
Toward a Generalization and a Reformulation of Goods in SAT
Preliminary Report1

Djamal Habet and Philippe Jégou
LSIS - UMR CNRS 6168

Université Paul Cézanne (Aix-Marseille 3)
Avenue Escadrille Normandie-Niemen

13397 Marseille Cedex 20, France
{djamal.habet, philippe.jegou}@univ-cezanne.fr

Abstract

Learning useful information when solving SAT or CSP prob-
lems to speed up a tree-search approaches, is one of the
main explored tracks in various works. Such information are
known as goods and nogoods and they aim to forbid to repet-
itively visit the same parts of the search space. Unfortunately
and unlike nogoods, the exploitation of goods is limited to
tree-search approaches based on the structural properties of
the problem. In this paper, we propose to generalize and
reformulate structural goods under SAT. We also propose a
learning scheme of general goods and show their integration
in a DPLL-like procedure.

Introduction

The notion of nogoods is well known and has shown its in-
terest for solving efficiently both the satisfiability problem
(SAT) and the Constraint Satisfaction Problems (CSPs). A
nogood is an assignment of some variables of the problem
which cannot be extended to a solution (or a model). For the
modern SAT solvers, such as MiniSat (Eén and Sörensson
2003), the exploitation of nogoods is one of their principle
aspects and it is usually known as CDCL (Conflict Driven
Clause Learning). When a conflict is reached (an empty
clause is produced), it is analyzed and its reason (a clause)
is learned and recorded, to avoid the occurrence of the same
conflict latter during the search. This learnt nogood allows
to prune the search tree. Moreover, this analysis allows to
realize a non chronological backtracking.

The dual notion of a nogood is a good. A good is a
partial truth assignment which can be extended to solve a
part of the problem and to realize consequently a forward-
jump during the search . This notion has firstly been intro-
duced in the field of CSPs in (Bayardo and Miranker 1994)
to solve binary tree-structured constraint networks. It has
been extended in (Jégou and Terrioux 2003b) to solve con-
straint networks which are neither necessary binary nor tree-
structured, and then has also been extended to Valued CSPs
in (Jégou and Terrioux 2003a). This approach has allowed
to solve really hard structured instances (de Givry, Schiex,
and Verfaillie 2006). Recently, it has been reformulated in
the field of SAT in (Habet, Paris, and Terrioux 2009).

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nevertheless, these goods have only been defined using
structural criteria - they are called structural goods - which
is really a particular and a limited use case. In this paper,
we aim to reformulate and generalize the notion of good, in-
dependently of structural criteria and show how they can be
exploited for solving SAT instances. Particularly, we show
how can such goods be extracted (learnt) and easily inte-
grated in a classical DPLL algorithm, with the hope to en-
hance its efficiency. This preliminary work is a first track to
generalize the notion of goods.

The paper is organized as follow. It starts by a recall of
elements about SAT and the DPLL procedure. We will then
give and recall the definition of structural (no)goods. Then
we present our main contribution by generalizing the notion
of goods in SAT by defining this notion and then explaining
their detection and integration in a DPLL search. After that,
we discuss some related work then conclude and give some
perspectives1.

Basic Notions

This section is dedicated to the definition of the SAT prob-
lem and to a reminder of the DPLL algorithm which are nec-
essary for the rest of the paper.

About SAT

A satisfiability instance F is defined by F = (X , C), where
X is a set of boolean variables (taking their values from the
set {true, false}) and C is a set of clauses. A clause is a
finite disjunction of literals and a literal is either a variable or
its negation. For a given literal l, var(l) = {v|l = v or l =
¬v} is the singleton-set of the variable which concerns l.
Furthermore, a literal is viewed as a clause with only one
literal which matches with the definition of a unit clause. If
l = ¬v, then ¬l will be used to denote v. Moreover, for a
given clause c, the set var(c) = ∪l∈cvar(l) defines all the
variables that are involved in c (l ∈ c means that the literal l
appears in c). For example, if c = x1 ∨ ¬x2 ∨ ¬x3 then we
have var(¬x2) = {x2} and var(c) = {x1, x2, x3}.

A truth assignment I of the variables of F is represented
by a set of literals that verifies the condition ∀(l1, l2) ∈ I2

such that l1 �= l2, we have var(l1) �= var(l2). A variable

1This work is supported by ANR UNLOC French project
(ANR-08- BLAN-0289-04).

26

that appears positively (resp. negatively) in I means that it
is fixed to the value true (resp. false). Besides, a truth
assignment I of the variables X is said to be partial if |I| <
|X | and complete if |I| = |X | (all the variables are fixed).

Moreover, given a truth assignment I of a set of a vari-
ables Y ⊆ X and the subset Z ⊆ Y , I[Z] is the projection
of I on the variables of Z. A clause c is satisfied by a partial
truth assignment I if ∃l ∈ I such that l ∈ c. A clause c is
reduced by a partial truth assignment I if ∃l ∈ I such that
¬l ∈ c. A clause c is falsified by a partial truth assignment
I if ∀l ∈ c,¬l ∈ I . A model for F is a truth assignment
which satisfies all the clauses of F . Finally, Sol(F) denotes
the set of all the models of F .

Accordingly, the satisfiability problem (SAT) consists in
determining whether a CNF formula F admits a model
(Sol(F) �= ∅). If it is the case, F is said satisfiable, oth-
erwise F is unsatisfiable.

About DPLL Algorithm

Here we recall the original DPLL prcoedure, which will be
modified in the incoming sections according to the goods
concept.

The Davis-Putnam-Logemann-Loveland procedure
(DPLL) (Davis, Logemann, and Loveland 1962) is one of
the best complete procedures for SAT. It is a backtracking
algorithm: at each step, it chooses a variable according
to some branching heuristic (line 6 in Algorithm 1), sat-
isfies this variable, simplifies the SAT instance and then
recursively checks if the simplified instance can be satisfied
(line 7). If this is the case then the initial SAT instance
is satisfiable. Else, an identical recursive call is achieved
assuming the opposite truth value for the current branching
variable (line 8).

Algorithm 1: DPLL(in: C, I)

Unit-propagation (C, I)1

if � ∈ C then return false2

else3

if C = ∅ then return true4

else5

Choose an unassigned variable v (branching6

heuristic)
if DPLL (C ∪ {v}, I ∪ {v}) then return true7

else return DPLL (C ∪ {¬v}, I ∪ {¬v})8

Algorithm 2: UnitPropagation(in/out: C, I)

while there is no empty clause and a unit clause l exists in C1

do
I ← I ∪ {l} (satisfy l)2

simplify C3

The simplification step essentially deletes the satisfied
clauses and reduces the size of the clauses containing falsi-
fied literals. Hence, the DPLL algorithm constructs a binary
search tree where its nodes are results of the recursive calls.

While a solution is not found, all leaves represent a dead-end
corresponding to a contradiction (an empty clause denoted
by �). From a practical point of view, Minisat like solvers
are actually considered as the most powerful complete ones
when solving large real-life SAT instances. Such solvers are
based on recording during the search some nogoods issued
from CDCL mechanisms (conflict analysis).

Structural Nogoods and Goods

As introduced previously, the known exploitation of goods
is limited to a structural based resolution of the SAT or CSP.
Hence and before generalizing the definition of goods, we
recall here their definition (including nogoods), properties
and use in the context of a tree-decomposition based ap-
proach for SAT.

At first, the following definition introduces the tree-
decomposition, as defined in (Robertson and Seymour
1986), which uses the primal graph representation of a SAT
instance. For more details about the tree-decomposition
based-approach for SATplease refer to (Habet, Paris, and
Terrioux 2009) (to find for example the definition of EH)
used below).

Definition 1 Let G(X ,C) = (V, EH) be the (primal) graph
associated to a SAT instance F = (X , C). A tree-
decomposition of G(X ,C) is a pair (E, T) where T = (J, F)
is a tree with nodes J and edges F and E = {Ei : i ∈ J} a
family of subsets of V , such that each subset (called a clus-
ter) Ei is a node of T and verifies: (i) ∪i∈JEi = V , (ii) for
each edge {x, y} ∈ EH , there exists i ∈ J with {x, y} ⊆ Ei,
and (iii) for all i, j, k ∈ J , if k is in a path from i to j in T ,
then Ei ∩ Ej ⊆ Ek.

The set Desc(Ej) defines the variables belonging to Ej

or to a descendant Ek of Ej . Also, let Ei be a cluster and
Ej one of its children, Epar(j) is the parent cluster Ei of
Ej (Epar(1) = ∅: E1 is the root cluster). Moreover, the
set Epar(j) ∩ Ej defines the separator between Ej and its
parent. Finally, the set C[Ei] contains the clauses belonging
exclusively to the cluster Ei (C[Ei] = {c ∈ C|var(c) ⊆
Ei and var(c) �⊆ Epar(i)}).

Based on the structural properties of the graph represen-
tation of a SAT instance, the tree-decomposition of the ini-
tial instance divides it into independent parts (clusters) but
which are still linked by the separators: fixing the variables
of a separator disconnects the initial problem into two inde-
pendent parts.

Accordingly, solving the initial instance amounts to solve
its various parts (clusters): starting from the root and using a
depth-first-search algorithm, each cluster Ei is treated sepa-
rately. If all the clauses restricted to this cluster are satisfied
then one of its children Ej (if exists) is treated by extending
the truth assignment of the variables of Ei to those of Ej .
If this process fails then it is not possible to extend the truth
assignment of the variables of the separator, between Ei and
Ej , to a model and a nogood is detected. Storing this nogood
can be helpful to avoid repeating the same treatment in the
case of a backtrack on the cluster Ei and the occurrence of
the same truth assignment of the variables of the separator.

27

In the same way and for the same reasons, if the clauses
of the cluster Ei and those of clusters of its descendant are
satisfied then it is also useful to store the truth assignment of
the variables of the separator as a scalable truth assignment
for this part of the instance and a good is detected. Hence,
such (no)goods allow pruning the search space as formalized
in follow:

Definition 2 Given a cluster Ei, a truth assignment I on
a subset of Ei ∩ Epar(i) is a structural good (respectively
nogood) of Ei if any extension of I on Ei ∩ Epar(i) can be
extended to a model of FEi,I (resp. if Sol(FEi,I) = ∅).

In this definition, FEi,I is the subproblem formed by all
the clauses and the variables of the cluster Ei and its de-
scendant clusters with additional constraints expressing the
current truth assignment of the variables in the separator be-
tween Ei and its parent. According to this definition, a struc-
tural good (resp. nogood) is a truth assignment I on a subset
of Ei ∩ Epar(i) which can (resp. cannot) be extended to a
model of FI,Ei . Remark that these (no)goods are recorded
on the separator between Ei and Epar(i)

Property 1 Given a cluster Ei and a subset Y ⊆ X such
that Desc(Ei) ∩ Y ⊆ Ei ∩ Epar(i), for any good g of Ei,
every truth assignment I on Y can be extended to a model
of FEi,I[Ei∩Epar(i)] if there exists an extension eg of g on
Ei ∩ Epar(i) such that I[Ei ∩ Epar(i)] ⊆ eg .

This property gives the condition that allows us to make
a cut according to the recorded goods. Extending eg to g is
the operation of completing g by interpreting some (or all)
of the unassigned variables on the separator Ei ∩ Epar(i) in
g, if necessary to ensure that I[Ei∩Epar(i)] ⊆ eg , otherwise
we have e = eg (and also when |e| = |Ei ∩ Epar(i)|). In a
more obvious manner, the next property expresses the cut
conditions by the nogoods.

Property 2 Given a cluster Ei and a subset Y ⊆ X such
that Desc(Ei) ∩ Y ⊆ Ei ∩ Epar(i), for any nogood ng of
Ei, no truth assignment I on Y such that ng ⊆ I can be
extended to a model of FEi,I[Ei∩Epar(i)].

This achieves the recall of structural (no)goods definition
and exploitation. The next sections are dedicated to the re-
formulation of goods in a more general scope.

Reformulation of Goods

A More General Definition of Goods

A structural good is a partial truth assignment which satisfies
a part of (SAT or CSP) problem and which can be extended
consistently to satisfy the rest of the problem. This partial
truth assignment is located in a separator of the (hyper)graph
representing the topology of the problem and such assign-
ment disconnects the rest of the problem from the whole one.
This remaining (rest) part (or subproblem) can be solved in-
dependently.

In a more general definition, a good is not necessarily
located in a separator. Nevertheless, the principle remains
similar since we need to preserve the independancy of the

associated subproblem for which the solution is independent
from the solved part of problem.

We present goods by means of two compatible definitions
where the first one is intuitive. Here, a good is a 3-tuple
(Ig, Xg, Cg) where Ig is a partial truth assignment which
can be extended on the variables of Xg ⊂ X while satisfying
a set of clauses Cg independently from the other clauses of
the considered SAT formula. Formally:

Definition 3 First definition. Let F = (X , C) be a SAT
instance, Ig a partial truth assignment, Xg a subset of
variables and Cg a subset of clauses. The tuple g =
(Ig, Xg, Cg) is a good iff:

1. no clause of C is falsified by Ig

2. some clauses of C can be reduced by Ig

3. var(Ig) ∩ Xg = ∅
4. there is a partial truth assignment IXg

such that:
• Cg = {c ∈ C :

c is satisfied by IXg
and ∀l ∈ Ig, var(l) /∈ var(c)}

• if c /∈ Cg is reduced by IXg , then c is satisfied by Ig

As for structural goods, Ig corresponds to the partial truth
assignment associated to the good. The subset of variables
Xg and the subset of clauses Cg correspond to the associ-
ated subproblem. The first and the second conditions indi-
cate that a good cannot be inconsistent. The third condition
stipulates that the good and the subproblem are defined on
different sets of variables. The fourth condition specifies that
there is a model for the subproblem and that this solution has
no consequence on the whole problem, since the truth as-
signment corresponding to this model doesn’t add constraint
for solving the remaining problem (none of its clauses is re-
duced by IXg), assuming that the subproblem defined by Xg

and Cg can be solved consistently and independently.
For example, consider the SAT instance F = (X , C),

where X = {x1, x2, . . . x14}, C = {c1, c2, . . . c12} and:

c1 = (x1 ∨ x2 ∨ x3 ∨ x4)
c2 = (¬x3 ∨ x5 ∨ x6)
c3 = (¬x4 ∨ x7 ∨ x8)
c4 = (¬x5 ∨ x8)
c5 = (x6 ∨ ¬x7)
c6 = (¬x6 ∨ x9 ∨ x10)
c7 = (¬x8 ∨ x11 ∨ x12)
c8 = (¬x1 ∨ x13 ∨ x14)
c9 = (x2 ∨ x13 ∨ x14)
c10 = (x3 ∨ x4 ∨ x13 ∨ x14)
c11 = (x9 ∨ x11 ∨ x13)
c12 = (x10 ∨ x12 ∨ x14)
Consider the partial truth assignment

{¬x5,¬x6,¬x7,¬x8}. This assignment satisfies the
clauses c4, c5, c6 and c7 while it reduces the clauses c2

and c3. Now, if we consider the partial truth assign-
ment {¬x3,¬x4}, the clauses c2 and c3 are satisfied,
while the clauses c1 and c10 are reduced. Thus, we

28

have a good g = (Ig, IXg) such that Ig = {¬x3,¬x4},
Xg = {x5, x6, x7, x8} (then IXg = {¬x5,¬x6,¬x7,¬x8})
and Cg = {c4, c5, c6, c7}. It is possible to see that the set
of variables {x3, x4} is not a separator of the set of clauses
because their deletion doesn’t disconnect the set of clauses.
So, we have a good on variables which cannot constitute a
structural good.

Goods can be used to avoid revisiting some parts of the
search space during search. If during search, a partial truth
assignment I includes Ig , and if not any variable of Xg is
assigned, then we know that Ig (and I too), can be extended
to the variables of Xg to satisfy the clauses appearing in Cg .
So, these clauses can be deleted, and the next variable to
assign will be a variable that hasn’t already be assigned and
then which doesn’t belongs to Xg . This jump in the search
space is called a forwardjump in BTD (Jégou and Terrioux
2003b).

The second definition of goods replaces Xg and Cg by
IXg

which is a partial truth assignment on variables of Xg

which satisfies clauses of Cg . Note that the set of satisfied
clauses Cg can be computed by selecting the clauses in C
which are satisfied by IXg . So, the size of the good g intro-
duced in this definition will be smaller than that introduced
in the previous one.

Definition 4 Second definition. Let F = (X , C) be a SAT
instance. Let Ig be a partial truth assignment. Let IXg

be a
partial truth assignment. The pair g = (Ig, IXg) is a good
iff:

• no clause of C is falsified by Ig ∪ IXg

• some clauses of C can be reduced by Ig

• var(Ig) ∩ var(IXg) = ∅
• if a clause c is reduced by IXg

, then c is satisfied by Ig

Once the assignment Ig is constructed and if there is a
good g = (Ig, IXg

) that has already been recorded, we can
exploit g by removing clauses (the unrecorded set of clauses
Cg) which are satisfied by IXg

, and then we can realize
a forwardjump by deleting Xg from the set on unassigned
variables. The remaining problem can be solved avoiding
to look for a partial truth assignment which satisfies clauses
that appear in Cg . Thus, the remaining problem to solve will
be the whole current one without the variables belonging to
Xg and without the clauses appearing in Cg . In the rest of
the paper, we will use this second definition.

Integrating Goods in DPLL

The DPLL algorithm must be modified to integrate our gen-
eral definition of goods. This is done in DPLL-Good algo-
rithm. Firstly, we assume that the formula to solve is defined
by an initial set of clauses C0, that is defined on a set of vari-
ables X0. These sets will not be modified during search.
The first call to DPPL-Good will be realized with X = X0,
C = C0 and I = ∅. We assume that a database will be used
to memorize goods. It is denoted G and initially we have
G = ∅. G will be updated during search by adding new
goods. So, before assigning a new variable we decide if the
current partial and consistent truth assignment is a possible

good to add to G. This is realized by the procedure Add-
Good() which can modify the database G. This procedure is
described in details after the algorithm DPPL-Good.

After this first step, we try to exploit goods. The func-
tion Good() is called to find goods. If a good g = (Ig, IXg

)
is found, the function returns true. In this case, we have
Ig ⊆ I and I ∩ IXg

= ∅. After, a forwardjump is real-
ized. Otherwise, the function Good() returns false. A for-
wardjump consists in eliminating Xg from the set of non-
assigned variables and in deleting the set of clauses Cg . The
function FindClauses() is called to compute the set Cg . This
task can be easily realized in selecting the clauses which are
satisfied by the truth assignment IXg .

If we consider the example, with the partial truth as-
signment {x1,¬x2,¬x3,¬x4,¬x5,¬x6,¬x7,¬x8}. The
good g = (Ig, IXg

) where Ig = {¬x3,¬x4} and IXg
=

{¬x5,¬x6,¬x7,¬x8} will be recorded. Later during the
search, assume that we have a new partial truth assign-
ment {¬x1, x2,¬x3,¬x4}. The good g = (Ig, IXg

) can
be exploited. Indeed, considering Ig = {¬x3,¬x4}, the
variables belonging to Xg = {x5, x6, x7, x8} haven’t to
be assigned because we know that a partial truth assign-
ment on Xg can be obtained. So, the clauses belonging to
Cg = {c4, c5, c6, c7} can be deleted. Then, a forwardjump
can be done and the search continues by the assignment of a
new variable (eg. x9).

Algorithm 3: DPLL-Good(in: C,X , I)

Unit-propagation (C,X , I)1

if � ∈ C then return false2

else3

if C = ∅ then return true4

else5

/* possible updating of the good database G */6

AddGood (I, C,X)7

/* possible use of goods */8

if Good (I,G, g) then9

/* We consider a good g = (Ig, IXg) */10

if Xg ⊆ X then11

Cg ← FindClauses(C, IXg)12

C ← C − Cg13

X ← X − Xg14

Choose a variable v ∈ X (branching heuristic)15

if DPLL-Good(C ∪ {v},X ∪ {v}, I ∪ {v}) then16

return true
else return DPLL-Good17

(C ∪ {¬v},X ∪ {v}, I ∪ {¬v})

Algorithm 4: UnitPropagationGood(in/out: C,X , I)

while there is no empty clause and a unit clause l exists in C1

do
I ← I ∪ {l} (satisfy l)2

X ← X − var(l)3

simplify C4

Theorem 1 DPLL-Good is sound, complete and finishes.

29

Proof: We only give here the sketch of the proof. DPLL-
Good differs from DPLL in recording goods and in using
these goods to avoid redundancies in the search. As DPLL
is sound, complete and finishes, we have to prove that the
additional treatments achieved by DPLL-Good do not alter
these properties. We assume that DPLL-Good(C,X , I) is
the current call and we want to check the satisfiability of
the subformula (X , C). If I doesn’t contains a good, then
DPLL-Good runs exactly as DPLL does. If I contains a
good and (X , C) admits a model, then this formula will
be simplified, exploiting a good g = (Ig, IXg), or more
precisely g = (Ig, Xg, Cg). DPLL-Good() will be called
with I and the subset of clauses C − Cg . We know that
the clauses appearing in Cg admit a model, the partial
truth assignment IXg

, while this model doesn’t reduce
any clause of C − Cg . So, (X , C) will be satisfiable
iff (X − Xg, C − Cg) is also satisfiable. By induction,
assuming that DPLL-Good() is sound and complete for
strictly smaller instances, DPLL-Good() is then sound and
complete for (X , C). Moreover, by the same reasons as
DPLL, DPLL-Good() terminates.�

We now describe the procedure AddGood() which com-
putes a good g = (Ig, IXg

) and which updates the database
G by adding it. Note that different strategies can be used and
the number of potential goods can be large. Here we present
a basic algorithm which could be easily modified.

This first proposition of good computation is driven
by time complexity considerations and practical efficiency.
Firstly, we must find the set of variables Xg . This set
corresponds to the set of assigned variables such that the
clauses where they appear are satisfied. Note that the func-
tion Clauses(x) returns the set of clauses where the variable
x appears. The partial truth assignment IXg is computed us-
ing Xg and I .

In the example, assume that the current assignment is
I = {x1,¬x2,¬x3,¬x4,¬x5,¬x6,¬x7,¬x8}. The set of
satisfied clauses is {c1, c2, c3, c4, c5, c6, c7} while clauses
c8, c9 and c10 are reduced. So, the algorithm finds Xg =
{x5, x6, x7, x8} because all the clauses where these vari-
ables appear are satisfied. Moreover, we have IXg

=
{¬x5,¬x6,¬x7,¬x8}

In the second step, we compute the partial truth assign-
ment Ig which is defined by literals which satisfy clauses
which are reduced by literals that appear in IXg , assuming
that these clauses are not also satisfied by IXg . Finally, a pair
(Ig, IXg

) can be added in G if the good (Ig, IXg
) doesn’t al-

ready appears in G.
In the example, the algorithm finds Ig = {¬x3,¬x4}

because the clauses which are reduced by IXg =
{¬x5,¬x6,¬x7,¬x8} are satisfied by Ig = {¬x3,¬x4}.

This version of the algorithm isn’t necessarily the most
efficient considering some criteria. Firstly, the size of the
goods, more precisely, the size of Ig . In the work around
BTD in CSPs (Jégou and Terrioux 2003b), the authors has
observed that the more the size of goods is small, the more
they can frequently be exploited. Moreover, another con-
sequence is related to the size and then the management of
the database G. This management can be easily prohibitive

Algorithm 5: AddGood(in: I, C,X ; in/out: G)

/* finding Xg and IXg */1

Xg ← ∅; IXg ← ∅2

for l ∈ I do3

if ∀c ∈ Clauses(var(l)), c is satisfied then4

Xg ← Xg ∪ {var(l)}5

IXg ← IXg ∪ {l}6

/* finding Ig */7

Ig ← ∅8

for l ∈ IXg do9

for c ∈ C0 such that l reduces c do10

if �l′ ∈ IXg : l′ satisfies c then11

Choose l′′ ∈ I such that l′′ satisfies c12

Ig ← Ig ∪ {l′′}13

/* conditionnal updating of G */14

if (Ig, IXg) /∈ G then G ← G ∪ {(Ig, IXg)}15

from a practical viewpoint. With our algorithm, no limita-
tion is given for this size. So, we could easily introduce a
parameter to limit the maximal size of Ig .

Secondly, the procedure AddGood() must run quickly be-
cause the addition of goods will be checked after each as-
signment of variable in DPLL-Good. So, more other re-
strictions can be considered. For example, we can con-
sider the current assignment I , and then look for vari-
ables of Xg traversing in reverse order the current as-
signment. More precisely, for a current assignment I =
{l1, l2, . . . li, li+1, . . . , lk} such that all the clauses where
variables associated to literals {li+1, . . . , lk} appear are sat-
isfied, while there is an unsatisfied clause which is re-
duced by li while isn’t satisfied by {li+1, . . . , lk}, we
can stop the search for Xg to the variables belonging to
{li+1, . . . , lk}. In this case, IXg

= {li+1, . . . , lk} and
Xg = {var(li+1), . . . , var(lk)}. Considering the ordering
of variables can speed up the computation of goods while
limiting their number. Moreover, this kind of limitation is
similar to the one realized in BTD which is based on ex-
ploitation of compatible orderings in tree-decomposition.

In this section, we have introduced a preliminary presen-
tation of goods. We have pointed potential limitations which
seem necessary for an efficient exploitation of goods. This
kind of limitations will be considered after the implementa-
tion of goods and their experimentation which is out of the
scope of this preliminary paper.

Related Work

The notion of generalized good is naturally related to the
notion of structural good. This relation can be formulated
by a property which links these two notions. It can be done
by giving another (and equivalent) definition of structural
good. This new one will be expressed using the notion of
separator in (hyper)graphs, that is, separator in networks.

Definition 5 New formulation of structural goods. Given a
SAT instance F = (X , C) and a separator S of the network
representing F , a truth assignment Is on a subset of S is a
structural good if any extension of Is on S can be extended

30

to a model of (XS , CS) which is one of the separate parts on
the network.

As (XS , CS) is disconnected from the rest of the formula
F under the assumption that S is deleted (the involved vari-
ables are assigned), there is no clause of (XS , CS) that links
int to the rest of the formula. Therefore, no assignment
of variables XS will reduce or satisfy clauses belonging to
disconnected regions. We can therefore state the following
property.

Theorem 2 If Is is a structural good, according to a sep-
arator S, and an associated subproblem(XS , CS), then the
pair g = (Is+, IXS

) where Is+ is an extension of Is on S,
and IXS

a model of (XS , CS), is a good.

Note that as indicated in the example of previous section,
the converse is false because goods can be defined on sub-
sets of variables which aren’t necessary separators of the net-
work.

There are also connexions between generalized goods and
Autarks (Monien and Speckenmeyer 1985). So, we re-
call briefly the definition of aurtaky. Given a SAT formula
F = (X , C), an autarky is a partial truth assignment I such
that ∀c ∈ C, I satisfies c or I doesn’t reduce c. A partial truth
assignment I such that I ′ � I , is called a local autarky if
the set of clauses C simplified by I (denoted CI) is included
in the set of clauses C simplified by I ′ (denoted CI′). So,
every model of CI′ is a model for CI . This property can be
used to prune the search of a DPLL algorithm because CI′

is satisfiable iff CI is satisfiable. Indeed, if CI is proved un-
satisfiable, then CI′ is also proved unsatisfiable, and then an
unexplored branch between I ′ and I has not to be explored
during search, after proving unsatifiability of CI .

One can see that autarkies are used to avoid to explore
unsatisfiable regions of the search tree. Thus, the use of
aurtakies is different from the use of goods, since they al-
low to do non-chronological backtracking while goods allow
forwardjumping. But, aurtakies are defined using a similar
principle of independence between parts of the search space,
or more precisely, subsets of clauses which are independent
w.r.t. partial truth assignments. Nevertheless, the techniques
used to the detection of autarkies could probably be used to
the detection of goods.

Conclusion

We have proposed a new formulation of goods under SAT
by generalizing the definition of the structural ones and giv-
ing their algorithmic aspects (regarding to their detection,
recording then integration) in order to include them in a
classical DPLL procedure. Thus, we wanted to step out of
the restrictive framework of structural goods, while display-
ing links between them, including the reformulation of these
structural goods in terms of these general ones. Moreover,
our generalization of goods can be exploited in a local search
algorithm since a good definition just need a first truth as-
signment (which can be produced by a local search algo-
rithm). Also, work on aurtakies should be studied closely
because of their proximity to goods, although the two con-
cepts are quite different. As was said before, this work is

preliminary and will be enriched by including the implemen-
tation of algorithms designed here. Then we try to move to
other formalisms such as (V) CSP and find an adequate ex-
pression of what is introduced here.

References

Bayardo, R. J., and Miranker, D. P. 1994. An optimal
backtrack algorithm for tree-structured constraint satisfac-
tion problems. Artificial Intelligence 71(1):159–181.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem-proving. Commun. ACM
5(7):394–397.
de Givry, S.; Schiex, T.; and Verfaillie, G. 2006. Exploiting
tree decomposition and soft local consistency in weighted
csp. In Proceedings of the 21st national conference on Arti-
ficial intelligence, 22–27.
Eén, N., and Sörensson, N. 2003. An extensible sat-solver.
In Proceedings of SAT 2003, 402–518.
Habet, D.; Paris, L.; and Terrioux, C. 2009. A tree decom-
position based approach to solve structured sat instances. In
Proceedings of the 21th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2009), 115–122.
Jégou, P., and Terrioux, C. 2003a. Bounded backtracking
for the valued constraint satisfaction problems. In Proceed-
ings of the Ninth International Conference on Principles and
Practice of Constraint Programming (CP-2003), 709–723.
Jégou, P., and Terrioux, C. 2003b. Hybrid backtracking
bounded by tree-decomposition of constraint networks. Ar-
tificial Intelligence 146:43–75.
Monien, B., and Speckenmeyer, E. 1985. Solving satisfia-
bility in less than 2n steps. Discrete Applied Mathematics
10:287 – 295.
Robertson, N., and Seymour, P. 1986. Graph minors II:
Algorithmic aspects of treewidth. Algorithms 7:309–322.

31

