
Hierarchical Task and Motion Planning in the Now ∗

Leslie Pack Kaelbling and Tomás Lozano-Pérez
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
32 Vassar St., Cambridge, MA, USA

Abstract

In this paper we outline an approach to the integration of
task planning and motion planning that has the following
key properties: It is aggressively hierarchical. It makes
choices and commits to them in a top-down fashion in an at-
tempt to limit the length of plans that need to be constructed,
and thereby exponentially decrease the amount of search re-
quired. Importantly, our approach also limits the need to
project the effect of actions into the far future. It operates
on detailed, continuous geometric representations and partial
symbolic descriptions. It does not require a complete sym-
bolic representation of the input geometry or of the geometric
effect of the task-level operations.

Introduction

As robots become more robust and capable of sophisticated
sensing, navigation, and manipulation, we will want them
to carry out increasingly complex tasks over long time hori-
zons. A robot that helps in a household must plan over the
scale of hours or days, considering abstract features such as
the desires of the occupants of the house, or what time the
UPS delivery is likely to arrive, down to detailed geometric
reasoning in support of putting objects away in cupboards or
washing dishes. Such long-term planning requires integra-
tion of task and motion planning.

The strength of symbolic task planners is their ability to
reason over very large sets of states by manipulating partial
descriptions, for example, all the possible states in which
“the robot is in the kitchen and the blue chair is in the
kitchen”. However, these task planners work by enumer-
ation: all possible operations are considered in a state, in
order to expand it in the search. In geometric domains, enu-
meration of possible operations and complete symbolic de-
scription of states is difficult or impossible, depending on
selected vocabulary and desired resolution.

Motion planners, on the other hand, deal beautifully with
geometry, but not with abstract features of the domain; they
can plan how to get to the phone but not decide that a phone
call needs to be made. Motion planners also have limited
ability to deal with partially specified states. They do not
compute paths for the robot from the kitchen to the living
room without having to know where all the furniture is.

∗This work was supported in part by the National Science Foun-
dation under Grant No. 0712012.

In this paper we outline an approach to integration of task
planning and motion planning that has the following key
properties:
• It is aggressively hierarchical. It makes choices and com-

mits to them in a top-down fashion in an attempt to
limit the length of plans that need to be constructed, and
thereby exponentially decrease the amount of search re-
quired. Importantly, our approach also limits the need to
project the effect of actions into the far future.

• It uses goal regression, constructing partial symbolic de-
scriptions of desired subgoals and making queries in a
continuous geometric representation of the initial state. It
does not require a complete symbolic representation of
the input geometry or of the geometric effect of the task-
level operations.

Hierarchy Most work in hierarchical planning uses the
hierarchy as a kind of search heuristic: it can speed the
construction of a complete low-level plan with guaranteed
soundness or even optimality conditions. Our proposal is
more aggressive: we will sacrifice optimality in exchange
for a method that solves a small planning problem at a high
level of abstraction, commits to the plan, solves a problem of
achieving the first subtask in that plan, commits to that plan,
and so on, until primitive actions are reached and executed.

This aggressive approach to hierarchical planning has sev-
eral consequences:
• All planning problems are short-horizon and therefore ef-

ficient. Planning cost is the minimum of an exponential
in the horizon and a polynomial in the size of the state
space; we expect to be working in domains in which the
state spaces are very large or infinite, meaning that de-
creasing the horizon is crucial.

• Subtasks can be serialized by propagating constraints
across a planning level and down to lower planning levels.

• Detailed forward progression of the effects of actions is
not necessary. When, for example, it is time to make the
detailed plan for the second subtask of a more abstract
plan, we will already have executed the first subtask, and
can plan “in the now,” conditioned on the actual state of
the world. This property is useful even in deterministic
domains, but becomes crucial when world dynamics are
uncertain.

33



• The robot will sometimes embark on a plan, and begin
executing it, only to discover that some or all of the early
steps were mistaken. Our assumption is that most actions
are reversible without huge cost. In the case of subtasks
that involve irreversible or highly expensive actions, we
would invoke a more complete planning algorithm before
beginning execution.

Symbolic and geometric planning We use a goal-
regression planner, which starts with a symbolic represen-
tation of the goal, and works backwards, constructing sym-
bolic descriptions of subgoals, until all of the conditions in
a subgoal hold in the initial state. The initial state is rep-
resented geometrically and can support any query about the
truth of a condition. This planning structure allows ’new’
geometric entities, such as regions of interest in task space,
to be constructed during the planning process, and does not
require a complete a priori enumeration of salient locations
or objects in advance. Because the domain of objects is not
specified in advance, we cannot use standard STRIPS add and
delete lists to characterize the effects of actions; we augment
the planning approach with additional geometric reasoning
capabilities.

We handle the integration of continuous geometric plan-
ning with enumerative task planning by using geometric
’suggesters’, which are fast, approximate geometric com-
putations that help the high-level processes make appropri-
ate choices. For example, it is possible to determine which
objects need to be moved out of the way by planning a
path for a conservatively grown object in the 3D workspace
rather than in the high-dimensional configuration space of
the robot.

This paper outlines a basic framework for hierarchical
planning in the now, and provides very preliminary demon-
strations in mobile manipulation-planning tasks of moderate
complexity. It is currently only applied in deterministic do-
mains, but we have designed the framework to be extended
to domains with uncertainty in both state and dynamics.

Related Work

There is a great deal of work related to ours; we attempt to
illustrate the main points of contact here.

Manipulation planning The problem of manipulation
planning is to take a goal configuration of several objects,
and generate a plan consisting of robot trajectories and
grasping operations that will result in the desired configu-
ration (Lozano-Perez, Jones, and Mazer 1987; Alami, Lau-
mond, and T.Simon 1994; Koga and Latombe 1994). Plan-
ning in hybrid spaces, combining discrete mode switch-
ing with continuous geometry, can be used to sequence
robot motions involving different contact states or dynam-
ics. Hauser and Latombe (Hauser and Latombe 2009) have
taken this approach to construct climbing robots.

Planning among movable obstacles generalizes manip-
ulation planning to situations in which additional obsta-
cles may need to be moved out of the way in order for
a manipulation or motion goal to be achieved. In this
area, the work of Stilman et al. (Stilman and Kuffner 2006;

Stilman et al. 2007) takes an approach similar to ours, in
that it plans backwards from the final goal and uses swept
volumes to determine, recursively, which additional objects
must be moved. Our framework treats the problem of mov-
able obstacles in the context of a general regression-based
symbolic planner. In the current implementation, it does
not consider sufficiently many object placements to be com-
plete.

Integrating symbolic and geometric planning In the
work of Cambon et al. (Cambon, Alami, and Gravot 2009), a
symbolic domain acts as a constraint and provides a heuris-
tic function for a complete geometric planner. Plaku and
Heger (Plaku and Hager 2010) extend this approach to han-
dle robots with differential constraints and provide a utility-
driven search strategy. Choi and Amir (Choi and Amir 2009)
solve the problem of hand-constructing symbolic represen-
tations of geometric states and actions of interest by con-
structing a roadmap of the geometric space and extracting
salient features to construct a symbolic domain description.

Hierarchical planning Hierarchical approaches to plan-
ning have been proposed since the earliest work of Sacer-
doti (Sacerdoti 1974), whose ABSTRIPS method generated
a hierarchy by leaving off preconditions, in a way similar
in spirit to our method. Marthi et al. (Marthi, Russell, and
Wolfe 2007) have developed a framework that gives hierar-
chical domain descriptions real semantics, and can dramat-
ically speed up the search for optimal plans based on upper
and lower bounds on achievability or value that are speci-
fied for abstract operators. Our work is similar in spirit, but
sacrifices optimality quite aggressively for efficiency.

Nourbakhsh (Nourbakhsh 1998) suggests a hierarchical
approach to interleaving planning and execution that is sim-
ilar to ours and runs experiments on a real mobile robot, but
with no detailed geometric reasoning. The work of Wolfe et
al. (Marthi, Russell, and Wolfe 2010) provides a hierarchi-
cal combined task and motion planner based on hierarchical
transition networks (HTNs) (Nau et al. 2003) and applies it
to a manipulation-planning problem.

Example

Consider the domain shown in figure 1.1. The goal is for
the object labeled A to be clean and put away in the stor-
age room. To do this, the robot must take A, put it into
the washing room, wash it, and then move it to the storage
room. Accomplishing this requires moving other objects. In
the following, we describe informally how this problem is
solved by our system.

• The domain is formalized using fluents, which are like
logical predicates, to describe its symbolic aspects. The
fluents are In(object, region), Overlaps(object,region),
Clean(object), and ClearX(region,objects). The last
means that the region is clear except for certain objects.

• Possible operations are described using a gener-
alization of STRIPS planning rules. The opera-
tions are PickPlace(obj, startRegion, targetRegion),
ClearX(region, objects), RunWasher(object), and
Remove(object, region).

34



Figure 1: Washing domain, in which the robot must move object A to the washing area, wash it, and put it in the storage area.

• A starting state is determined, as a geometric model,
shown in 1.1. This domain is three-dimensional, and the
figures here are shown looking down from above.

• The goal is specified as a conjunction of fluents:
In(a,Storage)∧Clean(a).

• A recursive process of planning and execution is begun;
the entire process is shown as a tree in figure 2.

• 1. Blue nodes in the tree, labeled with numbers, denote
planning problems. The first planning problem is the top-
level goal. It is first addressed with abstract versions of
the subtasks, for which it is not required to make the pre-
conditions true. In this case, a two-step plan is made; it
is shown as two descendant purple nodes, each of which
represents a subtask. The plan is to run the washer with a
in it, and then to place a into the Storage region.

• Now, that plan is recursively executed, by executing each
of its subtasks in turn. If a subtask is a primitive do-
main action, then it is executed directly; otherwise, it
is refined. A subtask’s refinement is typically another
goal to be planned for and achieved. Here, the abstract
runWasher(a) subtask is refined into the goal Clean(a).

• 2. We now plan for the goal Clean(a), and generate a plan
with two subtasks. Because it has the abstract RunWasher
as an ancestor, this time, the RunWasher subtask is con-
sidered concretely, and its precondition, that a be in the
washer, is satisfied by a preceding pick-and-place abstract
subtask that puts a into the washer.

• 3. We execute the first subtask, which causes us to plan
to put a into the washer. The resulting plan has two sub-
tasks. The first abstractly requires that a swept volume
that results from moving the object a, as well as the robot,
from its current location to a location in the washer, via
a home location, is free. The swept volume is shown in
figure 3.1 as a complex brown polygon; it was computed
using a fast planner that considered only translations of
the object, with a gripper attached to it. The second sub-
task is a concrete pick and place operation on a, which
can take place once that swept volume is cleared.

• 4. Now, we plan concretely for clearing the swept vol-
ume, while maintaining that a is in its starting location
(if it gets moved elsewhere in the process, then the swept
volume may no longer be adequate); this condition will
be present in all goals of this subtree. The resulting plan
is comprised of abstract operations to remove both b and c
from the swept volume. Because we do not yet have good
cost estimates for abstract actions, the planner decides to
remove b first.

• 5. To remove b from the swept volume, a parking place,
shown as PB in figure 3.1, is suggested. The suggestion
is made to guarantee that it will not conflict with moving
a. The planner now determines that c is in the swept vol-
ume of b, and finds a parking place PC for it, as shown in
figure 3.2. The plan is to move c and then to move b.

• The subtask to move c is refined into a primitive subtask.
At this point, a grasp location is selected and a robot mo-
tion planner (in this case, a simple RRT implementation)

35



Figure 2: Planning and execution tree for washing and putting away an object. Dashed arrows are subtask refinements.

Figure 3: Suggestions for swept paths and parking locations.

36



is called to plan both phases of the pick and place opera-
tion. The primitive operation is executed in the world,
with the result shown in figure 1.2.

• Similarly, a detailed motion for moving b is planned and
executed in the world, resulting in figure 1.3.

• We continue with the recursive execution of the tree we
have constructed. Executing the subtask for removing c
from the swept volume of a requires no further work, as
the condition it was intended to establish has already been
done as part of removing b.

• Now, we plan and execute in the world motions to move
a to a location inside the washer, resulting in figure 1.4.

• The symbolic primitive runWasher is now executed in
the world, and the object a is clean.

• 6. We have come back to the root of the tree and now have
the job of planning to put a in storage; notice that it is re-
quired that we maintain Clean(a), which was established
by the previous subtask. This planning task is illustrative
of the idea of planning in the now: The object a was
placed in some particular pose inside the washer by the
low-level pick-and-place planner. We never had to simu-
late exactly where it would end up. Instead, we have ac-
tually executed it, and the planning problem in this step is
executed with respect to a new starting state, correspond-
ing to figure 1.4.
So, with aX being the pose of a inside the washer, we find
a path and corresponding swept volume that would move
it to the storage region, and plan to clear that new swept
volume, then move a to storage.

• 7. The only step required is to move d out of the new
swept volume for a.

• 8. A parking place is suggested for d, shown as DP in
figure 3.3, and we plan to move d there.

• We plan and execute primitive motions to move d, re-
sulting in figure 1.5.

• Finally, we plan and execute primitive motions to move
a into storage, resulting in figure 1.6.

Hierarchical Planning

Now, we describe the system somewhat more formally.

Representation

Any planner that has to reason about geometric and non-
geometric properties of the world requires a hybrid repre-
sentation. It is tempting to try to make a complete symbolic
summary of the geometric state of the world. That is ulti-
mately quite difficult when, for example, the planner needs
to reason about different regions of space that are specified
dynamically or constructed during the process of planning.

For this reason, we only represent the world state that is
current at the time of planning in complete geometric detail.
During planning, the goal “state” (which is actually a sym-
bolic specification of a set of satisfactory states in terms of
both geometric and non-geometric properties) and interme-
diate states are specified symbolically, but include geometric

predicates that constrain the underlying physical states of the
world.

The goal, as well as intermediate planning states, is rep-
resented as a conjunction of fluents. A fluent is a symbolic
predicate, such as In(obj, region) = True, whose arguments
may be variables or constants. Constants can be names of
objects or geometric specifications of regions of space. Flu-
ents have several procedural attachments, to facilitate both
geometric and symbolic reasoning:

• test: a procedure that, given ground values of the argu-
ments, can be applied to the current geometric world state,
and returns True or False.

• contradicts: a procedure that takes another ground fluent
and returns True if they contradict one another and False
otherwise.

• entails: a procedure that takes another ground fluent and
returns True if this fluent logically entails the other one,
and False otherwise.

We encode the knowledge of the preconditions and effects
of operations in a set of subtask descriptions. Subtasks are
not organized into a rigid hierarchy, but may refer to one
another as needed. A subtask is specified by the following
components:

• target fluent: A single fluent which is the ’desired effect’
of the subtask. The arguments of the fluent are variables.

• variables: The subtask variables include the variables in
the target fluent as well as existential variables whose
value is chosen during the planning process.

• preconditions: A procedure that maps bindings of the
target-fluent variables into a conjunction of fluents that
describe the set of states in which executing this subtask
will cause the target fluent to be true. This procedure also
takes the current geometric state and the symbolic state to
which the operator is being applied as input, so that it can
make choices of existential variables that are unlikely to
generate contradictions.

• side-effects: A list of fluents describing additional effects
of executing this subtask; fluents may have an unspeci-
fied value, which signifies that the subtask may change
the value of the fluent, in an undetermined way. It is im-
portant to be able to have an incomplete effects model at
more abstract levels of the hierarchy.

• constraints: A list of fluents that should be true when this
subtask is executed and which must be true when it termi-
nates. These are derived during the planning process and
passed backward and down the plan tree.

• refinement: A procedure that maps bindings of the sub-
task variables, the current geometric world state, and cur-
rent constraints into a refinement of this subtask at the
next lower hierarchical level: a refinement can be a primi-
tive action or a conjunctive goal specification (which will
require subsequent planning).

Subtask definitions for our domain are provided in section .

37



Constructing an operator hierarchy

Inspired by Sacerdoti’s (Sacerdoti 1974) approach to con-
structing a planning hierarchy, we also build our hierarchy
on the idea of postponing consideration of some or all pre-
conditions of a subtask. In the current implementation, we
first consider a subtask completely abstractly, ignoring its
preconditions during planning, and assuming they can be
made true when it is time to plan for and execute the sub-
task. When the abstract subtask is executed, a new plan is
made, taking all of its preconditions into account. In future
implementations, we would have multiple levels of abstrac-
tion and some additional reasoning about how abstractly to
consider a subtask each time it is encountered.

Planning by goal regression

Our starting state is encoded in complete geometric detail,
in the form of an actual world that we can measure or a
highly accurate geometric model. Our goal is specified by
a conjunction of symbolic fluents. There are generally three
choices in designing the search process for a planner: for-
ward search over sequences of operations from the starting
state, backward search over sequences of operations from
the goal, or a more general search in the space of plans.
Plan-space search can be very difficult to guide heuristically,
so we opt for a search over operation sequences.

It is difficult to compute a complete symbolic represen-
tation of the initial state, which would be necessary to sup-
port fully symbolic forward-search planning. So, we per-
form goal regression, starting from a symbolically-encoded
goal (which will, in general, contain fluents with geomet-
ric content). The search works backward from the goal to
other symbolic precursor conditions, until it reaches a sym-
bolic condition that holds in the geometric representation of
the start state; the test attribute of each fluent allows it to be
evaluated in the geometric model.

Our planner is a relatively standard goal-regression plan-
ner, with one important exception. In standard goal regres-
sion, states of the search are conjunctive goal conditions. A
state is expanded (backwards) by computing, for each pos-
sible operator, the weakest precondition of the state under
the operator: that is, what would have to be true at some
time t in order for the execution of that operator to make the
state true at time t +1. Our difficulty is that we cannot enu-
merate all possible operators: the sets of poses and grasps
for objects and paths between locations are infinite. During
regression we apply geometric suggesters: procedures that
take the current geometric reality and the state that we de-
sire to achieve and suggest bindings of existential variables
in the subtask descriptions, such as paths and grasps, based
on a fast, approximate motion planner.

For example, consider a case where the goal condition
specifies that some object a be in a particular region. A sub-
task of moving a into that region can make that condition
true; but the preconditions of the subtask will require a deci-
sion about where that object is to be moved from. Traditional
symbolic planners enumerate all possible such locations, but
in general geometric spaces, this is impossible. It is crucial,
and often sufficient alone, to consider the current geometric

starting pose of the object. Another useful type of location
to consider is a “parking place”: a location that is relatively
out of the way of the objects involved in the goal. We dis-
cuss our particular set of geometric suggesters in more detail
in section .

Unless the suggesters are well informed about the context
of their suggestions, there is a risk that the suggestions will
generate contradictions with other aspects of the goal, and
therefore be rejected. So, we adopt the strategy of moving
part of the test into the suggester: the suggesters are given
the context of the fluent that is to be achieved (that is, the
other conjuncts in the current regression goal) and are asked
to guarantee that the variable bindings they suggest will be
compatible with the rest of the goal condition.

This mechanism can be used to manage resources more
generally: a subtask can “reserve” a resource by adding a
precondition that requires the resource to be available before
the subtask is executed. Other subtasks that may be added to
the plan will be able to observe the reservation and respect
it while making their own choices.

We define the planning domain as follows:

• initial state: The goal condition, represented as a con-
junction of ground fluents.

• termination condition: A procedure that takes a state of
the search, which is a conjunction of ground fluents, and
returns True if all of the fluents hold in the initial geomet-
ric state and False otherwise.

• successor function:

– Given a state, find all subtasks whose target fluent can
be matched with a fluent in the state.

– For each such subtask, generate one or more ground in-
stances by suggesting values for existential variables.
If an abstract version of the subtask is not an ances-
tor of this problem in the planning/execution tree, then
consider this subtask abstractly by ignoring its precon-
ditions in the next step.

– Compute preconditions and side-effects for each
ground subtask.

– If neither the preconditions nor the side-effects are in
contradiction with any other fluents in the state, then
construct a successor state from the conjunction of all
fluents from the original state and all of the precondi-
tions, with the target fluent and any other fluents that
are entailed by the precondition removed.

– Annotate any ground subtask that is used to generate
a legal successor state with any fluents that occur both
before and after the execution of that subtask: those flu-
ents are maintenance constraints that are passed down
to the expansion and execution of the subtask.

– Return a set of pairs of (subtask, successorState) so
constructed.

The planning procedure, then, is:

PLAN(startState,goal):
A∗ search in the space defined above

heuristic(s): num fluents in s not true in startState

38



Hierarchical planning and execution

The regression-planning algorithm is used to solve single
planning subproblems within the overall hierarchical plan-
ning and execution architecture. The architecture can be
thought of as doing a depth-first traversal of a planning tree,
and is implemented as a recursive algorithm. Because the hi-
erarchical structure is not uniform (it may be deeper in some
parts of the tree than others) the process is framed in terms
of doing jobs, dispatching on the type of the job to be done.
Jobs can be of the following types:

• Primitive: an action that may require further geometric-
only planning, but that requires no further symbolic plan-
ning. Examples include putting an object in a location, or
turning on a washing machine. This is a leaf of the hi-
erarchical planning process, which ultimately results in a
change in the real physical world and in the model that is
being used by the planner.

• State: symbolic description of a desired world state, given
as a conjunction of fluents.

• Sequence: ordered list of subtasks.

• Subtask: A step in a plan. Can be refined in the current
world into a primitive job, a sequence of jobs, or a state to
plan for.

The algorithm is as shown below. The planning and ex-
ecution system is invoked by calling do(job,world), where
job is the highest level goal for the system and world is a
queryable representation of the world (either the world itself
or a high-fidelity model). The last case is entered and the
regression planner called to make a plan p. That plan is then
executed, by recursively executing each of its subtasks in se-
quence. If a subtask’s fluent has been serendipitously made
true by a previous step, then it requires no further action.

DO(job,world):
if type(job) == PRIMITIVE:

then EXECUTE(job, world)
elseif TYPE(job) == SUBTASK ∧¬ holds(job.fluent, world):

then DO(job.refinement(world))
elseif TYPE(job) == SEQUENCE:

then for task in job.tasks:
do DO(task, world)

else ; TYPE(job) == STATE:
p ← plan(STATE([],world), job)
if p:

then DO(p, world)
else Raise failed

Domain description

In order to develop intuition for this hierarchical planning
representation and algorithm, we present the formalization
of a simple domain in which a robot can move objects
around in the world, and wash them by putting them in a
special “washer” location.

The fluents in this domain are: In(O,R), meaning that
object O is entirely contained in region R; ClearX(R,Os),
meaning that region R is clear except for the list of objects

Os; Overlaps(O,R), meaning that object O overlaps region
R, and Clean(R), meaning that object R is clean.

The primitives in this domain are PickAndPlace(O,R),
which causes the robot to move object O from its current
starting pose into a pose such that the object is entirely con-
tained in region R; and RunWasher(), which simply causes
the washing machine to be run.

Here is the definition of the subtask of moving an object
O into a region R. It begins by looking in the constraints that
apply to it, to find “tabu” regions T s that it must keep clear;
then it considers two different bindings of variable L, which
is the location from which the object will be moved. Either it
is the object’s location in the current true world state, or it is
a “parking” place, suggested to be not overlapping with the
tabus, nor with other objects in the starting state. It also sug-
gests one or more possible paths that O might move through
in order to get from L to R. The preconditions to doing the
move, then, are that O be in the starting location L, and that
the swept volume of path P be clear of all objects except O.
Once these preconditions are satisfied, then the subtask may
be refined to a pick-and-place operation to be executed by
the fully geometric part of the planner.

PICKPLACE(O,R):
pre:

define: T s ←{T : ClearX(T,X) ∈ constraints}
exists: L ∈ {Loc(O,start),SuggestParking(O,Ts,start)}

P ∈ SuggestPaths(O,L,R)
In(O,L),ClearX(sweptVol(P), [O])

ref: PickAndPlace(O,L,R)

The subtask for clearing a region has no refinement. It
is, essentially, a definition of what it means for a region to
be clear, which is articulated in the preconditions. It finds
all objects X �∈ Os that overlap the region of interest R and
creates a list of preconditions requiring that each of those
objects X not overlap with O. In addition, it requires that no
additional objects be put into the region.

CLEARX(R,Os):
pre:

define: Xs ←{X : Overlaps(X ,R,start) ∈ w∧X �∈ Os}
forall: X ∈ Xs : ¬Overlaps(X ,R)
ClearX(R,Os∪Xs)

ref: none

The following operator causes an object O not to overlap
a region R. Like the previous operator, it is definitional, and
has no refinement. Like pick-and-place, it starts by finding
a set of tabu regions that are constrained to be kept clear
(excluding those that would allow O to remain in them); it
then asks a geometric suggester for a region P, to ’park’ this
object in. It will attempt to find and return such a region that
is reachable from the robot’s current position and that does
not overlap any tabu regions. The preconditions, then, are
that that parking region remain clear except for O and that O
be in P.

39



REMOVE(O,R):
pre:

define: Ts ←{T : ClearX(T,X ,constraints) ∈ state∧O �∈ X}
exists: P ← suggestParking(O,T s,start)
In(O,P),ClearX(P, [O])

ref: none

Finally, we have a simple subtask to make an object clean,
that articulates the geometric precondition that the object be
located in the washer.

WASH(O):
pre: In(O, WASHER)
ref: RunWasher()

Correctness

Our goal in this work is to design a planning and execu-
tion system that can solve extremely long-horizon planning
problems. It is well known that solving such problems ex-
actly is intractable, so it is not reasonable to expect that we
will get something for nothing. We hope that our system
will solve the vast majority of planning problems reason-
ably well: probably not optimally, but not ridiculously. It
will depend the environment being relatively benign, and an
expectation that problems posed will not be puzzles.

This approach rests two major assumptions:

• Conservative preconditions on abstract operations can be
computed efficiently and correctly.

• Subgoals are often serializable.

The first assumption is embodied in the geometric sug-
gesters: it is their job to perform a ’quick and dirty’ com-
putation to suggestion how we will want to move objects
through space or to select an ’out of the way’ location to
put something. Our current approach to the suggesters is en-
tirely heuristic: we have implemented them directly, based
on a visibility-graph planner. However, it is our vision
that the suggesters could actually learn appropriate behavior
from experience: every time a plan is successfully or unsuc-
cessfully executed, it constitutes training examples for the
suggesters, which could eventually come to learn to make
good suggestions in related situations.

In the current system, there is a risk that, if the suggesters
are too liberal, we will plan successfully at the high level
but fail at geometric planning time. Although it is not im-
plemented, it would be straightforward to detect such fail-
ures and invoke the detailed geometric planner in place of
the suggester to get a feasible suggestion.

The second assumption is embodied in the abstract han-
dling of subtasks. When we decline to consider the detailed
preconditions of a subtask, we are implicitly asserting that
the subtask is independent of other subtasks: that is, it can
be achieved in a way that does not depend on the method by
which any of the other subtasks at that level are achieved.
When this is true, it makes planning nearly trivial: a small
set of subtasks must be selected and ordered at the high level,
and can be planned for completely independently.

Completeness and suggestions This planner is not com-
plete, in the sense that it considers only finitely many sug-

gestions in an infinite domain. If the suggesters were ex-
tended to the form of ’generators’, that could be called re-
peatedly to generate new suggestions, ultimately via statisti-
cal sampling or systematic enumeration, we conjecture that
the planner would be complete.

Completeness and serializability: Our approach is ag-
gressive about treating subtasks as being serializable: this
allows very fast planning when subtasks are, in fact seri-
alizable. What happens when they are not? We make the
following conjecture: When primitive actions are reversible,
then this planning and execution algorithm is complete with
respect to any necessary interleaving of subtasks.

Rather than providing a formal proof, we illustrate this
property in an example problem containing only blocks a
and b, configured as they are initially in the washing do-
main. The goal is to swap the locations of the two blocks.
The planning and execution tree is shown in figure 4. The
process operates as follows:

• At the highest level, an arbitrary serialization of the steps
of putting each of the objects, a and b, in its target region
is chosen. The locations from which the objects will be
moved into the goal locations are, as yet, unbound and
shown as ’?’.

• A detailed plan is made for putting a in its destination lo-
cation, consisting of clearing a path from a’s starting lo-
cation to some location in its destination region, and then
executing a pick-and-place operation.

• Clearing the path for a requires causing object b not to
overlap with the path.

• A ’parking place’ for b is suggested, and a plan is made to
move b from its starting location to its parking location.

• Object b is actually moved to a parking place.

• Object a is then actually moved to its goal location.

• Now, it is time to refine the step of putting b in its goal
location; the planner adds the regression condition that a
be in its target region.

• Because it is impossible to put b in its target location with-
out moving a, a new plan is made, involving three pick-
and-place operations, that results in a correct final config-
uration.

Had the subgoals been completely serializable, then the
planning process would have been extremely efficient, and
no extra actions would have been taken. But, because seri-
alization fails in this case, the planner is able to fall back on
doing general purpose regression to generate an interleaved
plan.

Geometric level

Our implementation uses two simple motion planners. As a
basis for the geometric suggesters, we use a planner that fo-
cuses on the motions of objects, and for executing primitive
operations, we use a traditional planner that focuses on the
motions of the robot (potentially with object in hand). Our
figures are showing two projected views of what is, in fact,
a three-dimensional domain.

40



Figure 4: Planning and execution tree for swapping the po-
sition of two objects with strong ordering constraints.

Geometric suggestions

The subtask definitions in our domain use two suggesters:
suggestPaths and SuggestParking. These suggesters are con-
structed using some additional suggesters: suggestGrasps,
suggestPoses and suggestPathTo.
• suggestGrasps(O) – find grasps for O (gripper poses rel-

ative to O) with sufficient overlap of the fingers and an
available approach configuration of the robot. The imple-
mentation enumerates pairs of faces to generate candidate
grasps and discards those that fail the accessibility tests.

• suggestPoses(O,R,Tabus) – find a set of poses for O
where it is completely inside region R, there is no col-
lision with tabu regions, and there is some valid grasp (as
per suggestGrasps) for the object in that pose. The imple-
mentation generates poses in the region and discard those
that fail that grasping accessibility tests.

• suggestPathTo(O,R) – find a path from O’s current pose
to some pose within region R (as per suggestPoses). An
enlarged volume that includes space for the gripper to ap-
proach the object is used as the moving object. The imple-
mentation uses a motion planner that lazily builds a 4-dof
visibility-graph during the search for a path. x,y transla-
tion constraints are represented as C-space polygons for
discrete ranges of z and . Links in the visibility graph
represent either pure x,y translation, z offset or offset.

• suggestPaths(O,R1,R2) – find a region such that having
that region clear enables the robot to reach the object O
and move it from some location in R1 to some location
in R2. This is implemented with two calls to the suggest-
PathTo suggester, one to R1 and the other to R2. The result
region is the swept-volume of the enlarged object along
the paths.

• suggestParking(O,Tabus) – find an “out of the way”
location for O that does not overlap any of the re-
gions in Tabus. The implementation currently is simply

suggestPoses in some designated parking regions; in fu-
ture, the parking regions should be chosen dynamically.

Motion planner

Any approach to finding concrete plans for single pick-and-
place operations can be used as the geometric level of this
approach. The motion planner for the pick-and-place primi-
tives is asked to:

• Find poses in regions, which it does using suggestPoses.

• Find grasp poses, which it does using suggestGrasps.

• Find robot paths, which it does using an RRT-based plan-
ner in 8 dof (3 dof of base, 4 dof of hand relative to base,
and grip opening).

Example results

The plan for washing block a requires 6 primitive actions. A
flat symbolic planner would have required significant search
to find the plan; a geometric planner in the full configura-
tion space could never have started. Here, we solved 8 small
planning problems, the biggest of which required a two-step
plan, and also solved many simple motion plans for sug-
gestions. Finally, we solved detailed robot-motion planning
problems for each primitive action separately.

The web site
http://people.csail.mit.edu/tlp/hierarchicalVideos/
contains movies of the robot solving the swap and wash
examples, as well as several more complex problems. In all
of these cases, we find a considerable decrease in planning
horizon, which comes with an exponential decrease in the
size of the space to be searched.

Conclusions

This paper hints that a strong hierarchical planning and exe-
cution approach may be feasible for solving very large, long-
horizon problems in complex (but not intricate or dangerous)
domains. It will have to be augmented with reasoning about
present and future uncertainty, and with the ability to refine
and acquire the planning models at every level of abstrac-
tion, to be of real future use.

References

Alami, R.; Laumond, J.-P.; and T.Simon. 1994. Two manip-
ulation planning algorithms. In WAFR.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
International Journal of Robotics Research 28.
Choi, J., and Amir, E. 2009. Combining planning and mo-
tion planning. In ICRA.
Hauser, K., and Latombe, J. 2009. Integrating task and
prm motion planning: Dealing with many infeasible motion
planning queries. In ICAPS09 Workshop on Bridging the
Gap between Task and Motion Planning.
Koga, Y., and Latombe, J.-C. 1994. On multi-arm manipu-
lation planning. In ICRA, 945–952.

41



Lozano-Perez, T.; Jones, J.; and Mazer, E. 1987. Handey:
a robot system that recognizes, plans and manipulates. In
ICRA.
Marthi, B.; Russell, S.; and Wolfe, J. 2007. Anglic seman-
tics for high-level actions. In ICAPS.
Marthi, B.; Russell, S.; and Wolfe, J. 2010. Combined task
and motion planning for mobile manipulation. In ICAPS.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An HTN plan-
ning system. J. Artif. Intell. Res. (JAIR) 20:379–404.
Nourbakhsh, I. 1998. Using abstraction to interleave plan-
ning and execution. In Proceedings of the Third Biannual
World Automation Congress.
Plaku, E., and Hager, G. 2010. Sampling-based motion plan-
ning with symbolic, geometric, and differential constraints.
In ICRA.
Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence.
Stilman, M., and Kuffner, J. J. 2006. Planning among mov-
able obstacles with artificial constraints. In WAFR.
Stilman, M.; Schamburek, J.-U.; Kuffner, J. J.; and Asfour,
T. 2007. Manipulation planning among movable obstacles.
In ICRA.

42


