Learning to Cooperate in Normal Form Games

Steven Damer and Maria Gini
Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455, USA

Abstract

We study the problem of achieving cooperation between
two self-interested agents that play a sequence of ran-
domly generated normal form games, each game played
only once. To achieve cooperation we extend a model
used to explain cooperative behavior by humans. We
show how a modification of a pre-regularized particle
filter can be used to detect the cooperation level of the
opponent and play accordingly. We examine how prop-
erties of the games affect the ability of an agent to detect
cooperation and explore the effects of different environ-
ments and different levels of conflict. We present results
obtained in simulation on hundreds of randomly gener-
ated games.

Introduction

In this paper we address the problem of cooperation be-
tween two self-interested agents. Since each agent is self-
interested we expect it to select the action that provides its
own highest expected benefit, without regard for the oppo-
nent’s outcome. However, it has been observed that agents
who interact repeatedly with each other tend to be better off
if they cooperate at some level. A classical example is the
prisoner dilemma, a game that has been studied extensively
in its iterated form (for instance, (Rapoport and Chammah
1970)), where cooperation can be achieved using Tit-for-
Tat (Axelrod 1984). In iterated games players can observe
the opponent’s behavior and reciprocate.

For our study we use a sequence of non-zero-sum normal
form games, each played only once by the same two play-
ers. Since each agent plays against the same opponent, they
have opportunities to observe each other and play accord-
ingly. However, there are two issues that make this difficult:
(1) the actions in the games are not labeled as cooperative or
uncooperative. This is because the games are generated ran-
domly and labeling will require extensive manual interven-
tion; (2) the games played are all different, so understanding
if the opponent is cooperative or not is much harder than
when playing the same game repeatedly.

We assume that opponents may be willing to reciprocate
actions that benefit them, but they may also choose to exploit
our agent. Reciprocation is an effective method to achieve

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cooperation without much exposure to the risk of being ex-
ploited, since the agent will stop cooperating when it detects
a noncooperative opponent. We assume that agents play a
Nash equilibrium of the game once they have taken into ac-
count how much the opponent cares about them (we will
define this later as “the attitude of the opponent”). This is
not necessarily rational, because the opponent may not be
playing the Nash equilibrium, but it is convenient and limits
the choices to a discrete set (i.e. one among the Nash equi-
libria for each game). We do not assume both agents use
the same Nash equilibrium, relaxing one of the assumptions
made in (Conitzer and Sandholm 2007).

The main contributions of this paper are (1) the use of
a pre-regularized particle filter with discrete smoothing to
learn the attitude of an opponent in this environment; (2)
an in-depth examination of how the games affect the ability
of an agent to detect cooperation. Specifically, we explore
the effects of different levels of complexity and different
levels of conflict between the agents; (3) empirical results
obtained in simulation on hundreds of randomly generated
games. Our results show that cooperation is possible and
that an agent can detect if its opponent is reciprocating, even
in the difficult environment we use.

Background on the Model of Cooperation

We extend the work presented in (Damer and Gini 2008a)
where players play a sequence of different normal form
games. Specifically we use randomly generated normal
form games with 16 actions per player, and payoffs uni-
formly distributed between 0 and 1. We have found that this
type of game provides opportunities for cooperation with-
out making cooperation the only rational choice. Increasing
the number of actions beyond this level increases the com-
putational complexity without changing the effect of coop-
eration because the additional options are not likely to pro-
vide a superior outcome for cooperating agents. Reducing
the number of actions reduces opportunities for cooperation.
We have also empirically explored generating payoffs from
other distributions, and have generally found that opportu-
nities for cooperation are equivalent or inferior (Damer and
Gini 2008b).

As we said earlier, we assume the agents play a Nash equi-
librium. However, the Nash equilibrium is a strictly self-
interested approach. It will not recognize opportunities for

cooperation where one of the agents needs to forego a po-
tential benefit in order to provide a larger benefit to its op-
ponent. To allow our agent to cooperate we use a model
which has been used to adapt the Nash equilibrium to ex-
plain cooperative behavior in humans (Frohlich 1974). We
assume agents value their opponent’s payoffs in addition to
their own. Specifically, each agent adopts an attitude to-
wards its opponent, which determines how much weight it
attaches to its opponent’s payoff in relation to its own pay-
off.

As in (Damer and Gini 2008a), an attitude is a real number
in the range [-1, 1]. An attitude of 1 means that the oppo-
nent’s payoff is valued as highly as the agent’s own payoff.
An attitude of O means that the agent is indifferent to the op-
ponent’s payoff. An attitude of -1 means the agent is only
concerned with how well it does compared to its opponent.

Let’s call the two agents = and y, and respectively A*
and AY their attitude. The payoffs for agent x are modified
according to

Pif = P+ AP}
where P} is the payoff in the original game for player =

when actions ¢ and j are chosen, P;; is the payoff for the

opponent, and PZ-/ ¥ is the payoff of player z in the modified
game. The payofts for agent y are calculated similarly, using
y’s attitude AY.

Each agent selects an action which maximizes its score
in the modified game, but receives its payoff from the orig-
inal game. To be able to compute the Nash equilibrium of
the modified game an agent needs to know its own payoffs
in the modified game and also its opponent’s payoffs in the
opponent’s modified game. This means an agent needs to
know the attitude of its opponent.

We have shown (Damer and Gini 2008a) empirically that
when both agents have a positive attitude, their payoffs in
the original game are higher than if they had both simply
tried to maximize their individual scores.

Figure 1 shows the effect of different combinations of at-
titudes on a player’s payoff in the original game. Naturally,
the primary determiner of a player’s score is the attitude of
its opponent, but we can also observe a plateau of cooper-
ation once both players reach an attitude of .2 or .3. When
both agents adopt an attitude of 1, they can improve their
average payoffs from .80 to .90. Even when they only adopt
an attitude of .2 their payoffs improve to .87.

To select its action a player needs to know the attitude of
its opponent. It needs the attitude of its opponent to con-
struct the modified game it will use to pick its move. Since
the opponent is not motivated to honestly disclose its atti-
tude, the agent needs (1) an estimate of the attitude of its
opponent, which we call belief. Belief, like attitude, is a
real number in the range [-1, 1]; and (2) an estimate of how
the opponent selects a Nash equilibrium from the modified
game, which we call the method. Method is difficult to rep-
resent, since any function which maps games to equilibria
is a potential value for method. Rather than attempt to rep-
resent that space, we use the initial parameter passed to the
Lemke-Howson algorithm (the algorithm we use to calcu-
late Nash equilibria). This allows us to represent method as

Expected payoff with full knowledge of attitude

54
©

54
©

Agent Score
o
3

Agent Attitude -1

Opponent Attitude

Figure 1: Payoff is affected by the attitudes of the agent and
its opponent. The agent’s attitude is on the left axis, going
from full cooperation (1) to full selfishness (-1). The oppo-
nent attitude is on right axis, going from selfishness (-1) to
cooperation (1). The payoff is plotted on the vertical axis.
Results are aggregated over 1000 games with 16 actions and
with payoffs drawn from a uniform distribution between 0
and 1. Results for a particular game may be quite different.

an integer.

Once those factors are known, an agent can set its own
attitude to be equal to its opponent’s attitude plus a recipro-
cation level. Hence, A* = B”® + R, where B?” is the belief
of agent z, i.e. its estimate of the attitude of AY, and R is the
reciprocation level that agent « has chosen. The reciproca-
tion level can be quite low and still produce cooperation in
self-play. In our experiments we have used a reciprocation
level of .1. If the opponent is not cooperative this does not
lead to a significant loss for the agent, but if the opponent
reciprocates in a similar way this will eventually lead to full
cooperation.

Learning

In every round the agent observes the nature of the interac-
tion (the game) and the choice made by the opponent in that
context (the action). From that information, it needs to up-
date its probability distribution over the attitude, belief, and
method of the opponent.

We focus on playing against a stationary opponent (one
that does not change its attitude, belief, and method).
This is common for algorithms that learn in repeated
games (Conitzer and Sandholm 2007) and it is impossible
to optimize an agent against an arbitrarily complex oppo-
nent (Powers, Shoham, and Vu 2007).

Due to the complex interactions between attitude, belief,
method, and the game being played there is no probability
distribution that can be updated analytically for each obser-
vation, but for a given value of attitude, belief, and method
we can calculate the probability that the agent would select
a particular action in a given game. This information makes

it fairly straightforward to use a particle filter to learn values
for attitude, belief, and method.

Instead of representing a probability distribution paramet-
rically, a particle filter represents it with a number of sam-
ples drawn from it. Each particle has a weight attached, and
the distribution represented by the particles is a discrete dis-
tribution with probability of each particle proportional to its
weight. When an observation is made, each particle’s weight
is updated by multiplying it by the probability assigned to
the observation by that particle.

As observations are made, the relative probability of the
particles changes. As the weights attached to the particles
become more unbalanced, the distribution represented by
the particle filter becomes simpler. At the extreme, if one
particle has all the weight, the distribution is effectively rep-
resented by a single particle. To avoid this, when the effec-
tive number of particles drops below a threshold, a new set
of particles are drawn by sampling particles from the exist-
ing distribution and adding noise.

Regularization
Particle filters were originally developed to learn in envi-

Algorithm 1 ParticleFilter

1: Generate initial set P of N particles from prior belief
about the values of attitude, belief, and method

2: Assign each particle a weight equal to %
3: while presented with data do
4: Observe the game G and the opponent’s move M
5: Compute the effective number of particles
Neff = 1/[ZpeP pizueight]
6: if Ngyy > threshold then
7: for p € Pdo
8: Dprob = probability of opponent’s move M in
game G given DPatts Poels and Pmethod
9: Pweight=Pweight * Pprob
10: end for
11: else
12: Compute standard deviation Std,; of pass
13: Compute standard deviation Stdpe; of ppe;
14: h=N-1/6
15: Compute optimal perturbation probability pp for
Pmethod
16: while accepted particles < total particles do
17: Select a new particle from current particles with
probability proportional to pyeight
18: Update attitude and belief with Gaussian noise
Doyt = Patt + hx N(0, Stday)
Dher = Poet + b x N(0, Stdyer)
19: p;nethod = Pmethod
20: with probability pp, p!,. .., = random method
21: Pprop= Probability of M in G given ply, P,
and p;nethod
22: Accept p" with probability p/,,
23: end while
24: end if

25: end while

ronments which changed stochastically over time. Our en-
vironment does not change since we currently assume the
opponent does not change its attitude, belief, and method
and without a model of particle motion, particle filters have
problems converging. The problem arises because a dis-
crete distribution does not increase the effective number of
particles during the resampling step if the particles remain
in the same position. There is no functional difference be-
tween 1 particle with a weight of 50, and 50 particles with
a weight of 1 all in the same place. If the particles move
randomly, then those 50 particles will spread out, but if they
don’t move, then resampling does not increase the effective
diversity. A regularized particle filter (Musso, Oudjane, and
Legland 2001) avoids that problem by resampling from a
continuous distribution instead of a discrete distribution. By
adding noise to particles drawn during the resampling pro-
cess, we avoid having all the samples drawn from a single
particle being identical. The optimal level of noise can be
estimated by observing the variance of the current particle
set. It is a Gaussian distribution with 0 mean and standard
deviation equal to N~/ times the standard deviation of the
particle set.

An additional complication in our case is that while some
of the data (attitude and belief) are continuous and can be
perturbed with Gaussian noise, some (method) are discrete.
Learning the method the opponent uses is complicated. In
theory, method could be any function which maps games
to probability distributions over actions, but this is such a
large space that it would be impossible to learn it. We re-
strict method to one of the Nash equilibria of the modified
game. This reduces the space of possible equilibria, but it
means that there is no distance measure between different
methods. Therefore the only perturbation we can apply to
methods is to change them to a random method with some
probability. We find the optimal probability using a tech-
nique called Leave-One-Out. We select the probability that
gives the highest likelihood of resampling the current distri-
bution of method values from a distribution created by re-
moving one particle from the current set. We approximate
this value by testing 100 values evenly distributed over the
range of possible values and using the one which gives the
highest likelihood.

We start with 400 particles with attitude and belief drawn
from a Gaussian distribution centered at 0 with the identity
matrix as a covariance matrix, and method drawn from a
uniform distribution over the list of methods under consid-
eration. We assign each particle a weight of .0025. If the
effective number of particles goes below 200 we resample.

Performance

Figure 2 shows the error of our learning algorithm’s estimate
of attitude, belief, and method. Note that the error in method
(the probability that the learner has not found the correct
method) eventually levels off around .12, which means 12
percent of the time the particle filter fails to learn the oppo-
nent’s method. This is because for some values of attitude
and believe (-1,-1 for instance) method does not play a role
in the move selected by the agent. In those situations it is not
possible to learn the opponent’s method. It is also worth not-

Learning a Static Opponent
1 T T T

T T T
Error in attitude and belief

— — — Errorin method
0.9
1

0.8

0.6 i

0.5\

Error

04l H

03f i

0.2

Figure 2: Accuracy of learning algorithm against a random
static opponent. Results aggregated over 100 sequences of
100 games. Learning targets drawn from a Gaussian with 0

mean. Time is the number of games played. Error bars at
+1 standard deviation

ing that the variance in the error for the estimate of attitude
and belief (the Euclidean distance between the estimated at-
titude and belief and the true attitude and belief) remains
high. For some values of attitude and belief (1, 1 for in-
stance) small changes in attitude and belief do not result in
changes in behavior. Therefore the accuracy achieved can
vary significantly with the value of the target being learned.
Figure 3 shows that the algorithm can perform well
against a random static opponent, even though it may not
succeed in learning the exact parameters of the model used
by that opponent. The agent uses the particle filter to predict
a distribution over the actions of its opponent, and chooses
a move which is the best response to that distribution. Om-
niscient performance is what would be achieved by an agent
already aware of the true attitude, belief, and method of the
opponent. Non-learner performance is what is achieved by
an agent which plays according to its prior distribution over
the opponent. After 10-20 interactions the agent is perform-
ing close to the theoretical maximum against its opponent.

A general concern is the learning speed. In human inter-
actions people typically can discern the intentions of others
from a few interactions. In our case, because the interac-
tions are very complex it takes 20 or more games before a
conclusion about the opponent can be made. This is still
a small number when compared to the number of games

that typically are played to learn in repeated games (Pow-
ers, Shoham, and Vu 2007).

Results
We have identified a number of parameters that affect the

games and modified them to assess the robustness of our
learning algorithm.

Learning a Static Opponent
1c

Learner Performance
— — — Omniscient Performance
— — Non-learner Performance

10 20 30 40 50

60 70 80 920
Time

100

Figure 3: Performance of learning algorithm against a ran-
dom static opponent. Results aggregated over 100 sequences
of 100 games. Learning targets drawn from a Gaussian dis-
tribution with 0 mean. Time is the number of games played.

Distribution of payoffs

Generating payoffs randomly is a logical way to generate
many different normal form games but then the question
arises of how to pick the random distribution. We gener-
ally use a uniform distribution, but we have verified that the
algorithm works for other distributions. Figure 4 shows the
effect of the following distributions on the speed of learning:

Gaussian. Payoffs are drawn from a Gaussian distribution.

In this case the agent’s actions have strongly interacting
effects, but with more outliers.

Gaussian with higher standard deviation. Payoffs are
drawn from a Gaussian distribution with a standard de-

viation 10 times as high as the standard deviation of the
uniform distribution we use.

Strongly Move Correlated. Instead of drawing payoffs for
each combination of actions, payoffs are drawn from a
uniform distribution for each action individually. The
payoffs for each combination of actions are found by sum-
ming the payoffs of each individual action. This means
that the results of a player’s action depend only on the ac-
tion it chose, and not on the action the other player chose.

Weakly Move Correlated. This is a combination of a
strongly correlated game, and a uniform distribution. The

agents choices interact, but there is also an independent
factor.

Figure 4 shows the effect of different distributions on the
speed of learning. The top two graphs show that a Gaus-
sian distribution, regardless of its variance, doesn’t have a
significant effect on the speed of learning. The bottom two
graphs show that when payoffs are associated with individ-
ual actions instead of combinations of actions, learning can
be affected. When an agent doesn’t need to take its oppo-
nent’s action into account when choosing its action, the only

Gaussian Distribution

1 T T T
) Error in attitude and belief
0.8 — — — Error in method
_ 06H
<
ULJ i
0.4}

|
5 0.6 ll Error in attitude and belief
LE [B Error in method
— — — Error in attitude
\
ool v | T T Error in belief
' \
0 e === = o
0 20 40 60 80 100

High Standard Deviation Gaussian

1 . . .
Error in attitude and belief
0.8l -- — — — Error in method
_ 0.6¢
o
0 |
0.4r
02 B i :/:a:
0 L]
0 20
Partially Move Correlated
1 . . .
: Error in attitude and belief
0.8 \ ------- Error in mgthod
v — — — Errorin attitude
'. ————— Error in belief
§ .
LILJ

Figure 4: How learning is affected by the distribution from which payoffs are drawn. Results aggregated over 100 sequences
of games. Learning targets drawn from a 0 mean Gaussian. Time is the number of games played.

thing that affects its choice is its own attitude - belief and
method are irrelevant. Therefore the agent cannot learn be-
lief and method. If we look only at the accuracy of the atti-
tude estimate, the particle filter converges very quickly. This
is a logical consequence of the removal of the noise added
by the need to take belief and method into account. The fi-
nal graph shows that even when payoffs are only partially
correlated to the particular combination of actions, this pro-
vides enough information to learn the opponents belief and
method.

Complexity

The number of actions in each game affects the performance
of the particle filter. Figure 5 shows the performance in
games with different numbers of actions. As the number
of actions increases, the complexity of the game increases,

which increases the time needed to analyze the game. At
32 moves, the time taken to learn has become prohibitively
expensive, which implies that this technique is not suitable
for cases with a large number of distinct moves. Note that
in games with 32 moves, even though the learner is able to
achieve a high level of model accuracy (the Euclidean dis-
tance between its estimate of the attitude and belief of the
opponent and the true attitude and belief of the opponent),
its prediction accuracy (the Jensen-Shannon divergence be-
tween its prediction of the opponent’s action and the actual
probability distribution the opponent used to select an ac-
tion) suffers due to the unpredictability of the environment.
In contrast, with 2 moves, the prediction accuracy is very
good, but the model accuracy is poor.

Effect of number of moves on model accuracy
1 B T T T T T T
32 moves
. — — —16 moves | |
. —-— 8 moves
\ 4 moves

0.6

Error

0.4r

0.2

Effect of number of moves on prediction accuracy
T T T T T T
32 moves
— — —16 moves | |
— — 8 moves
4 moves
2 moves [

4
©
T

o
=)
T

o
IS
T

o
S}
T

e AN,
T o e S T T g S e Y e T) o i et e S T s L T e e Y

0 10 20 30 40 50 60 70 80 90 100
Time

o

Jenson Shannon divergence of prediction

Figure 5: Performance is affected by the number of ac-
tions available in the game. Results aggregated over 100
sequences of 100 games except for the 32 move case which
is only aggregated over 10 sequences. Learning targets were
drawn from a 0 mean Gaussian. Time is the number of
games played.

Conflict and Cooperation

The environment can have a significant effect on the abil-
ity of agents to cooperate. Agents in a zero-sum game have
no opportunity to cooperate whatsoever, since any gain for
one agent is an equivalent loss for the other. Agents with
identical payoffs have no opportunity for conflict, since their
interests are identical. Learning in those environments is im-
possible, since a change in attitude doesn’t change behavior.
However, we can explore how less extreme environmental
influences affect the ability of our agent to cooperate.

We characterize the degree of conflict in terms of the cor-
relation between agents payoffs. In a zero sum or constant
sum game, the correlation is -1. When agents payoffs are
identical the correlation is 1. We create games with corre-
lated payoffs by generating payoffs as a sum of two uni-
formly distributed variables, one of which is shared by both
agents. We vary the degree of correlation by changing the
relative magnitude of the variables.

Figure 6 shows the effect of positive correlation between
agents scores. The degree of correlation doesn’t signifi-
cantly effect the prediction accuracy, but with a high degree
of correlation it becomes more difficult to learn the model
parameters (attitude and belief).

Figure 7 shows the effect of negative correlation between
agent scores. Again, prediction accuracy is good, but when
scores are highly negatively correlated it is more difficult to
learn the model parameters. This effect is more pronounced
than when the scores are positively correlated.

Self Play

We have explored the effect of using our learning algorithm
in self-play. Each agent attempts to learn the attitude, be-

Effect of cooperative payoffs on model accuracy
1 T T T T T

T
Correlation .02
— — —Correlation .1 ||
) — - — - Correlation .5
i, Correlation .9
06 + Correlation .98 [

0.8

Error

0.4r-

021

|
0 10 20 30 40 50 60 70 80 90 100
Time

Effect of cooperative payoffs on prediction accuracy
T T T T T

T
Correlation .02
— — —Correlation .1 ||

— - —Correlation .5
Correlation .9
Correlation .98 [

4
©
T

o
=)
T

o
IS

o
)

o

30 40 50 60 70 80 90 100
Time

Jenson Shannon divergence of prediction
o
>
n
S

Figure 6: Effect on performance when agents payoffs are
positively correlated. Results aggregated over 100 se-
quences of 100 games. Learning targets drawn from a 0
mean Gaussian. Time is the number of games played.

Effect of conflicting payoffs on model accuracy
1 T T T T T T

T
Correlation -.02
— — — Correlation -.1 ||

— - — Correlation -.5
Correlation -.9
Correlation —.98

08 't

0.6

Error

021

50 60 70 80 90 100
Time

Effect of conflicting payoffs on prediction accuracy
T T T T T T

T
Correlation —.02
— — — Correlation .1
— - — Correlation -.5

o
o
T

Correlation —.9
Correlation —.98

o
>
T

o
IS

o
)

o

Jenson Shannon divergence of prediction

40 50 60 70 80 90 100
Time

=)
o
N
o
w
o

Figure 7: Effect on performance when agents payoffs are
negatively correlated. Results aggregated over 100 se-
quences of 100 games. Learning targets drawn from a 0
mean Gaussian. Time is the number of games played.

lief, and method of its opponent, but it no longer chooses a
best response. Instead, it selects a move using its own atti-
tude, the attitude it learned for its opponent, and the method
it learned for its opponent. It chooses an attitude .1 higher
than the attitude it believes its opponent is using, with a min-
imum of 0 and a maximum of 1. This policy allows agents
to achieve cooperation without taking a big risk if the op-
ponent doesn’t cooperate. Since the opponent is no longer
stationary, we have added a simple model of particle motion
for this test: an agent’s attitude and belief are assumed to

drift according to a Gaussian distribution with 0 mean and
.1 standard deviation. This does not accurately reflect the
actual changes in the opponent’s attitude and belief, but it is
sufficient to allow an agent to track the attitude and belief of
a learning opponent.

Reciprocating agent performance
1 T T T T

T T
Reciprocator performance
Maximal cooperation
0.95 — — — No cooperation

A M

05 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Time

Figure 8: Performance of two learning agents, each recipro-
cating the attitude of its opponent with a small bonus. Re-
sults aggregated over 10 sequences of 100 games. Time is
the number of games played.

Figure 8 shows the performance achieved by two recip-
rocating learning agents. Cooperation takes about 30 itera-
tions to achieve, but eventually reaches performance roughly
equivalent to two fully cooperative agents. The primary fac-
tor in the time taken to achieve cooperation is the magnitude
of the reciprocation agents practice. We use .1, but with a
higher value full cooperation would occur more rapidly.

Related Work

Typically actions in games are labeled as cooperate/defect.
Labels affect how human participants play, producing more
cooperation compared to situations where there are no la-
bels (Zhong, Loewenstein, and Murnighan 2007). We do
not label actions since the games are generated randomly
and we want the agents to be able to decide on their own
which actions are cooperative.

Our model of cooperation is based on models developed
to explain human cooperation in normal form games. (Vala-
vanis 1958) proposed the modification of a normal form
game to reflect an agent’s preferences over its opponent’s
utility. (Frohlich 1974) pointed out that this can lead to
an ill-defined utility function, and proposed restricting an
agent’s preferences to its opponent’s consumption instead of
its opponent’s utility. (Fitzgerald 1975) introduces a util-
ity which is linear in the opponent’s payoff, and points out
that positive attitudes will not necessarily reduce the level
of contention between agents. With attitude values above
1 the game can become a contest to make your opponent
accept a higher payoff. It is for this reason that we have

chosen attitudes between -1 and 1. There has been a lot of
research on human behavior in the context of game theory.
(Bolton 1998) provides an overview of work on bargaining
and dilemma games, which are the games most concerned
with cooperative behavior. (Camerer 1997) provides a broad
overview of the many different ways in which human behav-
ior does not conform to game theoretic predictions. We use a
simple model of linear altruism towards the opponent’s pay-
offs, which is sufficient to provide a basis for cooperative
behavior.

Efforts have also been made to describe human behavior
without developing a specific model. (Altman, Bercovici-
Boden, and Tennenholtz 2006) shows that people’s behavior
in one game can be used to predict their behavior in different
games. Since the games they used could all be described as
cooperative games, their prediction success would seem to
indicate that cooperation is a valid abstraction to use.

Reciprocation is an effective way to motivate an opponent
to cooperate. (Axelrod 1984) describes a tournament among
agents of repeated Prisoner’s Dilemma. Tit-for-Tat was the
most effective strategy in that tournament - it is a recipro-
cating strategy which simply copies the move chosen by the
opponent in the previous round. Research on learning for
agents which play normal form games has focused on re-
peated play of a single game against a stationary opponent
with the goal of finding either an equilibrium or a Pareto-
optimal outcome in self-play. (Fudenberg and Levine 1998)
provides a good overview of fictitious play, which explores
the effects when agents attempt to learn their opponents ac-
tions and then choose the best response.

(Littman 2001) describes friend or foe Q-learning, which
is capable of dealing with hostile and cooperative oppo-
nents, finding a minimax solution in the case of a hostile
opponent and a cooperative solution with a friendly oppo-
nent. However, it is not capable of detecting a hostile op-
ponent on its own — it needs to be told which approach to
use. (Crandall and Goodrich 2005) offers another modifi-
cation of reinforcement learning which detects cooperation
by examining its performance. This approach is provably
not exploitable, and is successful in achieving cooperation
in self play. (Powers, Shoham, and Vu 2007) describe an
algorithm which learns against stationary opponents in re-
peated games. The algorithm can be extended to non sta-
tionary opponents by limiting the history the opponent can
use. Learning requires playing thousands of games. AWE-
SOME (Conitzer and Sandholm 2007) is the first algorithm
guaranteed to learn to play optimally against stationary op-
ponents and to converge to a Nash equilibrium in self play.
It also learns to play optimally against opponents that even-
tually become stationary. To guarantee convergence in self-
play, it assume all agents play the same Nash equilibrium.

Particle filters have multiple uses in multiagent set-
tings for opponent modeling, including (Doshi and Gmy-
trasiewicz 2009) who use particle filters to compute approx-
imate policies for finitely nested POMDPs to map agents’
beliefs to policies, and (Bard and Bowling 2007) who model
opponents in Kuhn poker.

Conclusions

In this paper we have described an algorithm for an agent to
learn to cooperate when playing a sequence of different nor-
mal form games with the same opponent. We have shown
that achieving cooperation is beneficial and that learning
how to respond to the opponent is possible. We have tested
the algorithm in many situations and found that it is fairly ro-
bust and effective. Our approach provides a basis for using
reciprocation to cooperate in environments where coopera-
tive behavior is not immediately evident.

We have focused on learning against a stationary target
and in self-play. Next we will explore two related questions.
Firstly, given an estimate of attitude, belief, and method,
how should an agent act to cooperate effectively? Secondly,
how should the agent learn if the opponent is not stationary?

References

Altman, A.; Bercovici-Boden, A.; and Tennenholtz, M.
2006. Learning in one-shot strategic form games. In Proc.
European Conf. on Machine Learning, 6-17. Springer.

Axelrod, R. M. 1984. The evolution of cooperation. Basic
Books.

Bard, N., and Bowling, M. 2007. Particle filtering for dy-
namic agent modelling in simplified poker. In Proc. of the
Nat’l Conf. on Artificial Intelligence, 515-521.

Bolton, G. E. 1998. Bargaining and dilemma games: From
laboratory data towards theoretical synthesis. Experimental
Economics 1:257-281.

Camerer, C. F. 1997. Progress in behavioral game theory.
The Journal of Economic Perspectives 11(4):167-188.

Conitzer, V., and Sandholm, T. 2007. AWESOME: A gen-
eral multiagent learning algorithm that converges in self-
play and learns a best response against stationary opponents.
Machine Learning 67(1-2):23—43.

Crandall, J. W., and Goodrich, M. A. 2005. Learning to
compete, compromise, and cooperate in repeated general-
sum games. In Proc. of the Int’l Conf. on Machine Learning,
161-168. New York, NY, USA: ACM.

Damer, S., and Gini, M. 2008a. Achieving cooperation in
a minimally constrained environment. In Proc. of the Nat’l
Conf. on Artificial Intelligence, 57-62.

Damer, S., and Gini, M. 2008b. A minimally constrained
environment for the study of cooperation. Technical Report
08-013, University of Minnesota, Dept of Computer Science
and Engineering, Minneapolis, Minnesota.

Doshi, P, and Gmytrasiewicz, P. J. 2009. Monte Carlo
sampling methods for approximating interactive POMDPs.
Journal of Artificial Intelligence Research 34:297-337.

Fitzgerald, B. D. 1975. Self-interest or altruism. Journal of
Conflict Resolution 19:462-479.

Frohlich, N. 1974. Self-Interest or Altruism, What Differ-
ence? Journal of Conflict Resolution 18(1):55.

Fudenberg, D., and Levine, D. K. 1998. The Theory of
Learning in Games. MIT Press.

Littman, M. L. 2001. Friend-or-foe Q-learning in general-
sum games. In Proc. 18th International Conf. on Machine
Learning, 322-328. Morgan Kaufmann.

Musso, C.; Oudjane, N.; and Legland, F. 2001. Improv-
ing regularized particle filters. In Doucet, A.; de Freitas,
N.; and Gordon, N., eds., Sequential Monte Carlo Methods
in Practice. New York, number 12, 247-271. Statistics for
Engineering and Information Science.

Powers, R.; Shoham, Y.; and Vu, T. 2007. A general cri-
terion and an algorithmic framework for learning in multi-
agent systems. Machine Learning 67(1-2):45-76.

Rapoport, A., and Chammah, A. 1970. Prisoner’s dilemma:
A study in conflict and cooperation. University of Michigan
Press.

Valavanis, S. 1958. The resolution of conflict when utilities
interact. The Journal of Conflict Resolution 2(2):156—1609.
Zhong, C.-B.; Loewenstein, J.; and Murnighan, J. K. 2007.
Speaking the same language: The cooperative effects of la-

beling in the prisoner’s dilemma. Journal of Conflict Reso-
lution 51(3):431-456.

