
Parallel Best-First Search: The Role of Abstraction

Ethan Burns and Sofia Lemons and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

eaburns, sofia.lemons, ruml at cs.unh.edu

Rong Zhou
Embedded Reasoning Area
Palo Alto Research Center
Palo Alto, CA 94304 USA
rzhou at parc.com

Abstract

To harness modern multicore processors, it is imperative to
develop parallel versions of fundamental algorithms. In this
paper, we present a general approach to best-first heuristic
search in a shared-memory setting. Each thread attempts
to expand the most promising nodes. By using abstraction
to partition the state space, we detect duplicate states while
avoiding lock contention. We allow speculative expansions
when necessary to keep threads busy. We identify and fix po-
tential livelock conditions. In an empirical comparison on
STRIPS planning, grid pathfinding, and sliding tile puzzle
problems using an 8-core machine, we show that A* imple-
mented in our framework yields faster search performance
than previous parallel search proposals. We also demonstrate
that our approach extends easily to other best-first searches,
such as weighted A* and anytime heuristic search.

Introduction

It is widely anticipated that future microprocessors will not
have faster clock rates, but rather more computing cores per
chip. Tasks for which there do not exist effective parallel al-
gorithms will suffer a slowdown relative to total system per-
formance. In artificial intelligence, heuristic search is a fun-
damental and widely-used problem solving framework. In
this paper, we develop a parallel version of best-first search,
a popular method underlying algorithms such as A* (Hart,
Nilsson, and Raphael 1968).

In best-first search, two sets of nodes are maintained:
open and closed. Open contains the search frontier, nodes
that have been generated but not yet expanded. In A*, open
nodes are sorted by f value, the estimated lowest cost for
a solution path going through that node. Closed contains
all previously expanded nodes, allowing the search to detect
duplicated states in the search space and avoid expanding
them multiple times. One challenge in parallelizing best-
first search is avoiding contention between threads when ac-
cessing the open and closed lists. We will use a technique
called parallel structured duplicate detection (PSDD), orig-
inally developed for parallel breadth-first search, in order
to dramatically reduce contention and allow threads to en-
joy periods of synchronization-free search. PSDD requires
the user to supply an abstraction function that maps multiple
states to a single abstract state, called an nblock.

In contrast to previous work, we focus on general best-
first search. Our algorithm is called Parallel Best-NBlock-
First (PBNF). It extends easily to domains with non-
uniform, non-integer move costs and inadmissible heuris-
tics. This algorithm was introduced by Burns et al. (2009),
who discuss in detail its performance using A*. In this pa-
per, we review the algorithm and its performance and then
show in detail its extension to weighted A* and anytime
heuristic search. Using PSDD with best-first search in an
infinite search space can give rise to livelock, where threads
continue to search but a goal is never expanded. We study
the empirical behavior of PBNF on three popular search do-
mains: STRIPS planning, grid pathfinding, and the vener-
able sliding tile puzzle. We show how abstraction can be
used to improve an alternate parallel search algorithm called
HDA* (Kishimoto, Fukunaga, and Botea 2009). When com-
paring PBNF to our extended version of HDA*, our results
show that PBNF often yields optimal solutions faster. In
addition, we show that parallel search can obtain bounded
suboptimal solutions more quickly than serial weighted A*,
with the advantage of parallelism increasing as problem dif-
ficulty increases.

Previous Work

The most basic approach to parallel best-first search is to
have mutual exclusion locks (mutexes) for the open and
closed lists and require each thread to acquire the lock be-
fore manipulating the corresponding structure. Burns et
al. (2009) show that this naive approach to parallizing A*
does not perform very well. Parallel Retracting A* (PRA*)
(Evett et al. 1995) attempts to avoid contention by as-
signing separate open and closed lists to each thread. A
hashing scheme is used to assign nodes to the appropri-
ate thread when they are generated. Kishimoto, Fukunaga,
and Botea (2009) show that the PRA* algorithm can be
improved by using asynchronous communication, they call
the algorithm with this modification hash distributed A*, or
HDA*. We have created a novel hashing scheme for HDA*
based on state-space abstraction, we call this implementa-
tion AHDA* (’A’ because of the abstraction based hashing
scheme). We show experimental results that demonstrate
that using abstraction with the PRA* algorithm can be more
beneficial than using asynchronous communication.

8



Parallel Structured Duplicate Detection

Here we describe the parallel structured duplicate detection
algorithm that was the basis for PBNF. The intention of
PSDD is to avoid the need to lock on every node genera-
tion. It builds on the idea of structured duplicate detection
(SDD), which was originally developed for external memory
search (Zhou and Hansen 2004). SDD uses an abstraction
function, a many-to-one mapping from states in the original
search space to states in an abstract space. The abstract node
to which a state is mapped is called its image. An nblock is
the set of nodes in the state space that have the same image
in the abstract space. We’ll use the terms ‘abstract state’ and
‘nblock’ interchangeably. The abstraction function creates
an abstract graph of nodes that are images of the nodes in
the state space. If two states are successors in the state space,
then their images are successors in the abstract graph.

For efficient duplicate detection, we equip each nblock
with its own open and closed lists. Two nodes representing
the same state s will map to the same nblock b. When we
expand s, its children can map only to b’s successors in the
abstract graph. These nblocks are called the duplicate de-
tection scope of b because they are the only nblocks whose
open and closed lists need to be checked for duplicate states
when expanding nodes in b.

In parallel SDD (PSDD), the abstract graph is used to
find nblocks whose duplicate detection scopes are disjoint.
These nblocks can be searched in parallel without any lock-
ing. An nblock b is considered to be free iff none of its
successors are being used. Free nblocks are found by ex-
plicitly tracking σ(b), the number of nblocks among their
successors that are in use by another processor. An nblock
can only be acquired when its σ = 0. PSDD only uses a
single lock, controlling manipulation of the abstract graph,
and it is only acquired by threads when finding a new free
nblock to search.

Zhou and Hansen (2007) used PSDD to parallelize
breadth-first heuristic search (Zhou and Hansen 2006). In
each thread of the search, only the nodes at the current
search depth in an nblock are searched. When the current
nblock has no more nodes at the current depth, it is swapped
for a free nblock that does have open nodes at this depth. If
no more nblocks have nodes at this depth, all threads syn-
chronize and then progress to the next depth. An admissible
heuristic cost-to-go estimate is used to prune nodes below
the current solution upper bound.

Parallel Best-NBlock-First (PBNF)

Ideally, all threads would be busy expanding nblocks that
contain nodes with the lowest f values. To achieve this,
we combine PSDD’s duplicate detection scopes with an idea
from the Localized A* (LA*) algorithm of Edelkamp and
Schrödl (2000). LA*, which was designed to improve the
locality of external memory search, maintains sets of nodes
that reside on the same memory page. Decisions of which
set to process next are made with the help of a heap of sets
ordered by the minimum f value in each set. By maintaining
a heap of free nblocks ordered on their best f value, we can
approximate our ideal parallel search. We call this algorithm

1. while there is an nblock with open nodes
2. lock; b← best free nblock; unlock
3. while b is no worse than the best free nblock or
4. we’ve done fewer than m expansions
5. n← best open node in b
6. if f(n) > f(incumbent), prune all open nodes in b
7. else if n is a goal
8. if f(n) < f(incumbent)
9. lock; incumbent← n; unlock
10. else for each child c of n
11. insert c in the open list of the appropriate nblock

Figure 1: A sketch of basic PBNF search, showing locking.

Parallel Best-NBlock-First (PBNF).
In PBNF, threads use the heap of free nblocks to acquire

the free nblock with the best open node. A thread will search
its acquired nblock as long as it contains nodes that are bet-
ter than those of the nblock at the front of the heap. If the
acquired nblock becomes worse than the best free one, the
thread will attempt to release its current nblock and acquire
the better one. There is no layer synchronization, so the first
solution found may be suboptimal and search must continue
until all open nodes have f values worse than the incumbent.
We can, however, be used to prune an nblock’s entire open
list when the minimum f value is greater than the cost of the
incumbent. Figure 1 shows pseudo-code, indicating where
locking is necessary.

Because PBNF is only approximately best-first, we can
introduce optimizations to reduce overhead. It is possible
that an nblock has only a small number of nodes that are bet-
ter than the best free nblock, so we avoid excessive switch-
ing by requiring a minimum number of expansions. Our
implementation also attempts to reduce the time a thread
is forced to wait on a lock by using try lock whenever
possible. Rather than sleeping if a lock cannot be acquired,
try lock immediately returns failure. This allows a thread
to continue expanding its current nblock if the lock is busy.
Both of these optimizations can introduce ‘speculative’ ex-
pansions that would not have been performed in a serial best-
first search.

Empirical Evaluation

We have implemented and tested the parallel heuristic search
algorithms discussed above on three different benchmark
domains: grid pathfinding, the sliding tile puzzle, and
STRIPS planning. Other algorithms were tested in earlier
work (Burns et al. 2009), however they were shown to be
less competitive. All algorithms were programmed in C++
using the POSIX threading library and run on dual quad-core
Intel Xeon E5320 1.86GHz processors with 16Gb RAM, ex-
cept for the planning results, which were written in C and
run on a dual quad-core Intel Xeon X5450 3.0GHz proces-
sors limited to roughly 2GB of RAM. For grids and slid-
ing tiles, we used the jemalloc library (Evans 2006), a spe-
cial multi-thread aware malloc implementation, instead of
the standard glibc (version 2.7) malloc, because the latter
is known to scale poorly above 6 threads. We configured
jemalloc to use 32 memory arenas per CPU. In planning,

9



a custom memory manager was used which is also thread-
aware and uses a memory pool for each thread. For the fol-
lowing experiments we show the performance of each algo-
rithm with its best parameter settings (e.g., minimum num-
ber of expansions and abstraction granularity) which we de-
termined by experimentation.

Abstraction with PRA*

We begin by looking at the benefit of using abstraction with
the parallel retracting A* algorithm. The upper left panel of
figure 2 shows the results of an experiment running PRA*
on a set of grid pathfinding instances both with and without
abstraction and with and without asynchronous communica-
tion. The heuristic used was the Manhattan distance to the
goal location. Each line in the figure gives the mean wall
clock time in seconds versus the number of threads on a set
of twenty instances. The error bars show the 95% confi-
dence interval on the means and the legend is sorted in order
of average performance. We can see from this figure that
the two variants of PRA* without abstraction gave signifi-
cantly worse performance than the two variants that did use
abstraction. We can also see that the benefit of adding ab-
straction was greater than the benefit of using asynchronous
communication. This is evident because PRA* with syn-
chronous communication and abstraction (labeled “sync.
and abst. (APRA*)”) had better wall clock performance than
the variant with asynchronous communication and without
abstraction (labeled “async. (HDA*)”). Note that this latter
variant is exactly the HDA* algorithm.

On average the variant with both asynchronous communi-
cation and abstraction (labeled “async. and abst. (AHDA*)”)
which we call AHDA* performed the best. In the grid
pathfinding domain the abstraction function that was used
separates the grid into a coarser grid of abstract states. When
using abstraction to distribute newly generated nodes among
the various threads many of the successors will belong to
the same abstract state as their parent. When this happens,
no communication is required and the nodes can be checked
for duplicates and added directly to the expanding thread’s
open list. Generally hash functions are designed to avoid
collisions in a hash table. If a hash function is used instead
of an abstraction function to distribute the nodes it will be
rare that successors are assigned to the currently expanding
thread. Additionally, it will be rare that the generated suc-
cessors map to the same thread as their siblings. This means
that communication will often be required between different
threads for each node that is generated.

Grid Pathfinding

We tested on grids 5000 cells wide by 5000 cells high, with
the start in the upper left and the goal in the lower right. We
test two cost models (discussed below) and both four-way
and eight-way movement. Cells are blocked with probabil-
ity 0.35 in four-way movement boards and with a probabil-
ity of 0.45 in eight-way movement boards. The abstraction
function we used maps blocks of adjacent cells to the same
abstract state, forming a coarser abstract grid overlaid on the
original space. For this domain we are able to tune the size
of the abstraction and our results show the best abstraction

size for each algorithm where it is relevant. All algorithms
used the Manhattan distance to the goal as their heuristic.

The plots discussed below show the speedup of each al-
gorithm as the number of threads are increased (x-axis) over
a serial A* search (y-axis). Error bars indicate 95% con-
fidence intervals on the mean and algorithms in the legend
are ordered on their average performance. The diagonal line
labeled “Perfect speedup” shows a perfect linear speedup
where the performance increase over serial A* is the same as
the number of threads searching. A more practical reference
point for speedup is shown by the “Achievable speedup”
line. On a perfect machine with n processors, running n
independent A* searches will take the same amount of time
as a single A* search. On a real machine, however, there are
hardware considerations that prevent this perfect speedup.
The line labeled “Achievable speedup” shows the speedup
over serial A* which is achieved by running multiple inde-
pendent A* searches in parallel. This can be thought of as
a soft upper bound on the achievable speedup for the given
machine on the given domain.
Four-way Unit Cost: In the unit cost model, each move
has the same cost. The top center plot in Figure 2 shows
the AHDA*, and safe PBNF algorithms on unit-cost four-
way movement path planning problems. On average the safe
PBNF algorithm gave better speedup than AHDA* in this
domain. At eight threads safe PBNF showed a speedup that
was approximately six times that of serial A* search.
Four-way Life Cost: Moves in the life cost model have cost
equal to the row number of the state where the move was
performed. Moves at the top of the grid are free, moves
at the bottom cost 5000, and the shortest path is likely not
the cheapest. The bottom left plot in Figure 2 shows these
results. Again, on average safe PBNF gave more speedup
than AHDA*, however, at six and seven threads AHDA*
outperformed safe PBNF.
Eight-way Unit Cost: In our eight-way movement path
planning problems, horizontal and vertical moves have cost

one, but diagonal movements cost
√

2. These real-valued
costs make the domain different from the previous two path
planning domains. The top right panel shows that safe PBNF
had the best mean speedup even though it was outperformed
by AHDA* at five, six and seven threads. In this domain
AHDA* have a very erratic performance, sometimes greatly
decreasing its speedup over serial search as more threads
were added.
Eight-way Life Cost: This model combines the eight-way
movement and the life cost models; it is the most difficult
path planning domain presented in this paper. The bottom
center panel shows the results for this domain. We can see
that the AHDA* algorithm gave the best performance on av-
erage, although it was outperformed by safe PBNF at eight
threads.

Sliding Tiles

The sliding tiles puzzle is a common domain for benchmark-
ing heuristic search algorithms. In this section we present re-
sults of an experiment on 250 15-puzzles that were solvable
by A* in 3 million expansions. The abstraction used by the
safe PBNF algorithm, in this domain, ignored the position

10



Figure 2: Results on grid path planning and the sliding tiles puzzle.

of all tiles except the blank, 1 and 2 tiles. For AHDA*, we
found that the performance was better with an abstraction
that ignored all except the 1, 2 and 3 tile. Since the blank
tile was ignored in the abstraction it was more ofter the case
that AHDA* was able to map child nodes to the same thread
that expanded the parent. When this occurs, no communi-
cation is required and therefore the search performs better.
The heuristic used by all algorithms was the Manhattan dis-
tance heuristic. The bottom right panel in Figure 2 shows
the results for safe PBNF and AHDA*. Safe PBNF gave the
best performance consistently, peaking at 4x speedup over
serial A*.

STRIPS Planning

algorithms were embedded into a domain-independent
optimal sequential STRIPS planner using regression
and the max-pair admissible heuristic of Haslum and
Geffner (2000). Table 1 presents the results for AHDA*,
PSDD and PBNF. Entries in the table are bold if they are
within 10% of the best entry for the given domain. The
PSDD algorithm was given the optimal solution cost as an
upper bound to perform pruning in the breadth-first heuristic
search. Safe PBNF and AHDA* find their own upper bound
from suboptimal solutions and therefore will give the perfor-
mance shown in this figure without first requiring the cost of

the optimal solution.

The right-most column shows the time that was taken by
the algorithms to generate the abstraction function. The ab-
straction is generated dynamically on a per-problem basis
and, following Zhou and Hansen (2007), this time was not
taken into account in the solution times presented for these
algorithms. In the current implementation, the abstraction
generation algorithm is implemented serially but it should
be trivial to parallelize and, therefore, execute much more
quickly.

Overall, we see that safe PBNF gave the best performance
at seven threads across all except two domains (logistics-6
and freecell-3). In these two domains, AHDA* found solu-
tions in the least amount of time at seven threads.

Bounded Suboptimal Search

Sometimes it is acceptable or even preferable to search for a
solution which is not optimal. Suboptimal solutions can of-
ten be found much more quickly than optimal ones and with
lower memory consumption. When a suboptimal search is
performed it is usually desirable to have a bound on the sub-
optimality of the solution found. Weighted A* guarantees
that suboptimality will be bounded by the weight used. It is
possible to modify PBNF, and AHDA* to find suboptimal

11



A* AHDA* Safe PBNF PSDD
Problem 1 1 3 5 7 1 3 5 7 1 3 5 7 Abst.

logistics-6 2.30 1.44 0.70 0.48 0.40 1.17 0.64 0.56 0.62 1.20 0.78 0.68 0.64 0.42
blocks-14 5.19 7.13 5.07 2.25 2.13 6.21 2.69 2.20 2.02 6.36 3.57 2.96 2.87 7.90
gripper-7 118 59.5 34.0 16.0 12.7 39.6 16.9 11.2 9.21 65.7 29.4 21.9 19.2 0.83
satellite-6 131 95.5 33.6 24.1 18.2 77.0 24.1 17.3 13.7 61.5 23.6 16.7 13.3 0.98
elevator-12 336 206 96.8 67.7 57.1 150 53.5 34.2 27.0 162.8 62.7 43.3 36.7 0.67
freecell-3 199 148 93.6 38.2 27.4 127 47.1 38.1 37.0 126.3 53.8 45.5 43.7 16.6
depots-7 M 300 126 51.0 39.1 156 63.0 42.9 34.7 160 73.0 57.7 54.7 3.59
driverlog-11 M 316 85.2 51.3 49.0 154 60.0 38.8 31.2 156 63.2 41.9 34.0 9.68
gripper-8 M 533 239 97.6 76.3 235 98.2 63.7 51.5 388 172 121 106 1.11

Table 1: Computation time on STRIPS planning problems, in seconds, for various numbers of threads.

solutions. Since parallelism is used, a strict f ′ ordering is
not followed by these algorithms and therefore the first solu-
tion found may be outside the bound. Much like the original
versions of these algorithms, we must prove the quality of
our solution by either exploring or pruning all nodes.

Let s be the current incumbent solution and w the subop-
timality bound. A node n can clearly be pruned if f(n) ≥
g(s). But according to the following theorem, we only need
to retain n if it is on the optimal path to a solution that is a
factor of w better than s. This is a much stronger rule.

Theorem 1 We can prune a node n if w ·f(n) ≥ g(s) with-
out sacrificing w-admissibility.

Proof: If the incumbent is w-admissible, we can safely
prune any node, so we consider the case where g(s) >
w · g(opt), where opt is an optimal goal. Note that with-
out pruning, there always exists a node p in some open list
(or being generated) that is on the best path to opt. Let f∗ be
the cost of an optimal solution. By the admissibility of h and
the definition of p, w · f(p) ≤ w · f∗(p) = w · g(opt). If the
pruning rule discards p, that would imply g(s) ≤ w · f(p)
and thus g(s) ≤ w · g(opt), which contradicts our premise.
Therefore, an open node leading to an optimal solution will
not be pruned if the incumbent is not w-admissible. A search
that does not terminate until open is empty will not termi-
nate until the incumbent is w-admissible or it is replaced by
an optimal solution. �

We make explicit a useful corollary:

Corollary 1 We can prune a node n if f ′(n) ≥ g(s) without
sacrificing w-admissibility.

Proof: Clearly w · f(n) ≥ f ′(n), so Theorem 1 applies. �

With this corollary, we can use a pruning shortcut: when the
open list is sorted on increasing f ′ and the node at the front
has f ′ ≥ g(s), we can prune the entire open list.

As before, when all open lists are empty, we can termi-
nate with the guarantee that our current solution is within
the suboptimality bound. The time spent proving that the
incumbent solution is within the bound, however, poses a
significant disadvantage against wA*. Our method may re-
quire many re-expansions of nodes early on in a path be-
cause speculation led us to them through a non-w-admissible
route. This effect gets more important as weight increases
and makes it difficult to perform competitively on easy prob-
lems at high weights.

Evaluation

We implemented and tested weighted versions of A*,
AHDA* (wAHDA*), and safe PBNF (wPBNF.) All algo-
rithms prune nodes based on f ′ and w ∗ f criteria. Both
parallel algorithms prune whole open lists on f ′. Duplicates
which have been expanded are dropped in serial wA*, re-
gardless of value, in grids, as discussed by Likhachev, Gor-
don, and Thrun (2003). We do not use duplicate dropping
with wA* in the sliding tiles domain because these prob-
lems do not have as many duplicates and have fewer paths
to the goal. We found that duplicate dropping makes wA*
perform worse in the sliding tiles domain.

Speedup versus wA* is plotted in Figure 2 showing num-
ber of threads and weight used. Table entries that are in bold
are entries that are not significantly different (p < 0.05 us-
ing a Wilcoxon signed-rank test) from the best value for the
same weight in the given domain.

The left half of Table 2 shows the results of an experi-
ment run on the same four-way unit-cost grid pathfinding
problems that were presented for optimal search. In grid
pathfinding, the wPBNF algorithm gave the best speedup
for weights of 1.1 and 1.2 where it achieved up to 5x the
performance of serial weighted A*. At a weight of 1.4
both wPBNF and wAHDA* gave similar speedups at eight
threads. wAHDA* outperformed wPBNF at a weight of 1.8
where wPBNF was unable to find solutions faster than serial
weighted A* at any number of threads.

The right half of Table 2 shows the results of an experi-
ment run on Korf’s 100 15-puzzle instances. From this table,
we see that both wPBNF and wAHDA* performed compa-
rably for weights of 1.4 and 1.7. At a weight of 2, wPBNF
gave the best performance with six threads and wAHDA*
gave the least performance decrease over serial search with
two threads.

From Table 2 we see that both wAHDA* and wPBNF de-
crease their advantage over wA* as weights increase, pre-
sumably because the overhead of threads and contention
is too great compared to the very low number of nodes
expanded. To confirm our understanding of the effect of
problem size on speedup, Figure 3 shows a comparison of
wPBNF to weighted A* on all of the 100 Korf 15-puzzle
instances. Each point represents a run on one instance at a
particular weight, the y-axis represents wPBNF speedup rel-
ative to serial wA*, and the x-axis represents the number of

12



Unit Four-way Grids Korf’s 100 10-Puzzles
wPBNF wAHDA* wPBNF wAHDA*

1.1 1.2 1.4 1.8 1.1 1.2 1.4 1.8 1.4 1.7 2.0 3.0 1.4 1.7 2.0 3.0
1 0.98 0.91 0.51 0.73 0.87 0.79 0.32 0.56 0.68 0.44 0.38 0.69 0.61 0.60 0.59 0.54
2 1.74 1.65 1.07 0.87 1.35 1.17 0.63 0.84 1.35 0.81 1.00 0.63 1.18 1.11 1.32 0.78
3 2.47 2.33 1.62 0.89 1.90 1.69 1.30 1.30 1.48 0.97 0.85 0.56 1.53 1.30 1.40 0.73
4 3.12 2.92 2.13 0.90 2.04 2.10 1.57 1.30 1.70 1.20 0.93 0.60 1.91 1.57 1.55 0.74
5 3.76 3.52 2.48 0.91 1.77 2.08 1.79 0.97 2.04 1.38 0.97 0.74 2.33 1.70 1.27 0.66
6 4.30 3.99 2.80 0.89 3.23 3.03 2.18 1.33 2.16 1.30 1.19 0.67 2.28 1.72 1.24 0.52
7 4.78 4.40 3.01 0.88 3.91 3.78 2.56 1.30 2.55 1.46 1.04 0.62 2.71 1.50 1.03 0.44
8 5.09 4.66 3.11 0.87 3.79 3.64 3.02 1.13 2.71 1.71 1.10 0.60 2.70 1.51 1.24 0.44

Table 2: Speed-up over serial weighted A*.

Figure 3: wPBNF speedup versus problem difficulty.

nodes expanded by wA*. Different glyphs represents dif-
ferent weight values used for both wPBNF and wA*. The
figure shows that, while wPBNF did not outperform wA*
on easier problems, the benefits of wPBNF over wA* in-
creased as problem difficulty increased. The speed gain for
the instances that were run at a weight of 1.4 (the lowest
weight tested) leveled off just under 10 times faster than
wA*. This is because the machine has eight cores. There are
a few instances that seem to have speedup greater than 10x.
These can be explained by the speculative expansions that
wPBNF performs which may find a bounded solution faster
than weighted A* due to the pruning of more nodes with f ′

values equal to that of the resulting solution. The poor be-
havior of wPBNF for easy problems is most likely due to
the overhead described above. This effect of problem diffi-
culty means that wPBNF outperformed wA* more often at
low weights, where the problems required more expansions,
and less often at higher weights, where the problems were
completed more quickly.

Conclusions

We presented empirical results for AHDA*, and safe PBNF,
testing their abilities to return optimal and bounded subopti-
mal solutions. It is clearly shown that PBNF outperformed

AHDA* in the optimal search setting. In the bounded sub-
optimal case, the weighted versions of PBNF and AHDA*
were more competitive. We also illustrated that the advan-
tage of parallel search seems to grow as problem difficulty
increases.

Acknowledgements

We gratefully acknowledge support from NSF grant IIS-
0812141 and the DARPA CSSG program.

References
Burns, E.; Lemons, S.; Zhou, R.; and Ruml, W. 2009. Best-first
heuristic search for multi-core machines. In Proceedings of the
14th International Joint Conference on Artificial Intelligence.

Edelkamp, S., and Schrödl, S. 2000. Localizing a*. In Proceedings
of the Seventeenth National Conference on Artificial Intelligence
(AAAI-00), 885–890. AAAI Press.

Evans, J. 2006. A scalable concurrent malloc(3) implementation
for FreeBSD. In Proc. BSDCan 2006.

Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995. PRA* -
massively-parallel heuristic-search. Journal of Parallel and Dis-
tributed Computing 25(2):133–143.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transac-
tions of Systems Science and Cybernetics SSC-4(2):100–107.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for opti-
mal planning. In Proceedings of the Fifth Internationas Conference
on Artificial Intelligence Planning and Scheduling Systems (AIPS-
00), 140–149.

Kishimoto, A.; Fukunaga, A.; and Botea, A. 2009. Scalable, paral-
lel best-first search for optimal sequential planning. In Proceedings

of the Nineteenth International Conference on Automated Planning
and Scheduling (ICAPS-09).

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*: For-
mal analysis. Technical Report CMU-CS-03-148, Carnegie Mellon
University School of Computer Science.

Zhou, R., and Hansen, E. A. 2004. Structured duplicate detection
in external-memory graph search. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence (AAAI-04).

Zhou, R., and Hansen, E. 2006. Breadth-first heuristic search.
Artificial Intelligence 170(4–5):385–408.

Zhou, R., and Hansen, E. A. 2007. Parallel structured duplicate
detection. In Proceedings of the Twenty-Second Conference on Ar-
tificial Intelligence (AAAI-07).

13


