
Reformulation of Global Constraints in Answer Set Programming

Christian Drescher
Vienna University of Technology

Austria

Toby Walsh
NICTA and University of New South Wales

Australia

Abstract

We show that global constraints on finite domains like all-
different can be reformulated into answer set programs on
which we achieve arc, bound or range consistency. These
reformulations offer a number of other advantages beyond
providing the power of global propagators to answer set pro-
gramming. For example, they provide other constraints with
access to the state of the propagator by sharing variables.
Such sharing can be used to improve propagation between
constraints. Experiments with these encodings demonstrate
their promise.

Introduction

There are several approaches to representing and solving
constraint satisfaction problems: constraint programming
(CP; Dechter 2003, Rossi, van Beek, and Walsh 2006), an-
swer set programming (ASP; Baral 2003), propositional sat-
isfiability checking (SAT; Biere et al. 2009), its extension
to satisfiability modulo theories (SMT; Nieuwenhuis, Oliv-
eras, and Tinelli 2006), and many more. Each has its partic-
ular strengths: for example, CP systems support global con-
straints, ASP systems permit recursive definitions and of-
fer default negation, whilst SAT solvers often exploit very
efficient implementations. In many applications it would
often be helpful to exploit the strengths of multiple ap-
proaches. Consider the problem of timetabling at a uni-
versity (Järvisalo et al. 2009). To model the problem, we
need to express the mutual exclusion of events (for instance,
we cannot place two events in the same room at the same
time). A straightforward representation of such constraint
with clauses and rules uses quadratic space. In contrast,
global constraints such as all-different typically supported
by CP systems can give a much more concise encoding. On
the other hand, there are features which are hard to describe
in traditional constraint programming, like the temporary
unavailability of a particular room. However, this is easy
to represent with non-monotonic rules such as those used in
ASP. Such rules also provide a flexible mechanism for defin-
ing new relations on the basis of existing ones.

Answer set programming has been put forward as a pow-
erful paradigm to solve constraint satisfaction problems.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Niemelä (1999) shows that ASP embeds SAT but provides
a more expressive framework from a knowledge represen-
tation point of view. Moreover, modern ASP solvers com-
pete1 with the best SAT solvers. An empirical comparison of
the performance of ASP and constraint logic programming
(CLP; Jaffar and Maher 1994) systems on solving combina-
torial problems conducted by Dovier, Formisano, and Pon-
telli shows ASP encodings to be more compact, more declar-
ative, and highly competitive. However, as some problems
are more naturally modelled by using non-propositional con-
structs, like resources or functions over finite domains, and
by using global constraints in particular, there is an increas-
ing desire to handle constraints beyond pure ASP.

One approach to combining ASP and CP is to integrate
theory-specific predicates into propositional formulas (mo-
tivated by SMT), and to extend the ASP solver’s deci-
sion engine with a higher level proof procedure (Baselice,
Bonatti, and Gelfond 2005; Mellarkod and Gelfond 2008;
Gebser, Ostrowski, and Schaub 2009). However, the result-
ing systems have a number of limitations. First, they are
tied to particular ASP and CP solvers. Second, the support
for global constraints is limited. Third, communication be-
tween the ASP and CP solver is restricted. Alternative tech-
niques, such as reformulating constraints into ASP have re-
ceived little attention. The key contribution of our work is
an investigation of reformulation in the context of answer
set programming, illustrated by reformulations of the popu-
lar all-different constraint. The resulting approach has been
implemented in the new preprocessor inca. Empirical eval-
uation demonstrates its computational potential.

Background

Answer Set Programming A (normal) logic program Π
over a set of primitive propositions A is a finite set of rules
of the form a0 ← a1, . . . , am, not am+1, . . . , not an where
0 ≤ m ≤ n and ai ∈ A are atoms for 0 ≤ i ≤ n.
A literal â is an atom a or its default negation not a.
For a rule r, let head(r) = a0 be the head of r and
body(r) = {a1, . . . , am, not am+1, . . . , not an} the body
of r. The set of atoms occurring in a logic program Π is de-
noted by atom(Π), and the set of bodies in Π is body(Π) =
{body(r) | r ∈ Π}. For regrouping bodies sharing the same

1http://www.satcompetition.org

14

head a, define body(a) = {body(r) | r ∈ Π, head(r) = a}.
The semantics of a logic program is given by its answer sets,
being total well-founded models of Π. For a formal intro-
duction to ASP, we refer the reader to Baral (2003). The se-
mantics of important extensions to logic programs, such as
choice rules, integrity, and cardinality constraints, is given
through program transformations that introduce additional
propositions (cf. Simons, Niemelä, and Soininen 2002).
A choice rule allows for the non-deterministic choice over
atoms in {a1, . . . , ak} and has the form {a0, . . . , ak} ←
ak+1, . . . , am, not am+1, . . . , not an. An integrity con-
straint of the form ← a1, . . . , am, not am+1, . . . , not an

is a short hand for a rule with an unsatisfiable head, and thus
forbids its body to be satisfied in any answer set. A cardi-
nality constraint of the form← k{â1, . . . , ân} is interpreted
as no k literals of the set {â1, . . . , ân} are included in an
answer set. Simons, Niemelä, and Soininen provide a trans-
formation that needs just O(nk) rules, introducing atoms
l(âi, j) to represent the fact that at least j of the literals with
index ≥ i, i.e. the literals in {âi, . . . , ân}, are in a particular
answer set candidate. Then, the cardinality constraint can be
encoded by an integrity constraint← l(â1, k) and the three
following rules, where 1 ≤ i ≤ n and 1 ≤ j ≤ k:
l(âi, j)← l(âi+1, j) l(âi, j + 1)← âi, l(âi+1, j)
l(âi, 1)← âi

Nogoods of Logic Programs We want to view inferences
in ASP as unit-propagation on nogoods. Following Geb-
ser et al. (2007), inferences in ASP rely on atoms and pro-
gram rules, which can be expressed by using atoms and bod-
ies. Thus, for a program Π, the domain of Boolean assign-
ments A is fixed to dom(A) = atom(Π) ∪ body(Π).

Formally, a Boolean assignment A is a set {σ1, . . . , σn}
of signed literals σi for 1 ≤ i ≤ n of the form Ta or
Fa where a ∈ dom(A). Ta expresses that a is assigned
true and Fa that it is false in A. (We omit the attribute
Boolean for assignments whenever clear from the context.)
The complement of a signed literal σ is denoted by σ, that is
Ta = Fa and Fa = Ta. In the context of ASP, a nogood is
a set δ = {σ1, . . . , σn} of signed literals, expressing a con-
straint violated by any assignment A such that δ ⊆ A. For
a nogood δ, a signed literal σ ∈ δ, and an assignment A, we
say that δ is unit and σ is unit-resulting if δ \A = {σ}. Let
AT = {a ∈ dom(A) | Ta ∈ A} the set of true propositions
and AF = {a ∈ dom(A) | Fa ∈ A} the set of false propo-
sitions. A total assignment, that is AT ∪ AF = dom(A)
and AF ∪AT = ∅, is a solution for a set Δ of nogoods if
δ 	⊆ A for all δ ∈ Δ.

As shown in Lee (2005), the answer sets of a logic pro-
gram Π correspond to the models of the completion of Π
that satisfy the loop formulas of all non-empty subsets of
atom(Π). For β = {a1, . . . , am, not am+1, . . . , not an} ∈
body(Π), define

Δβ =

{ {Ta1, . . . ,Tam,Fam+1, . . .Fan,Fβ},
{Fa1,Tβ}, . . . , {Fam,Tβ},
{Tam+1,Tβ}, . . . , {Tan,Tβ}

}
.

Intuitively, the nogoods in Δβ enforce the truth of body β iff
all its literals are satisfied. For an atom a ∈ atom(Π) with

body(a) = {β1, . . . , βk}, let

Δa =
{
{Fβ1, . . . ,Fβk,Ta},
{Tβ1,Fa}, . . . , {Tβk,Fa}

}
.

Then, the solutions for ΔΠ =
⋃

β∈body(Π) Δβ ∪⋃
a∈atom(Π) Δa correspond to the models of the completion

of Π. Loop formulas, expressed in the set of nogoods ΛΠ,
have to be added to establish full correspondence to the an-
swer sets of Π. Typically, solutions for ΔΠ ∪ ΛΠ are com-
puted by applying conflict-driven nogood learning (CDNL;
Gebser et al. (2007)). This combines search and propagation
by recursively assigning the value of a proposition and us-
ing unit-propagation to determine logical consequences of
an assignment (Mitchell 2005).

Constraint Satisfaction Problem The classic definition
of a constraint satisfaction problem is as follows (cf. Rossi,
van Beek, and Walsh 2006). A constraint satisfaction prob-
lem is a triple (V,D, C) where V is a set of variables
V = {v1, . . . , vn}, D is a set of finite domains D =
{D1, . . . , Dn} such that each variable vi has an associated
domain dom(vi) = Di, and C is a set of constraints. A
constraint c is a pair (RS , S) where RS is a k-ary relation
on the variables in S ⊆ V k, called the scope of c. In other
words, RS is a subset of the Cartesian product of the do-
mains of the variables in S. To access the relation and the
scope of c define range(c) = RS and scope(c) = S. For
a (constraint variable) assignment A : V →

⋃
v∈V dom(v)

and a constraint c = (RS , S) with S = (v1, . . . , vk), define
A(S) = (A(v1), . . . , A(vk)), and call c satisfied if A(S) ∈
range(c). Given this, define the set of constraints satisfied
by A as satC(A) = {c | A(scope(c)) ∈ range(c), c ∈ C}.

A binary constraint c has |scope(c)| = 2. For example,
v1 	= v2 ensures that v1 and v2 take different values. A
global (or n-ary) constraint c has parametrized scope. For
example, the all-different constraint ensures that a set of
variables, {v1, . . . , vn} take all different values. This can
be decomposed into O(n2) binary constraints, vi 	= vj for
i < j. However, as we shall see, such reformulation can hin-
der inference. An assignment A is a solution iff it satisfies
all constraints in C.

Constraint solvers typically use backtracking search to ex-
plore the space of partial assignments. Various heuristics af-
fecting, for instance, the variable selection criteria and the
ordering of the attempted values, can be used to guide the
search. Each time a variable is assigned a value, a determin-
istic propagation stage is executed, pruning the set of values
to be attempted for the other variables, i.e., enforcing a cer-
tain type of local consistency.

A binary constraint c is called arc consistent iff when a
variable v1 ∈ scope(c) is assigned any value d1 ∈ dom(v1),
there exists a consistent value d2 ∈ dom(v2) for the other
variable v2. An n-ary constraint c is hyper-arc consistent or
domain consistent iff when a variable vi ∈ scope(c) is as-
signed any value di ∈ dom(vi), there exist compatible val-
ues in the domains of all the other variables dj ∈ dom(vj)
for all 1 ≤ j ≤ n, j 	= i such that (d1, . . . , dn) ∈ range(c).

15

Relational consistency (Dechter and van Beek 1997) ex-
tends the concept of local consistency. I.e. a constraint c is
relationally k-arc consistent if any consistent assignment of
a k-elementary subset of variables from scope(c) extends to
a consistent assignment of all variables in scope(c).

The concepts of bound and range consistency are de-
fined for constraints on ordered intervals. Let min(Di)
and max(Di) be the minimum value and maximum
value of the domain Di. A constraint c is bound
consistent iff when a variable vi is assigned di ∈
{min(dom(vi)), max(dom(vi))} (i.e. the minimum or
maximum value in its domain), there exist compatible val-
ues between the minimum and maximum domain value for
all the other variables in the scope of the constraint. Such an
assignment is called a bound support. A constraint is range
consistent iff when a variable is assigned any value in its
domain, there exists a bound support. Notice that range con-
sistency is in between domain and bound consistency, where
domain consistency is the strongest of the three formalisms.

Encoding Global Constraints in ASP

In this section we explain how to reformulate multi-valued
variables and constraints on finite domains into a logic pro-
gram under answer set semantics. In what follows, we as-
sume dom(v) = [1, d] for all v ∈ V to save the reader from
multiple superscripts.

Direct Encoding A popular choice is called the direct en-
coding (Walsh 2000). In the direct encoding, a propositional
variable e(v, i), representing v = i, is introduced for each
value i that can be assigned to the constraint variable v. In-
tuitively, the proposition e(v, i) is true if v takes the value i,
and false if v takes a value different from i. For each v, the
truth-assignments of atoms e(v, i) are encoded by a choice
rule (1). Furthermore, there is an integrity constraint (2) to
ensure that v takes at least one value, and a cardinality con-
straint (3) that ensures that v takes at most one value.

{e(v, 1), . . . , e(v, d)} ← (1)
← not e(v, 1), . . . , not e(v, d) (2)
← 2 {e(v, 1), . . . , e(v, d)} (3)

In the direct encoding, each forbidden combination of values
in a constraint is expressed by an integrity constraint. On the
other hand, when a relation is represented by allowed combi-
nations of values, all forbidden combinations have to be de-
duced and translated to integrity constraints. Unfortunately,
the direct encoding of constraints hinders propagation:
Theorem 1 Enforcing arc consistency on the binary decom-
position of the original constraint prunes more values from
the variables domain than unit-propagation on its direct en-
coding.

Support Encoding The support encoding has been pro-
posed to tackle this weakness (Gent 2002). A support for a
constraint variable v to take the value i across a constraint c
is the set of values {i1, . . . , im} ⊆ dom(v′) of another vari-
able in v′ ∈ scope(c) \ {v} which allow v = i, and can be

encoded as follows, extending (1–3):

← e(v, i), not e(v′, i1), . . . , not e(v′, im)

This integrity constraint can be read as whenever v = i, then
at least one of its supports must hold. In the support encod-
ing, for each constraint c there is one support for each pair
of distinct variables v, v′ ∈ scope(c), and for each value i.
Theorem 2 Unit-propagation on the support encoding en-
forces arc consistency on the binary decomposition of the
original constraint.

We illustrate this approach on an encoding of the global all-
different constraint. For variables v, v′ and value i it can be
reduced from the definition by using the equivalence covered
by (2–3) to

← e(v, i), e(v′, i).
Observe, that this is also the direct encoding of the binary
decomposition of the global all-different constraint. How-
ever, this observation does not hold in general for all con-
straints. As discussed in the Background section of this pa-
per, we can express above condition asO(d) cardinality con-
straints:

← 2 {e(v1, i), . . . , e(vn, i)} (4)

Corollary 2.1 Unit-propagation on (1–4) enforces arc con-
sistency on the binary decomposition of the global all-
different constraint in O(nd2) down any branch of the
search tree.

k-support Encoding The support encoding can be gen-
eralized to the k-support encoding (Bessière, Hebrard, and
Walsh 2003) representing supports on subsets of scope(c)
for an assignment of another k-elementary subset of vari-
ables in scope(c). More formal, a k-support S for an assign-
ment A of k variables from scope(c), say v1 = i1, . . . , vk =
ik, is an assignment v′1 = i′1, . . . , v

′
l = i′l such that

{v′
1, . . . , v

′
l} ⊆ scope(c) \ {v1, . . . , vk} which allows A.

We introduce a support-variable s, that evaluates to true iff
S holds:

s← e(v′
1, i1), . . . , e(v

′
l, i

′
l)

Furthermore, let {S1, . . . , Sm} be the set of all k-supports
of A. A k-support rule for A is defined as

← e(v1, d1), . . . , e(vk, dk), not s1, . . . , not sm

meaning that as long as A holds then at least one of its k-
supports S1, . . . Sm must hold. In the k-support encoding,
for each constraint c there is one k-support rule for each as-
signment A of k variables from scope(c).
Theorem 3 Unit-propagation on the k-support encoding
enforces relational k-arc consistency on the original con-
straint.

Range Encoding In the range encoding, a propositional
variable r(v, l, u) is introduced for all [l, u] ⊆ [1, d] to rep-
resent whether the value of v is between l and u. For each
range [l, u], the following O(nd2) rules encode v ∈ [l, u]
whenever it is safe to assume that v 	∈ [1, l − 1] and

16

v 	∈ [u + 1, d], and enforce a consistent set of ranges such
that v ∈ [l, u]⇒ v ∈ [l − 1, u] ∧ v ∈ [l, u + 1]:

r(v, l, u)← not r(v, 1, l − 1), not r(v, u + 1, d) (5)
← r(v, l − 1, u), not r(v, l, u) (6)
← r(v, l, u + 1), not r(v, l, u) (7)

Constraints are encoded into integrity constraints repre-
senting conflict regions. When the combination v1 ∈
[l1, u1], . . . , vn ∈ [ln, un] violates the constraint, the fol-
lowing rule is added:

← r(v1, l1, u1), . . . , r(vn, ln, un)

Theorem 4 Unit-propagation on the range encoding en-
forces range consistency on the original constraint.

A propagator for the global all-different constraint that en-
forces range consistency pruning Hall intervals has been
proposed by Leconte (1996) and encoded to SAT by
Bessière et al. (2009). An interval [l, u] is a Hall interval
iff |{v | dom(v) ⊆ [l, u]}| = u − l + 1. In other words,
a Hall interval of size k completely contains the domains of
k variables. Observe that in any bound support, the variables
whose domains are contained in the Hall interval consume
all values within the Hall interval, whilst any other variable
must find their support outside the Hall interval. The follow-
ing reformulation of the global all-different constraint will
permit us to achieve range consistency via unit propagation.
It ensures that no interval [l, u] can contain more variables
than its size.

← u− l + 2 {r(v1, l, u), . . . , r(vn, l, u)} (8)

This simple reformulation can simulate a complex propaga-
tion algorithm like Leconte’s with a similar overall complex-
ity of reasoning.

Corollary 4.1 Unit-propagation on (5–8) enforces range
consistency on the global all-different constraint in O(nd3)
down any branch of the search tree.

A hybrid that links the range encoding of v to its direct rep-
resentation extends the range encoding as follows, for each
i ∈ dom(v):

e(v, i)← r(v, i, i)
← e(v, i), not r(v, i, i)

These rules encode the equivalence v = i⇔ v ∈ [i, i].

Bound Encoding A last encoding is called the bound en-
coding (Crawford and Baker 1994). In the bound encoding,
a propositional variable b(v, i) is introduced for each value
i to represent that the value of v is bounded by i. That is,
v ≤ i if b(v, i) is assigned true, and v > i if b(v, i) is as-
signed false. Similar to the direct encoding, for each v, the
truth-assignments of atoms b(v, i) are encoded by a choice
rule (9). In order to ensure that assignments represent a con-
sistent set of bounds, the condition v ≤ i ⇒ v ≤ i + 1
is posted as integrity constraints (10) ∀i ∈ [1, d − 1]. An-
other integrity constraint (11) encodes v ≤ d, that at least

one value must be assigned to v:

{b(v, 1), . . . , b(v, d)} ← (9)
← b(v, i), not b(v, i + 1) (10)
← not b(v, d) (11)

Constraints are encoded into integrity constraints represent-
ing conflict regions similar to the range encoding. When all
combinations in the region

l1 < v1 ≤ u1, . . . , ln < vn ≤ un

violate a constraint, the following rule is added:

← b(v1, u1), . . . , b(vn, un), not b(v1, l1), . . . , not b(vn, ln)

Theorem 5 Unit-propagation on the bound encoding en-
forces bound consistency on the original constraint.

In order to get a representation of the global all-different
constraint that can only prune bounds, the bound encoding
for variables is linked to (8) as follows:

r(v, l, u)← not b(v, l − 1), b(v, u) (12)
← r(v, l, u), b(v, l − 1) (13)
← r(v, l, u), not b(v, u) (14)

Corollary 5.1 Unit-propagation on (8–14) enforces bound
consistency on the global all-different constraint in O(nd2)
down any branch of the search tree.

Note that an upper bound h can be posted on the size of Hall
intervals. The resulting encoding with only those cardinality
constraints (5) for which u− l+1 ≤ h detects Hall intervals
of size at most h, and therefore enforces a weaker level of
consistency.

To access the value of v, the bound encoding can be ex-
tended to a hybrid by adding the following rules to the bound
encoding for each i ∈ [1, d]:

e(v, i)← b(v, i), not b(v, i− 1)
← e(v, i), not b(v, i)
← e(v, i), b(v, i− 1)

The first rule enforces e(v, i) to be true if possible values for
v are bound to the singleton i, i.e. v ≤ i and v 	≤ i−1 are in
the assignment. On the other hand, the condition v = i ⇒
v ≤ i ∧ v 	≤ i− 1 is represented as integrity constraints.

Non-ground Logic Programs Although our semantics is
propositional, atoms in A and can be constructed from a
first-order signature Σ = (F ,V,P), where F is a set of
function symbols (including constant symbols), V is a de-
numerable collection of first-order variables, and P is a set
of predicate symbols. The logic program over A is then
obtained by a grounding process, systematically substitut-
ing all occurrences of variables V by terms in T (F), where
T (F) denotes the set of all ground terms over F . Atoms in
A are formed from predicate symbols P and terms in T (F).

17

Experiments

To evaluate these reformulations, we conducted experiments
on encodings containing all-different and permutation con-
straints. The global permutation constraint is a special case
of all-different when the number of variables is equal to the
number of all their possible values. A reformulation of per-
mutation extends (4) by

← not e(v1, i), . . . , not e(vn, i)

or (8) by the following rule where 1 ≤ l ≤ u ≤ k:

← d− u + l {not r(v1, l, u), . . . , not r(vn, l, u)}

This can increase propagation. Our reformulations have
been implemented within the prototypical preprocessor
inca2 which compiles an (extended) logic programs with
high-level statements for global constraints, constraint vari-
ables, first-order variables, function symbols, and aggre-
gates, etc. in linear time and space, such that the logic pro-
gram can be obtained by a grounding process. Experiments
consider inca in different settings using different reformu-
lations. We denote the support encoding of the global con-
straints by S, the bound encoding of the global constraints
by B, and the range encoding of the global constraints by R.
To explore the impact of small Hall intervals, we also tried
Bk and Rk, an encoding of the global constraints with only
those cardinality constraints (8) for which u − l + 1 ≤ k.
The consistency achieved by Bk and Rk is therefore weaker
than full bound and range consistency, respectively.

We also include the pure CP system gecode3 (3.2.0), and
the integrated system ezcsp4 (1.6.9; Balduccini 2009) in our
empirical analysis. The latter combines the grounder gringo
(2.0.3) and ASP solver clasp (1.3.0) with sicstus5 (4.0.8) as
a constraint solver. Since inca is a pure preprocessor, we se-
lect the ASP system clingo (2.0.3) as its backend to provide
a representative comparison with ezcsp. Note that clingo
stands for clasp on gringo and combines both systems in a
monolithic way. All experiments were run on a 2.00 GHz
PC under Linux. We report results in seconds, where each
run was limited to 600 s time and 1 GB RAM.

Pigeon Hole Problem The pigeon hole problem (PHP) is
to show that it is impossible to put n pigeons into n − 1
holes if each pigeon must be put into a distinct hole. Clearly,
our bound and range reformulations are faster compared to
weaker encodings (see Table 1). It appears that sicstus’ and
gecode’s default configuration uses filtering algorithms for
the global all-different constraint achieve arc consistency on
its binary decomposition. However, on such problems, de-
tecting large Hall intervals is essential.

Latin Squares A Latin square is an n×n-table filled with
n different elements such that each element occurs exactly

2http://potassco.sourceforge.net/ provides the
systems clasp, clingo, gringo, inca, and the benchmark set

3http://www.gecode.org/
4http://krlab.cs.ttu.edu/˜marcy/ezcsp/
5http://www.sics.se/sicstus/

n S B3 B R3 R ezcsp gecode
10 5 <1 <1 <1 <1 2 <1
11 46 1 <1 2 <1 17 9
12 105 4 <1 3 <1 184 104
13 — 25 <1 30 <1 — —
14 — 125 <1 197 <1 — —
15 — — <1 — <1 — —
16 — — <1 — <1 — —

Table 1: Runtime results in seconds for PHP.

% S B3 B R ezcsp gecode gecodeB

10 3 5 8 7 30 (7) 2 (4) <1 (1)
20 2 5 8 7 21 (20) 5 (4) <1 (3)
30 2 5 8 7 10 (30) 3 (13) 1 (5)
35 2 5 8 7 22 (24) 14 (13) 6 (7)
40 2 5 8 7 52 (29) 12 (20) 6 (9)
45 2 5 8 7 36 (35) 18 (25) 6 (13)
50 2 5 8 7 36 (50) 25 (32) 6 (18)
55 2 4 8 7 61 (51) 20 (41) 31 (29)
60 2 4 8 7 60 (63) 36 (51) 27 (35)
70 2 4 7 6 70 (66) 28 (45) 17 (27)
80 2 4 7 5 16 (18) 17 (13) 7 (7)
90 2 4 7 5 1 <1 (1) 3

Table 2: Average times over 100 runs on LSP. Timeouts are
given in parenthesis, if any.

once in each row and each column of the table. The Latin
square puzzle (LSP) is to determine whether a partially filled
table can be completed in such a way that a Latin square
is obtained. Randomly generated LSP has been proposed
as a benchmark domain for CP systems by Gomes and Sel-
man since it combines the features of purely random prob-
lems and highly structured problems. Table 2 compares the
runtime for solving LSP problems of size 20 × 20 where
the first column gives the percentage of preassigned values.
We included gecode with algorithms that enforce bound and
domain consistency, denoted as gecodeB and gecodeD (not
shown due to space constraints), in the experiments. Our
analysis exhibits phase transition behaviour of the systems
ezcsp, gecode, and gecodeB , while our Boolean encodings
and gecodeD solve all problems within seconds. Interest-
ingly, learning constraint interdependencies as in our ap-
proach is sufficient to tackle LSP. In fact, most of the time
for S, Bk, Rk is spent on grounding, but not for solving the
actual problem.

Graceful Graphs A labelling f of the nodes of a graph
(V,E) is graceful if f assigns a unique label f(v) from
{0, 1, . . . , |E|} to each node v ∈ V such that, when each
edge (v, w) ∈ E is assigned the label |f(v) − f(w)|, the
resulting edge labels are distinct. The problem of determin-
ing the existence of a graceful labelling of a graph (GGP)
has been modelled in CP Petrie and Smith (2003), using
auxillary variables d(v, w) for edge labels. We represent
the equivalence d(v, w) = |f(v) − f(w)| in the direct en-
coding which weakens the overall consistency. Our exper-

18

n S B1 B3 B R ezcsp gecode
3 11 4 6 9 6 6 2
4 1 2 1 3 3 <1 <1
5 4 5 4 13 12 1 <1
6 7 11 18 48 21 1 7
7 24 28 68 228 60 18 —
8 48 68 — 208 58 4 —
9 83 106 200 487 — 390 —

Table 3: Runtime results in seconds for GGP.

iments consider double-wheel graphs DWn composed by
two copies of a cycle with n vertices, each connected to a
central hub. Table 3 shows that our encodings compete with
ezcsp and outperform gecode, where the support encoding
performs better than bound and range encodings. In most
cases, the branching heuristic used in our approach appears
to be misled by the extra variables introduced in Bk and Rk.
That explains some of the variability in the runtimes.

Conclusions

We have reformulated global and other constraints into an-
swer set programs. In particular, we have investigated var-
ious generic ASP encodings for constraints on finite do-
mains and proved which level of consistency unit-propaga-
tion achieves on them. Our techniques were formulated as
preprocessing and can be applied to any ASP system with-
out changing its source code, which allows for programmers
to select the ASP solver that best fit their needs. We have
empirically evaluated the performance of such an approach
on benchmarks from CP and found that such reformulations
outperform integrated ASP(CP) systems as well as pure CP
solvers. Our future works includes the reformulation of
other useful global constraints into answer set programming
like the regular constraint, as well as global constraints like
lex which are very useful for symmetry breaking .

References

Balduccini, M. 2009. CR-prolog as a specification language
for constraint satisfaction problems. In Proc. of LPNMR’09,
402–408. Springer.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Baselice, S.; Bonatti, P.; and Gelfond, M. 2005. Towards an
integration of answer set and constraint solving. In Proc. of
ICLP’05, 52–66. Springer.
Bessière, C.; Katsirelos, G.; Narodytska, N.; Quimper, C.-
G.; and Walsh, T. 2009. Decompositions of all different,
global cardinality and related constraints. In Proc. of IJ-
CAI’09. AAAI Press/The MIT Press.
Bessière, C.; Hebrard, E.; and Walsh, T. 2003. Local con-
sistencies in SAT. In Proc. of SAT’03, 299–314. Springer.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability. IOS Press.
Crawford, J. M., and Baker, A. B. 1994. Experimen-
tal results on the application of satisfiability algorithms to
scheduling problems. In Proc. of AAAI’94, 1092–1097.

Dechter, R., and van Beek, P. 1997. Local and global rela-
tional consistency. Theory of Computer Science 173(1):283–
308.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Dovier, A.; Formisano, A.; and Pontelli, E. 2005. A compar-
ison of CLP(FD) and ASP solutions to NP-complete prob-
lems. In Proc. of ICLP’05, 67–82. Springer.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proc. of IJ-
CAI’07, 386–392. AAAI Press/The MIT Press.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
answer set solving. In Proc. of ICLP’09, 235–249. Springer.
Gent, I. P. 2002. Arc consistency in SAT. In Proc. of
ECAI’02, 121–125. IOS Press.
Gomes, C. P., and Selman, B. 1997. Problem structure in
the presence of perturbations. In Proc. of AAAI’97, 221–226.
AAAI Press.
Jaffar, J., and Maher, M. J. 1994. Constraint logic program-
ming: A survey. Journal of Logic Programming 19/20:503–
581.
Järvisalo, M.; Oikarinen, E.; Janhunen, T.; and Niemelä,
I. 2009. A module-based framework for multi-language
constraint modeling. In Proc. of LPNMR’09, 155–169.
Springer.
Leconte, M. 1996. A bounds-based reduction scheme for
constraints of difference. In CP’96, Second International
Workshop on Constraint-based Reasoning.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Proc. of IJCAI’05, 503–508. Professional Book
Center.
Mellarkod, V., and Gelfond, M. 2008. Integrating answer
set reasoning with constraint solving techniques. In Proc. of
FLOPS’08, 15–31. Springer.
Mitchell, D. 2005. A SAT solver primer. Bulletin of
the European Association for Theoretical Computer Science
85:112–133.
Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241–273.
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing SAT and SAT modulo theories: From an abstract Davis–
Putnam–Logemann–Loveland procedure to DPLL(T). Jour-
nal of the ACM 53(6):937–977.
Petrie, K. E., and Smith, B. M. 2003. Symmetry breaking
in graceful graphs. In Proc. of CP’03, 930–934. Springer.
Rossi, F.; van Beek, P.; and Walsh, T., eds. 2006. Handbook
of Constraint Programming. Elsevier.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Walsh, T. 2000. SAT v CSP. In Proc. of CP’00, 441–456.
Springer.

19

