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Abstract

Solving real-world problems using symbolic planning often
requires a simplified formulation of the original problem,
since certain subproblems cannot be represented at all or only
in a way leading to inefficiency. For example, manipulation
planning may appear as a subproblem in a robotic planning
context or a packing problem can be part of a logistics task.
In this paper we propose an extension of PDDL for speci-
fying semantic attachments. This allows the evaluation of
grounded predicates, the change of fluents and the calculation
of durations by externally specified functions. Furthermore,
we describe a general schema of integrating semantic attach-
ments into forward-chaining planning systems and report on
our experience of adding this extension to the planner Tem-
poral Fast Downward. Finally, we present some preliminary
experiments using semantic attachments.

Introduction

Real-world planning problems often require several sub-
problems to be solved. For example, in a robotic context it is
usually necessary to plan robot movements and the manipu-
lation of objects. Furthermore, the high-level tasks that the
robot is supposed to perform, e.g., fetching a book from the
library, must also be planned for. While the latter problem
can be addressed using traditional symbolic planning ap-
proaches, navigation and path planning is beyond the scope
of symbolic planners. In fact, specialized planners are avail-
able for these problems.

It makes, of course, a lot of sense to decompose a complex
real-world planning problem into different simpler subtasks.
However, the planners have to be combined in the right way.
The usual method here is a hierarchical combination. On
the highest level, the symbolic planner creates a symbolic
plan. Then the actions are refined using the low-level plan-
ners, e.g., the path planner and the manipulation planner.
The assumption here is that the symbolic description is on
an abstraction level that permits a successful execution of
any generated plan. However, very often this is not true. In
such cases, the early commitment of the symbolic planner
may lead to failures on the lower levels.

Instead of such a top-down approach, hierarchical compo-
sition can also be achieved in a bottom-up manner, where all
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information possibly relevant to the symbolic planner is pre-
computed by the lower level reasoners. This, however, may
be very costly if there are too many such facts. For exam-
ple, the precomputation of all trajectories between all pairs
of poses of a gripper at possible locations for all possible
configurations of objects is too time and memory consum-
ing. Furthermore, most of the generated information will
turn out to be irrelevant to the task at hand.

Therefore, in this paper, we propose a third approach that
integrates high and low-level planning more tightly and in
which a low-level reasoner can provide information to the
high-level planner during the planning process, but is only
evoked if relevant to the high-level planner. Contrary to
the hierarchical decomposition and combination, a particu-
lar choice on the symbolic level can lead the low-level plan-
ner to detecting failure and requesting to backtrack immedi-
ately.

To integrate information about special-purpose reason-
ing into symbolic planning we propose to use what we call
semantic attachments1 to a planning domain description.
Some of the predicate symbols of the domain description can
have such a semantic attachment, meaning that the truth val-
ues for corresponding atomic ground formulas are specified
by an external mechanism. Similarly, there exist semantic
attachments for effects on numerical fluents.

In this updated version of our previous paper (Dornhege
et al. 2009a), a third kind of semantic attachments is pre-
sented, which allows the calculation of action durations by
an external mechanism.

Semantic attachments can easily be added to a planning
language, e.g., PDDL. Based on that, we describe a gen-
eral framework for integrating these extension into forward-
chaining state-space planners, which are particularly suited
to our task since they search over complete world states.
External modules can then access those states in order to
compute conditions, effects and durations for their special-
purpose behaviors.

While similar mechanisms have been used before, in par-
ticular in domain-specific contexts (Konolige and Nilsson
1980; Orkin 2006), our work appears to be the first that

1Semantic attachment is a term coined by Weyhrauch (1980) to
describe the attachment of an interpretation to a predicate symbol
using an external procedure.
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extends PDDL rendering this feature available for domain-
independent planners in general.

The rest of the paper is structured as follows. In the next
section, we describe a number of motivating examples. Then
we specify an extension of PDDL and examine soundness
and completeness of a planner relative to semantic attach-
ments. Based on that, we describe our implementation of
semantic attachments in the planning system Temporal Fast
Downward. Our experience with using semantic attach-
ments is reported in the experimental section. Finally, we
comment on related work and close with a conclusion and
outlook.

Motivating Examples

For many real-world problems, it is hard to find an abstrac-
tion suitable for symbolic planning which guarantees that for
every symbolic plan an executable concretized plan will ex-
ist. In this paper, we consider two such problems, namely a
logistics domain with complex truck packing problems and
a robot manipulation domain.

Transport Domain

The logistics domain has been a standard benchmark for sev-
eral years at the International Planning Competition. It mod-
els a common logistics problem, where trucks deliver pack-
ages to different locations. In the original formulation, each
truck can pick up only one package. With the introduction
of numeric fluents, it became possible to model truck ca-
pacities and package sizes in the transport-numeric domain,
allowing trucks to load multiple packages.

Although more realistic than not representing capacities
at all, summing up volumes is obviously not sufficient for
checking whether a set of packages can be loaded into a
truck, since the package geometries are not considered. For
example, Figure 1 shows that it is impossible to pack two
equally sized cubes into a cube with double the volume.
Moreover, it demonstrates that the volume approximation is
not even close to reality.

Figure 1: The two smaller cubes have half the volume of
the outer one, but they obviously do not fit together into the
outer cube.

Clearly, it is beyond the capabilities of a symbolic planner
to solve the three-dimensional packing problem. However,
there exist specialized algorithms for solving this NP-hard
problem exactly or approximately. Such a reasoner could be
integrated into the planner by attaching it semantically to the
precondition of an action.

Robot Manipulation Domain

Similar to the logistics domain, the blocks-world domain has
been a benchmark in the planning area for a long time. It is
a highly abstract version of a robot manipulation problem.
Nowadays such large tasks are easily solved by symbolic
planners. Unfortunately, however, the domain is so abstract
that it has hardly anything to do with reality. For example,
gripper poses or potential collisions of the manipulator with
other objects do not play a role at all.

A slightly more concrete domain is depicted in Figure 2.
Here we have a box which is open at the top, a shelf, a table,
and a little movable box. The gripper is simply a stick that
can connect to movable objects from any direction. Thus,
depending on the continuous grasp direction, collisions can
occur. In general, we want to manipulate objects, i.e., grasp
them, transport them, and put them down. In particular, we
want to plan for the situation that we have to grasp an object
that is in the box and to place it in the shelf. This would
require us to place the object on the table in order to grasp
it from the side to avoid a collision of the gripper with the
shelf when putting down the movable object.

(a) (b)

Figure 2: Visualization of the manipulation domain with (a)
an initial state and (b) a final state.

Again, solving such a task using only a symbolic planner
is clearly impossible. Here we need a manipulation planner
as a sub-component of the symbolic planner. Such an em-
bedded planner could check the preconditions of whether a
grasp or place action is possible. Furthermore, it also needs
to change the internal model of the environment so that fu-
ture possible collisions can be detected.

Semantic Attachments

Semantic attachments are external procedural reasoning
modules (in the following just called modules) that may
compute the valuations of state variables at planner run-time.
The symbolic planner itself is mostly unaffected by this ex-
tension: instead of looking up values in a table or updat-
ing them through state transitions as usual in Strips-like lan-
guages, a function call provides the necessary information.
Under the hood of the module, though, complex computa-
tions can be performed that transcend the capabilities of the
planner.

In order to integrate semantic attachments into a planner
we propose the architecture shown in Figure 3. Semantic at-
tachments consist of a declarative part that describes their
use in the planning domain, i.e., their symbolic use in pre-
conditions and effects of planning operators. Additionally,
they have a procedural part which is the actual algorithm
for computing the value of a state variable. This part is di-
rectly included into the planner as a shared library and may
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Figure 3: Extending planning tasks by modules to planning
tasks with semantic attachments

access the current state through callback functions. The next
section gives more details about the implementation.

We propose three kinds of semantic attachments that
can be part of operators: Condition-checker modules test
whether some complex operator precondition is satisfied,
effect-applicator modules compute changes to any number
of state variables, and duration-calculator modules com-
pute the duration of an action and thus allow cost-optimizing
planning using true geometric costs. When speaking of the
declarative part of these modules, i.e., their use as precondi-
tions, effects, and durations of planning operators, we will
speak of module conditions in the case of condition-checker
modules, module effects in the case of effect-applicator mod-
ules, and module durations in the case of duration-calculator
modules.

PDDL/M In order to actually use semantic attachments in
classical planning, it is necessary to extend the description
language for planning tasks.

Therefore, we propose the introduction of semantic at-
tachments to the PDDL-standard leading to PDDL/M, which
is described in the following. External modules seem to be
most relevant when complex numeric computations need to
be performed during the planning process. Therefore we
based our extension on the PDDL 2.1 version of the lan-
guage that introduced numeric fluents (Fox and Long 2003).
We call the extended language PDDL/M and add a new
PDDL requirement :modules to indicate that a planning
domain uses semantic attachments.

A PDDL/M domain may contain an additional section
that declares the modules similar to the way predicates are
declared in PDDL. In this section, each semantic attachment
has its own entry, a condition-checker or duration-calculator
module consisting of three, and an effect-applicator module
of four mandatory parts: They start with a unique identifier
to reference the module including a possibly empty list of
parameters, similar to a function or predicate entry in their
respective sections. Only for effect-applicator modules we
then list any number of numerical fluents that are set by the
module. In each case the type of module and finally the
function and library name where the module can be found
by the planning system is declared.

For example, the condition-checker module used in the
transport-modules domain is declared as follows:

(:modules

(canLoad ?v - vehicle ?p - package

conditionchecker canLoad@libTrans.so) )

The module is called canLoad, it decides whether it is
possible for vehicle ?v to load package ?p, and can be found
in the shared library libTrans.so by calling the function
canLoad.

The syntax of effect-applicator modules is similar, as can
be seen in the following from our robot manipulation do-
main:

(:modules

(putDown ?o - movable ?p - base ?g - grasp

(q0) (q1) (q2) (q3) (q4) (q5) (q6)

(x ?o) (y ?o) (z ?o)

(yaw ?o) (pitch ?o) (roll ?o)

effect putDown@libTrajectory.so))

This module sets the robot arm configuration (q0 − q6) and
the position and orientation of object ?o after putting it down
at ?p using grasp ?g. The information is made available to
the symbolic planner via the numeric fluents that are listed
between the parameters and the module type.

To use a module in an operator, it has to be specified in
the same way as predicates, durations, or functions. The
only difference is that a module is given by enclosing its
identifier and parameters in square brackets. A duration-
calculator module can simply be used in place of a PDDL
duration when defining a durative action:

:duration (= ?duration [pathCost ?s ?g])

This module calculates the duration as the actual metric
path cost from ?s to ?g using a map of the environment.

Condition checkers are used instead of a predicate and
effect applicators are used in place of an atomic effect:

(:action put-down

:params (?o - movable ?p - base ?g - grasp)

:condition (... ([checkPutDown ?o ?p ?g]))

:effect (and (on ?o ?p) (handempty)

(not (holding ?o ?g)) ([putDown ?o ?p ?g])

Soundness and completeness One important question
when using such semantic attachments is how these affect
soundness and completeness of the planner. Since arbitrary
code can be used in the modules, it cannot be guaranteed that
the planner terminates when calling any module. However,
under some reasonable assumptions some form of soundness
and completeness can still be guaranteed.

In particular, we require condition-checkers to always ter-
minate and return a truth-value. Furthermore, this truth-
value should be identical for identical parameter values and
world states. In other words, condition checkers are nothing
else than a concise representation of derived predicates. The
same is requested for duration-calculator modules. They
should always terminate and return the true duration of the
associated action.

Similarly, we require that effect-applicators and duration-
calculators always terminate and result, for identical param-
eters and states, in identical settings of the fluents they act
on. In particular, effect-applicators should not contain any
mechanism for making choices between different outcomes,
such as selecting a location for placing an object. This
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means that we can view effect-applicators as a concise rep-
resentation of a part of the deterministic transition function
that is usually completely specified by the PDDL operators.

If these conditions are met, one can analyze soundness
and completeness of a planner extended by a semantic at-
tachment mechanism relative to the semantic attachments
used in the problem description: Assuming that the mod-
ules implement the intended meaning, are the returned plans
correct, will the planner find a solution if there exists one
and will the plan’s cost be correctly reported? As we will
argue below, the implementation of semantic attachments
in Temporal Fast Downward guarantees this form of con-
ditional soundness and completeness.

Implementation

A PDDL/M planner must evaluate semantic attachments at
runtime, i.e., it must call the external modules and use the
computed results in its planning process. The modules, on
the other hand, need to access relevant parts of the planning
state for their computation.

Technically, modules are implemented as dynamically
loaded shared libraries. To be able to successfully load ar-
bitrary modules, the planner and the modules need to use a
common interface. In Figure 4 we present the main part of
the C++-Interface used by the planner in order to support se-
mantic attachments. Similar interfaces can be designed for
other programming languages.

Besides some data types the interface defines three func-
tion types for the three kinds of semantic attachments im-
plemented. The function types require a ParameterList

holding the operator’s grounded parameters and two call-
back functions giving the module the ability to access the
current planning state. There are two types of callbacks, one
for logic predicates and one for numeric fluents. Addition-
ally, the condition-checker, duration-calculator and effect-
applicator module calls can be invoked with or without a
heuristic flag, thereby either requesting either an exact re-
sult or an approximation. Effect-applicator modules are also
passed a reference to a list of numeric values which it is sup-
posed to affect as a result of its computations.

The planning system is responsible for calling those func-
tions with the correct parameters and at the correct time,
namely during successor generation and possibly during
heuristic state evaluation.

This section aims to show how this can be achieved for
standard progression search planners. We present the exten-
sion of Temporal Fast Downward, a numeric temporal plan-
ner based on a multi-valued state variable representation.

TFD/M

Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009) is a domain-independent progression search
planner built on top of the classical planning system Fast
Downward (Helmert 2006). It extends the original system
supporting durative actions as well as numeric and object
fluents. One distinguishing feature of both systems is that
the input consisting of propositional atoms is automatically
translated into an encoding using multi-valued variables.

This allows for a more concise internal state representation
and enables the use of heuristics employing hierarchical de-
pendencies between state variables, altogether resulting in a
more efficient search performance.

(Temporal) Fast Downward solves a planning task in three
phases: As a first step, the PDDL planning task is translated
from its Strips-like encoding into a representation similar
to SAS+ (Bäckström and Nebel 1995), using finite-domain
variables instead of binary predicates. Afterwards, in a
knowledge compilation step, some data structures utilized
by the heuristic and the search component are generated.
The most important of these are domain transition graphs
for each variable that encode how state variables can change
their values, and the causal graph that represents the hier-
archical dependencies between different state variables. Fi-
nally, a best-first progression search, guided by a numeric
temporal variant of the context-enhanced additive heuristic
(Helmert and Geffner 2008), is performed.

TFD/M is an extension of TFD supporting semantic at-
tachments. Since the internal representation of TFD is sig-
nificantly different from PDDL, enabling both the planner
and the “modules” to access and manipulate the planning
states is not trivial. The most significant extensions to TFD
occur in the translation and search phases, which we will
describe in the following.

Translation In the translation phase of Temporal Fast
Downward, the task is converted into a finite-domain rep-
resentation (FDR). In order to generate an appropriate FDR
description from PDDL/M tasks, we adapt the method of
Helmert (Helmert 2009). Roughly, this process consists of
the following phases: The generation of mutual exclusion
(mutex) invariants that describe which propositions may
never be true at the same time; a grounding phase in which,
by means of a relaxed reachability analysis, a set of proposi-
tions (instantiations of predicates) is generated that may po-
tentially be used in the planning process; the generation of
a suitable FDR based on the mutex invariants and reachable
propositions.

Since module conditions are black boxes to the planner,
during invariant generation we cannot make any assump-
tions about their falling into mutex groups, i.e., for each
grounded module condition we introduce a distinct FDR
variable that must evaluate to true in every condition where
the original module condition occurred. Similarly, module
durations are represented as numeric fluents in the planner
state. When accessing a numeric fluent associated with a
module call their respective values will be computed by the
attached external function. Module effects are black boxes
for the planner, too; however, they cannot be ignored, since
they may affect fluents that are not influenced by any non-
module effects. Using the standard grounding procedure,
these fluents would erroneously be compiled away as un-
reachable. To prevent this, the relaxed reachability analysis
of TFD/M adds all numeric fluents affected by a module ef-
fect whenever the corresponding ground action is detected
as reachable.

Since semantic attachments reason about PDDL, i.e., a
propositional representation rather than a FDR, some care
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typedef int (*conditionCheckerType)(ParameterList & parameterList,

predicateCallbackType predicateCallback, numericFluentCallbackType numericFluentCallback,

bool heuristic);

typedef int (*effectApplicatorType)(ParameterList & parameterList,

predicateCallbackType predicateCallback, numericFluentCallbackType numericFluentCallback,

vector<double>& writtenVars, bool heuristic);

typedef double (*durationCalculatorType)(ParameterList & parameterList,

predicateCallbackType predicateCallback, numericFluentCallbackType numericFluentCallback,

bool heuristic);

typedef bool (*predicateCallbackType)(PredicateList* &predicateList);

typedef bool (*numericFluentCallbackType)(NumericFluentList* &numericFluentList);

Figure 4: Main part of the PDDL/M C++-Interface. The types of semantic attachments are represented by three types of func-
tions: conditionCheckerType, effectApplicatorType, and durationCalculatorType. Additionally two types of callback functions
are defined: One for logic predicates and one for numeric fluents. Failures in the callbacks have to be handled by the module,
e.g., by returning false for a condition checker.

must be taken when information is shared between the
planner and the semantic attachments, i.e., when using the
PDDL/M interface as shown in Figure 4. Firstly, mappings
between module conditions and the newly introduced corre-
sponding FDR variables must be stored, so that the search al-
gorithm can call the module when evaluating the truth value
of a variable. Secondly, we also need to keep a mapping
between the FDR and the original PDDL task so that, upon
entering a callback from a module, the planner can look up
the internal FDR correspondent to the PDDL fluents used by
the module.

Search Temporal Fast Downward performs heuristic
search in the space of so-called time-stamped states. The
most essential information encoded in a time-stamped state
S is a real-valued time-stamp, a valuation of all state vari-
ables, and the set of operators already started but not finished
yet. The successors of such a state are those time-stamped
states that can be obtained by either starting a new applicable
action at the current time point or by computing the tempo-
ral progression of the current state. A solution is found as
soon as a time stamped state is reached that satisfies the goal
and that contains no more scheduled conditions or effects.

In order to handle external modules during search, we ex-
tended TFD to support the interface sketched in Figure 4.
The implementation of the callback functions is not straight-
forward in a planner that internally uses multi-valued vari-
ables. The interface to modules was designed to be in-
dependent of planner-specific representations and therefore
expects the predicates from the original PDDL/M domain.
Therefore, predicate names need to be converted to multi-
valued variables at runtime using the table allocated in the
translation.

An additional problem in TFD is that module conditions
can occur as scheduled conditions, which means that they
have to be checked much more often: A scheduled module
condition has to be checked whenever a time progression
is performed or when its time-stamped state is checked for
consistency. To minimize computation our implementation

does not check module conditions before all other logical
and comparison conditions have been shown to be satisfied
first.

Soundness and Completeness It is fairly obvious that se-
mantic attachments, as implemented in TFD/M, do not af-
fect soundness and completeness of the planning algorithm
under the assumption that the external modules satisfy the
requirements specified previously, i.e., assuming that they
terminate and deterministically compute values that are re-
garded as “correct”. Soundness cannot be affected, since
module effects virtually define how a correct state transition
looks like in the presence of semantic attachments, whereas
module conditions only restrict the options of the planner,
but do not alter them. Conversely, completeness can not be
affected, since module conditions may only rule out possible
transitions that are considered “incorrect” by the condition
checker, i.e., that evaluate to false. Since for module effects
we assume that choices are uniquely determined by the cur-
rent planning state, we cannot lose possible plans through
“unfortunate” effect selection in the module.

Integration in Heuristics

As depicted in the interface shown in Figure 4, condition-
checker, effect-applicator, and duration-calculator functions
accept a Boolean parameter heuristic. When a module
is called with that flag set to true it should aim at very fast
computations, possibly at the expense of accuracy. The idea
is that the symbolic planner can decide to call this approxi-
mate version of the module during heuristic computations. It
is required that the approximation is a relaxation of the orig-
inal problem, otherwise the heuristic might falsely report the
evaluated state to be a dead end.

TFD/M computes its heuristic estimation based on the do-
main transition graphs (DTG) of the planning task that en-
code how state variables change their values. Due to the
limited space we cannot go into detail. Roughly, the context-
enhanced additive heuristic maintains the values of influenc-
ing variables in each node of a DTG as a context. Conditions
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# TFD TFD/M % # TFD TFD/M %

01 0.01 0.01 0 16 0.61 0.78 28
02 0.01 0.02 100 17 0.73 0.96 32
03 0.01 0.02 100 18 0.85 1.10 29
04 0.04 0.05 25 19 1.89 2.38 26
05 0.08 0.10 25 20 3.19 4.06 27
06 0.14 0.18 29 21 2.47 3.12 26
07 0.16 0.24 50 22 0.16 0.19 19
08 0.18 0.24 33 23 0.12 0.14 17
09 0.29 0.37 28 24 0.20 0.26 30
10 0.59 0.75 27 25 —- —- —-
11 0.47 0.61 30 26 1.50 1.89 26
12 0.58 0.76 31 27 —- —- —-
13 0.05 0.08 60 28 3.82 4.71 23
14 0.08 0.12 50 29 5.74 7.21 26
15 0.06 0.07 17 30 5.55 6.89 24

Table 1: Results of Experiment I (runtimes in seconds). The
fourth column gives the relative increase in percent.

containing only regular variables are then evaluated accord-
ing to this context. Since it cannot be determined which
variables a module’s computation is based on, it would be
necessary to extend the context to include all other variables,
thereby blowing up the required space and time enormously.
Instead, rather than on a context, modules base their compu-
tations on the values of the variables in the state the heuristic
is computed for.

Interestingly, if a necessary condition of the module con-
dition can be expressed in PDDL, one can avoid to call mod-
ules during heuristic computations at all. E.g., in the trans-
port domain introduced above, the condition that the pack-
age fits into the truck solely based on its volume is express-
ible in PDDL and is also a necessary condition for the mod-
ule condition. Since the value returned by this condition
should suffice as a heuristic estimate, we can safely ignore
the module condition in the heuristic state evaluation. As
a side effect a lot of module calls are saved during search:
Whenever a necessary PDDL condition is not satisfied, the
module cannot be satisfied either.

Empirical Data

In this section we present three experiments. Experiment I is
an adaptation of a standard benchmark domain that does not
add any new features, but provides insight on the runtime
solely caused by module calls itself. Experiment II shows
a new variant of the logistics domain that respects the ge-
ometry of packages when determining if a package can be
loaded. In experiment III a geometric manipulation plan-
ning domain is generated based on pick-up and put-down
actions.

All experiments have been run on a standard desktop com-
puter, precisely on an Intel Dual Core 6400 CPU with 2100
MHz using only a single core.

Experiment I

The first experiment is designed to show the overhead intro-
duced by the module calls alone. As an example we chose
the crew-planning domain of IPC 2008. The reason is, that
it contains numerous different operators, that all have one
predicate in common, namely the predicate available,
showing if a crew member is available for executing a task.

We wrote a module that resembles this predicate by ex-
ecuting a callback to the symbolic planner, requesting the
truth value of the available predicate in the current state
and returning it. Essentially the module does not do any-
thing different, and does not perform any extra calculations.

In our experiment we ran TFD/M on the original version
of the domain, and then compared runtimes with the modi-
fied version that adds a module call. Table 1 shows the plan-
ning time until the first plan was found (for a timeout of
30 minutes and a memory limit of 1 GB). As expected, the
runtime for the module version of the domain is higher. It
should be noted that the module calls do not influence the
planning process itself as the same states are expanded, so
results are comparable. Most importantly, it can be seen that
the relative overhead is bounded and does not correlate with
the problem size, thus scaling properties of the planner are
not influenced.

To judge the introduced overhead, it should be noted that
in usual problems it is not the module call itself that takes a
majority of the runtime, but the module’s calculations. The
increase in runtime is as anticipated, as we replaced a pred-
icate check, that is usually implemented as an integer com-
parison, by a function call, that in turn creates a callback
to the requested predicate. This clearly needs to introduce
some overhead. Additionally, we chose a harsh domain for
this experiment as the crew planning domain calls this mod-
ule in almost every operator.

Experiment II

The second experiment presents a full implementation of a
PDDL/M task that uses non-trivial semantic attachments.
We follow the transport example proposed in the motiva-
tion section. Our custom domain models a classic logistics
task where trucks are allowed to carry multiple packages
with one crucial adaptation: One part of the pick-up op-
erator’s precondition is a semantic attachment implemented
as a condition-checker module. The module canLoad is
a packing algorithm that we shortly describe. The algo-
rithm needs to solve the three dimensional bin-packing prob-
lem which, even for one bin, is already NP-hard (Martello,
Pisinger, and Vigo 2000). As our main focus is implement-
ing a correct, but not necessarily optimal solution, we there-
fore use a heuristic packing algorithm.

Our implementation follows a recursive approach of pack-
ing a set of rectangular packages into one rectangular con-
tainer. First, the largest package that fits the container is
placed in a corner. Second, the remaining space is parti-
tioned into three new rectangular containers as shown in
Figure 5. Third, the set of remaining packages is recur-
sively packed into the remaining containers, starting with
the smallest. If no unpacked packages remain, a packaging
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Figure 5: Recursive packing of rectangular objects: Once
a package has been placed in a corner, three new rectangu-
lar containers emerge from the remaining space into which
the remaining packages are recursively packed in the same
manner.

# Trucks Packs Nodes Runtime

01 2 2 5 0.01
02 2 4 10 0.36
03 3 6 15 0.81
04 3 8 20 1.70
05 3 10 25 33.86
06 4 12 30 27.47
07 4 14 35 146.62
08 4 18 45 244.45

Table 2: Results of Experiment II (runtime in seconds).

has been found and the module returns true. To make the
planning algorithm complete, the exact method for three di-
mensional bin-packing (Martello, Pisinger, and Vigo 2000)
could be used. In that case our or any other simplified solu-
tion is an obvious choice as a semantic heuristic.

The implemented attachment combined with the adapted
transport-modules PDDL/M domain was run on examples
based on the transport-numeric domain of the International
Planning Competition 2008. Results are shown in Table 2
(as in the first example, a timeout of 30 minutes and a mem-
ory limit of 1 GB was set) and indicate the time in seconds
until a valid plan was found.

Experiment III

Recently we have shown the feasibility of using the mod-
ular interface to construct a manipulation planning system
(Dornhege et al. 2009b). The symbolic manipulation plan-
ning domain is based on pick-up and put-down actions
and uses semantic attachments implementing a probabilis-
tic roadmap planner (Kavraki et al. 1996) thus generating
sound and executable manipulation plans on the cost of loos-
ing completeness.

Figure 6: This figure shows an excerpt from a manipulation
plan in the tables test scene.

# Runtime [s] # Runtime [s]

01 3.48 ± 1.23 11 12.48 ± 14.74
02 6.08 ± 3.49 12 3.30 ± 0.96
03 3.44 ± 1.61 13 5.80 ± 2.40
04 1.47 ± 0.12 14 24.32 ± 8.63
05 3.77 ± 0.97 15 24.95 ± 9.25
06 3.98 ± 3.01 16 91.87 ± 14.01
07 4.75 ± 2.36 17 30.26 ± 9.74
08 5.27 ± 2.71 18 37.33 ± 6.85
09 63.83 ± 7.67 19 15.50 ± 2.52
10 5.66 ± 7.50 20 78.55 ± 45.61

Table 3: Results for the tables scene. We used problem
instances of increasing difficulty: Simple pick-and-place
tasks, problems that require replacing one other object to
reach the goal configuration, and problems that require re-
placing multiple objects. Runtime average and standard de-
viation are computed over multiple runs using different ran-
dom seeds.

Here we present the results from one test environment.
The scenario consists of the robot surrounded by three tables
(see Fig. 6). Various manipulable items are placed on the ta-
bles such as bottles or cereal boxes. We formulate problems
starting with simple pick-and-place tasks. More complex
problems require the robot to replace one or more objects to
reach the goal. Results shown in table 3 indicate that even
multiple replacing of objects still results in reasonable run-
times. The resulting plans have been verified to be correct in
our simulation environment.

Related Work

In contrast to other planning systems that exploit domain
knowledge, such as SHOP2 (Nau et al. 2003), TLPlan
(Bacchus and Kabanza 2000), or TALplanner (Kvarnström
and Doherty 2000), semantic attachments do not guide the
search process, but provide a more precise domain seman-
tics.

In the past, semantic attachments have already been used
in some domain-specific planning systems for computing
specific action preconditions (Konolige and Nilsson 1980;
Orkin 2006). In this work, we have generalized this idea
to domain-independent planning and have specified a suit-
able PDDL dialect. Moreover, we extend previous work by
describing the use of semantic attachments for computing
action effects.

Semantic attachments enable “outsourcing” of hard
problem-specific computations during planning. In that re-
spect, our goals resemble the ones of Fox and Long (2001),
who tried to isolate optimization problems from planning
problems. The work by Srivastava and Kambhampati (1999)
on decomposing a general planning problem into a resource
and a planning problem is also relevant here. However, they
specifically investigate the relation between resource and
planning problems while we propose a general framework
for combining different kinds of planning.

In the area of robotic planning, the work that comes clos-
est to our intentions is a paper by Cambon et al (2004). They
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also work on the integration of manipulation and symbolic
planning. However, they did not try to identify a general
interface between symbolic planning and domain planning,
but presented a specialized combination of a symbolic and a
manipulation planner.

The mechanism we propose is similar to an undocu-
mented feature of TLPlan (Bacchus and Kabanza 2000).
This planner also permits semantic attachments to predicate
symbols (Botea, Müller, and Schaeffer 2003). The main
differences to our approach are that TLPlan uses domain-
dependent search control, that the planning state cannot be
queried via call-back functions, and that it is not possible to
specify externally computed effects.

Conclusion

Planning occurs in many real-world problems. However, ap-
plying AI Planning techniques to solve them is often diffi-
cult, mainly because the planning problem cannot be iso-
lated from other reasoning tasks which the planner is not
designed to solve. Some aspects of the dynamics of an ap-
plication domain may be hard or even impossible to describe
declaratively, but must instead be computed when needed.

This is perhaps most notable in robotics applications
where causal, symbolic reasoning must be tightly entwined
with numeric computations, and where both may directly
influence each other. We believe that the impossibility to in-
terface non-symbolic reasoners (manipulation planners, path
planners) during the planning process in most current plan-
ners has been a major hindrance for their use in robotics.

In this paper, we have presented an approach to integrat-
ing external reasoning mechanisms, so-called semantic at-
tachments, directly into a planner. We have specified a suit-
able extension of PDDL to model them, and have described
criteria under which soundness and completeness of plan-
ners are maintained when they are extended with semantic
attachments. This allows domain designers to use domain-
independent planners, and extend them with domain-specific
sub-solvers where necessary. These “modules” can influ-
ence the course of the planning process directly by provid-
ing the planner with better information about action applica-
bility and effects, thereby reducing future execution failures
and the need for replanning.

In future work, we will focus on the impact of module
relaxations on the efficiency and accuracy of heuristics. Ad-
ditionally, we will remove an important (and somewhat ar-
bitrary) restriction from PDDL/M and our implementations:
In general, there may be many options for how to achieve a
module effect. E.g., a manipulation planner may find sev-
eral poses from which it could grasp an object. Currently,
we only permit modules that return exactly one result. In
future work, we will enable the planner to branch over an
initially unknown, yet finite number of outcomes online.
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