute Area3, we arbitrarily choose an arrival
time t′end and then find an intercepting point (t′3, v

max) be-
tween the line v = vmax and the line passing through the
point (t′end, v

max
2 ) with slope amin. Let Area3 be the area

of the trapezoid under the line segment from (t′3, v
max) to

(t′end, v
max
2 ). Note that Area3 does not depend on the value

of t′end and t′3; we only need to know the value of vmax
2 ,

vmax and amin to compute Area3.
If Area1 + Area3 ≤ D, the vehicle can accelerate to

vmax, maintain the speed for a certain period of time, de-
celerate to vmax

2 , and finally reach the intersection (Case
1 in Figure 3(a)). Then Area2 = D − Area1 − Area3 is
non-negative. Let d be Area2

vmax . Then we can determine the
actual value of t′3 and t′end by t3 = t2 + d and tend =
t3 + 2×Area3

vmax+vmax
2

. From this the optimization procedure can

find a piecewise linear function for v(·) such that v(·) is
a feasible velocity schedule. For acceleration-based con-
trollers, the optimization procedure returns the acceleration
schedule 〈(t1, amax), (t2, 0), (t3, amin)〉, which succinctly
represents the derivative of v(·).

If Area1 + Area3 > D, the vehicle cannot accelerate
to vmax because the distance D is too small—if it accel-
erates to vmax, it does have time to decelerate and its ar-
rival velocity will exceed vmax

2 . But the vehicle may still
be able to accelerate to a velocity vtop that is less than the
speed limit vmax and then decelerate to vmax

2 when it ar-
rives at the intersection. To check whether it is possible
to do so, the optimization procedure tries to find the inter-
section point (t4, vtop) between (1) the line passing through
(t1, v1) with slope amax and (2) the line passing through
(tend, v

max
2 ) with slope amin (see Figure 3(b)). Further-

more, the area under the line segments in Figure 3(b) must
be equal to D (i.e., Area4 + Area5 = D). Then we got
the following system of equations: (1) t4 − t1 = vtop−v1

amax
;

(2) tend − t4 = vmax
2 −vtop

amin
; (3) Area4 = (t4 − t1)(v1 +

vtop)/2; (4) Area5 = (tend − t4)(vtop + vmax
2 )/2; and

(5) D = Area4 + Area5. With some calculations, we

get vtop =
√

amax(vmax
2 )2−aminv2

1−2amaxaminD
amax−amin

. It can be
shown that vtop is real if D ≥ 0, thus vtop always exists.
Finally, the procedure checks to ensure that Area4 ≥ 0 and
Area5 ≥ 0. It turns out that Area4 ≥ 0 and Area5 ≥ 0
if and only if vtop ≥ v1 and vtop ≥ vmax

2 . Thus, if
vtop ≥ v1 and vtop ≥ vmax

2 , the acceleration schedule is
〈(t1, amax), (t4, amin)〉 as shown in Figure 3(b).

If vtop < v1 or vtop < vmax
2 , either Area4 > D or

Area5 > D. This implies that it is impossible to arrive
at the intersection with the maximum arrival velocity vmax

2
while satisfying all the constraints. In this case, the proce-
dure will try to find an acceleration schedule that maximizes
the arrival velocity, namely v2, where v2 < vmax

2 . First, if
v1 ≤ vmax

2 , the vehicle can keep accelerating until it hits the
intersection, and the arrival velocity will be maximized de-
spite it is less than vmax

2 . Thus, the procedure simply returns
the acceleration schedule 〈(t1, amax)〉, which maximize the
arrival velocity and minimize the arrival time. Second, if
v1 > vmax

2 , the vehicle is too close to the intersection and it
does not have time to decelerate to a velocity less than vmax

2 .
There is no feasible acceleration schedule for this case since
the arrival velocity is larger than the speed limit at the in-
tersection. The vehicle controller should avoid this case by
avoiding making reservations too late.

The optimization procedure considers piecewise linear
functions only such that slopes of the line segments can only
be either amax, amin, or 0, because for any non-piecewise
linear function that satisfies the constraints, we can always
find a piecewise linear function with a smaller tend and/or a
larger v(tend).

Validating Arrival Times and Velocities via

Planning Techniques

In the previous section, we presented an optimization algo-
rithm that an autonomous vehicle can use to determine its

5



arrival time and velocity with the guarantee that the vehicle
can arrive at the intersection at the arrival time and veloc-
ity if it follows the acceleration schedule (or the velocity
schedule) closely. The use of this algorithm can prevent the
vehicle from making reservations whose arrival times and
velocities are not achievable and avoid stopping before the
intersection due to these faulty reservation requests.

However, an improved reservation request is not sufficient
to ensure that the vehicle can avoid stopping before an inter-
section and entering an intersection at high speed; the vehi-
cle must also take the confirmation message sent from the
intersection manager into account. When an autonomous
vehicle receives a confirmation message about the reserva-
tion it makes, the message instructs the vehicle to arrive at
the intersection at a specific arrival time and at a specific ar-
rival velocity. Depending on the traffic conditions and the
intersection management policy, the arrival time and veloc-
ity in the confirmation message are not necessarily the same
as the ones proposed by the vehicle in the reservation re-
quests. More importantly, there is a delay between sending
the reservation request and receiving the confirmation mes-
sage, and during that time the vehicle’s position and veloc-
ity may have changed and thus the vehicle may no longer
be able to follow the acceleration schedule generated for the
reservation request.

Thus it is important for vehicles to check the confirmation
message to see whether it can still arrive at the intersection at
the given arrival time and velocity. If the vehicle finds that
the arrival time and velocity are unachievable, the vehicle
should cancel the reservation as early as possible for two
reasons: (1) it avoids holding the reservation tiles that the
vehicles cannot use and release them as early as possible to
let other vehicles to take them; and (2) the vehicle can send
another reservation request as soon as possible and hopefully
it will then get a feasible reservation time and velocity. In
short, an early cancellation of unpromising reservation can
improve the throughput of an intersection.

In order to check whether a vehicle can arrive at the inter-
section at the designated arrival time and velocity, we need
another procedure to solve the following problem: given an
arrival time tend and an arrival velocity vend, find a sequence
of control signals such that the vehicle can arrive at the in-
tersection at time tend and velocity vend while satisfying all
the velocity and acceleration constraints. If the procedure
proves that no such sequence of control signals exists, the
vehicle should cancel the reservation to free the reservation
tiles and make another reservation request.

Here is our problem definition. Given

• the current time t1 and the current velocity v1 of the vehi-
cle;

• the arrival time tend and the arrival velocity vend (we as-
sume vened is less than the speed limit at the intersection);

• the distance D between the current position of the vehicle
and the intersection;

• the speed limit of the road vmax (we assume vmax is less
than or equal to the maximum velocity of the vehicle);

• the maximum acceleration amax and the minimum accel-

eration amin (i.e., the maximum deceleration) of the ve-
hicle.

The objective is to decide whether an acceleration schedule
(or a velocity schedule) exists such that the vehicle can arrive
at the intersection at time tend at velocity vend while satis-
fying all the constraints. If no such acceleration schedule
exists, the vehicle should cancel the reservation; otherwise,
the vehicle can follow the acceleration schedule in order to
arrive at the intersection at the given time and velocity.

We call this problem “the validation problem”, as opposed
to “the optimization problem” in the previous section. As its
name suggested, the validation problem has no optimization
because tend and vend are given beforehand. Instead, it is
a decision problem in which a certificate is an acceleration
schedule that can be verified by a simulation of the vehicle
following the acceleration schedule.

There are sampling techniques for motion planning that
can effectively explore a complicated configuration space
and generate a solution path (e.g., rapidly-exploring random
trees (LaValle 1998; LaValle and James J. Kuffner 2000)).
These sampling techniques, however, provide no guarantee
of finding the solution. More importantly, these techniques
cannot be used to prove the non-existence of solutions for a
motion planning problem. In our intersection management
problem, showing the non-existence of acceleration sched-
ule that meets the requirements is very important. If an ac-
celeration schedule does not exist and the algorithm cannot
prove its non-existence, the vehicle cannot decide whether it
should cancel the reservation until possibly it is very close
to the intersection. Therefore, we are looking for an effi-
cient algorithm that can decide whether the validation prob-
lem has solutions. In this section, we will present such an
algorithm.

Once again, we rely on an analysis of the time-velocity
diagram. Given t1, tend, v1, D, vend, vmax amax and
amin as defined above, we draw a time-velocity diagram as
shown in Figure 4. The idea is to find a function v(·) in
the time-velocity diagram connecting the point (t1, v1) and
(tend, vend) while satisfying the following constraints:
1. v(t1) = v1 and v(tend) = vend;

2.
∫ tend

t1
v(t) dt = D (i.e., the distance traveled must be D);

3. 0 ≤ v(t) ≤ vmax for t1 ≤ t ≤ tend (i.e., the velocity
cannot exceed the speed limit or be negative at any point
in time); and

4. amin ≤ d
dtv(t) ≤ amax for t1 ≤ t ≤ tend (i.e., the

acceleration at any point in time must be within the limi-
tations).

If such a function exists, a vehicle following the velocity
schedule v(·) (or the acceleration schedule d

dtv(t)) can ar-
rive at the intersection at time tend at velocity vend; other-
wise, it is impossible for the vehicle to arrive at the inter-
section at tend and vend without violating some constraints.
Hence, the key to answer the validation problem is to decide
whether v(·) exists.

First of all, let us study the shape of v(·) in the time-
velocity diagram if it exists. In Figure 4, we draw two lines

6



Figure 4: The time-velocity diagram for the validation of the
arrival time tend and the arrival velocity vend.

starting at (t1, v1) with slope amax and amin respectively.
Similarly, we draw two lines ending at (tend, vend) with
slope amax and amin. The four lines form a rectangle, and
we are certain that v(·) must lie inside this rectangle; oth-
erwise, it will violate the acceleration constraints amin ≤
d
dtv(t) ≤ amax. In addition, since 0 ≤ v(t) ≤ vmax for
t1 ≤ t ≤ tend, we know v(·) must lie inside the hexagon
represented by the solid lines in Figure 4. Here we assume
that the lines intersect to form a hexagon; but it is trivial to
extend our approach to handle degenerate cases in which the
lines do not form a hexagon. Then the remaining contraint
that we need to deal with is to make sure that the area un-
der v(·) must be D (i.e.,

∫ tend

t1
v(t) dt = D). We call this

constraint the travel distance constraint.
A key insight for checking whether v(·) satisfies the travel

distance constraint is that we don’t need to check all possible
functions for the constraints; instead we only need to check
any one of the three piecewise linear functions in Figure 5
to see which one satisfies the constraint. Intuitively, imagine
the area under v(·) in Figure 4 is liquid and the hexagon is
a container. Then the liquid inside the container will even-
tually level off and the shape of the liquid will be one of the
piecewise linear functions in Figure 5 whose area is also D.

To select the right piecewise linear function among the
functions in Figure 5, we look at the value of D. There are
five possible cases:

• Case 1: AreaL+AreaR+Area1+Area2 < D ≤ AreaL+
AreaR + Area1 + Area2 + Area3,

• Case 2: AreaL+AreaR+Area1 < D ≤ AreaL+AreaR+
Area1 + Area2,

• Case 3: AreaL + AreaR ≤ D ≤ AreaL + AreaR + Area1,

• Case 4: D < AreaL + AreaR,

• Case 5: AreaL + AreaR + Area1 + Area2 + Area3 < D,

where Area1, Area2, and Area3 are the areas of the parallel-
ograms inside the hexagon, and AreaL and AreaR are the ar-
eas of the triangles at the left and right corners of the graph.
See Figure 4 for the location of these areas.

(a) Case 1: AreaL + AreaR + Area1 + Area2 < D ≤
AreaL + AreaR + Area1 + Area2 + Area3

(b) Case 2: AreaL + AreaR + Area1 < D ≤ AreaL +
AreaR + Area1 + Area2

(c) Case 3: AreaL+AreaR ≤ D ≤ AreaL+AreaR+Area1

Figure 5: The three piecewise linear functions for the vali-
dation of the arrival time and the arrival velocity.

7



The first three cases are illustrated in Figure 5. The last
two cases are infeasible cases in which no v(·) satisfies the
travel distance constraint. In case 4, the vehicle is too close
to the intersection; even if the vehicle decelerates as much as
possible and then accelerate as much as possible, the vehi-
cle cannot reach the intersection at the given arrival time and
velocity. In case 5, the vehicle is too far away from the inter-
section; no matter how it runs it cannot reach the intersection
at the given arrival time and velocity without exceeding the
speed limit or acceleration limitions.

These five cases are exhaustive and mutually exclusive;
thus we can identify which case it is for any given D. Based
on this property, we propose a validation procedure that
proceeds as follows: first, compute Area1, Area2, Area3

AreaL, and AreaR using basic geometric calculations. Sec-
ond, check which of the five cases is the case for the given
constraints. Finally, if the case is one of those in Figure 5,
compute the two intersections of the lines in the pairwise-
linear function and return the acceleration schedule; other-
wise, an infeasible case is found and the vehicle acts accord-
ingly.

We can show that our validation procedure returns a so-
lution if and only if a v(·) exists that satisfies all of the con-
straints. It is a nice property as we mentioned early, since
it can determine the impossibility of arriving at the intersec-
tion at the given time and velocity as early as possible. In
this case, the vehicle can reject the reservation to free up the
reservation tiles and let other vehicles to reserve them. The
vehicle can then issue another reservation request as soon as
possible and hopefully get a better arrival time and velocity
from the intersection manager.

Experimental Evaluation
We call the driver agent using the optimization procedure
and the validation procedure a planning-based driver agent,
since it uses motion planning techniques to evaluate the
arrival time and velocities before reaching the intersec-
tion. To evaluate the planning-based driver agent we im-
plemented it in the AIM simulator and conducted an experi-
ment to compare it with the driving agent based on the opti-
mistic/pessimistic heuristic implemented in (Dresner 2009).
In this experiment, the intersection has four incoming lanes
and four outgoing lanes in each of the four canonical direc-
tions. The speed limits of the lanes are set to be 25 m/s. The
static buffer size of the vehicles are set to be 0.25m, which is
sufficient for the simulated vehicles in the simulator. Other
parameters of the autonomous vehicles are: the internal time
buffer is 0s, the edge time buffer is 0.25s, and the maximum
acceleration is 4 m/s. Then we vary the traffic level of each
lane from 0.1 vehicles per second to 0.3 vehicles per sec-
ond, and at each traffic level we run the simulator for one
hour (simulated time) and compute the average delay of the
vehicles.

The result of the experiment is shown in Figure 6. From
the figure, we can see that when the traffic level is below
0.15 vehicles per seconds, most vehicles can get through the
intersection without stopping (i.e., average delay is almost 0)
and there is little difference between the performance of both
driver agents. However, when the traffic level is more than

0.15 vehicles per seconds, the average delay of our planning-
based driver agents is much lower than the average delay of
the driver agents based on the optimistic/pessimistic heuris-
tic. When the average delay of the heuristic-based driver
agents levels off at the 0.25 traffic rate (which indicates that
the throughput of the intersection has been saturated), the
average delay of the planning-based driver agents remains
low. Thus the use of our planning-based controller can in-
crease the maximum throughput of the intersection and re-
duce the average delay.

Figure 6: Comparison of the planning-based driver agent
(red dots) with the driver agent based on the opti-
mistic/pessimistic heuristic (purple dots).

Related Work

Intelligent Transportation Systems (ITS) is a multidisci-
plinary field concerns with advancing modern transporta-
tion systems with information technology (Bishop 2005). A
noticeable research project on ITS is the Berkeley PATH
project, which proposed a fully-automated highway sys-
tem (Alvarez and Horowitz 1997). But most of the existing
work on ITS focus on how to assist human drivers in the ex-
isting transportation infrastructure, and do not assume vehi-
cles are driven autonomously by computer. Hence, most of
the tools developed by transportation engineer (e.g., TRAN-
SYT (Robertson 1969) and SCOOT (Hunt et al. 1981))
aim to optimize traffic signals rather than substitute them
with a better mechanism. For intersection management,
there are many work on the problem of intersection col-
lision avoidance (Lindner, Kressel, and Kaelberer 2004;
Naumann and Rasche 1997; Rasche et al. 1997; Nau-
mann, Rasche, and Tacken 1998; Reynolds 1999; USDOT
2003). But none of these work concerns with autonomous
vehicles. Balan and Luke presented a history-based traf-
fic control (Balan and Luke 2006) that is potentially appli-
cable to autonomous vehicles. Queueing theory has been
widely used in traffic analysis (Mannering, Washburn, and
Kilareski 2008). Our analysis emphasizes how microscopic
control of autonomous vehicles (via planning techniques)
could affect the throughput of an intersection. Motion plan-
ning is an important subject in robotics and control the-

8



ory. When compared with existing work in motion plan-
ning (e.g, rapidly-exploring random trees (LaValle 1998;
LaValle and James J. Kuffner 2000)), our motion planning
algorithms make use of the non-existence of solutions to im-
prove the throughput in autonomous intersection manage-
ment.

Conclusions and Future Work

The DARPA Urban Challenge in 2007 showed that fully
autonomous vehicles are technologically feasible with cur-
rent intelligent vehicle technology (DARPA 2007). Some
researchers predict that within 5–20 years there will be
autonomous vehicles for sale on the automobile market.
Therefore the time is right to rethink our current trans-
portation infrastructure, which is designed solely for human
drivers. Dresner and Stone proposed to substitute traffic sig-
nals and stop signs for a new intersection control mecha-
nism, namely FCFS, that takes advantages of the capability
of autonomous vehicles, and demonstrated its effectiveness
in simulation (Dresner and Stone 2008). In this paper we
show that the efficiency of FCFS can be improved by using
better vehicle controllers with motion planning techniques
that takes reservation parameters into account. We expli-
cated the relationship between the throughput of an inter-
section and various parameters of the intersection and ve-
hicles via Little’s law, and proposed planning-based tech-
niques to increase the throughput of an intersection. These
findings allow us to implement specific improvements to our
autonomous vehicle with the goal of achieving better reser-
vations in AIM. In the future, we intend to modify and im-
plement the algorithms for real autonomous vehicles, and
evaluate them in the real world settings.

Acknowledgments

This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin. LARG research is sup-
ported in part by grants from the National Science Founda-
tion (CNS-0615104 and IIS-0917122), ONR (N00014-09-1-
0658), DARPA (FA8650-08-C-7812), and the Federal High-
way Administration (DTFH61-07-H-00030).

References

Alvarez, L., and Horowitz, R. 1997. Traffic flow control in
automated highway systems. Technical Report UCB-ITS-
PRR-97-47, University of California, Berkeley, Berkeley,
California, USA.
Balan, G., and Luke, S. 2006. History-based traffic control.
In Proceedings of the International Joint Conferenceon Au-
tonomous Agents and Multi Agent Systems (AAMAS), 616–
621.
Bishop, R. 2005. Intelligent Vehicle Technology and Trends.
Artech House.
DARPA. 2007. DARPA Urban Challenge. http://www.
darpa.mil/grandchallenge/index.asp.

Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research (JAIR).
Dresner, K. 2009. Autonomous Intersection Management.
Ph.D. Dissertation, The University of Texas at Austin.
Hunt, P. B.; Robertson, D. I.; Bretherton, R. D.; and Win-
ton, R. I. 1981. SCOOT - a traffic responsive method of
co-ordinating signals. Technical Report TRRL-LR-1014,
Transport and Road Research Laboratory.
LaValle, S. M., and James J. Kuffner, J. 2000. Rapidly-
exploring random trees: progress and prospects. In Algo-
rithmic and Computational Robotics: New Directions, 293–
308.
LaValle, S. M. 1998. Rapidly-exploring random trees: A
new tool for path planning. Technical Report TR 98-11,
Computer Science Dept, Iowa State University.
Lindner, F.; Kressel, U.; and Kaelberer, S. 2004. Robust
recognition of traffic signals. In Proceedings of the IEEE
Intelligent Vehicles Symposium (IV2004).
Little, J. D. C. 1961. A Proof for the Queuing Formula:
L = λW . Operations Research 9(3):383–387.
Mannering, F. L.; Washburn, S. S.; and Kilareski, W. P.
2008. Principles of Highway Engineering and Traffic Anal-
ysis. Wiley, 4 edition.
Naumann, R., and Rasche, R. 1997. Intersection collision
avoidance by means of decentralized security and communi-
cation management of autonomous vehicles. In Proceedings
of the 30th ISATA - ATT/IST Conference.
Naumann, R.; Rasche, R.; and Tacken, J. 1998. Manag-
ing autonomous vehicles at intersections. IEEE Intelligent
Systems 13(3):82–86.
Rasche, R.; Naumann, R.; Tacken, J.; and Tahedl, C. 1997.
Validation and simulation of decentralized intersection col-
lision avoidance algorithm. In Proceedings of IEEE Confer-
ence on Intelligent Transportation Systems (ITSC 97).
Reynolds, C. W. 1999. Steering behaviors for autonomous
characters. In Proceedings of the Game Developers Confer-
ence, 763–782.
Robertson, D. I. 1969. TRANSYT — a traffic network study
tool. Technical Report TRRL-LR-253, Transport and Road
Research Laboratory.
Squatriglia, C. 2010. Audi’s robotic car drives better than
you do. http://www.wired.com/autopia/2010/
03/audi-autonomous-tts-pikes-peak.
USDOT. 2003. Inside the USDOT’s ‘intelligent in-
tersection’ test facility. Newsletter of the ITS Co-
operative Deployment Network. Accessed online 17
May 2006 at http://www.ntoctalks.com/icdn/
intell_intersection.php.

9


